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ABSTRACT

We make the following striking observation: fully convolutional VAE models
trained on 32×32 ImageNet can generalize well, not just to 64×64 but also to far
larger photographs, with no changes to the model. We use this property, applying
fully convolutional models to lossless compression, demonstrating a method to
scale the VAE-based ‘Bits-Back with ANS’ algorithm for lossless compression
(Townsend et al., 2019) to large color photographs, and achieving state of the art for
compression of full size ImageNet images. We release Craystack, an open source
library for convenient prototyping of lossless compression using probabilistic
models, along with full implementations of all of our compression results1.

1 INTRODUCTION

Bits back coding (Wallace, 1990; Hinton & van Camp, 1993) is a method for performing lossless
compression using a latent variable model. In an ideal implementation, the method can achieve an
expected message length equal to the variational free energy, often referred to as the evidence lower
bound (ELBO) of the model. Bits back was first introduced to form a theoretical argument for using
the ELBO as an objective function for machine learning (Hinton & van Camp, 1993).

The first implementation of bits back coding (Frey, 1997; Frey & Hinton, 1996) made use of first-in-
first-out (FIFO) arithmetic coding (AC) (Witten et al., 1987). However, the implementation did not
achieve optimal compression, due to an incompatibility between a FIFO coder and bits back coding,
and its use was only demonstrated on a small dataset of 8×8 binary images.

Recently, zero-overhead bits back compression with a significantly simpler implementation has been
developed (Townsend et al., 2019). This implementation makes use of asymmetric numeral systems
(ANS), a last-in-first-out (LIFO) entropy coding scheme (Duda, 2009). The method, known as ‘Bits
Back with Asymmetric Numeral Systems’ (BB-ANS) was demonstrated by compressing the MNIST
test set using a variational auto-encoder (VAE) model (Kingma & Welling, 2013; Rezende et al.,
2014), achieving a compression rate within 1% of the model ELBO.

More recently, Hoogeboom et al. (2019) and Ho et al. (2019) have proposed flow-based methods
for lossless compression, and Kingma et al. (2019) have presented ‘Bit-Swap’, extending BB-ANS
to hierarchical models. In this work we present an alternative method for extending to hierarchical
VAEs. This entails the following novel techniques:

1. Direct coding of arbitrary sized images using a fully convolutional model.
2. A vectorized ANS implementation supporting dynamic shape.
3. Dynamic discretization to avoid having to calibrate a static discretization.
4. Initializing the bits back chain using a different codec.

We discuss each of these contributions in detail in Section 3. We call the combination of BB-ANS
using a hierarchical latent variable model and the above techniques: ‘Hierarchical Latent Lossless
Compression’ (HiLLoC). In our experiments (Section 4), we demonstrate that HiLLoC can be used
to compress color images from the ImageNet test set at rates close to the ELBO, outperforming all
of the other codecs which we benchmark. We also demonstrate the speedup, of nearly three orders

1Available at the anonymized repository https://github.com/hilloc-submission/hilloc.
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Figure 1: A selection of images from the ImageNet dataset and the compression rates
achieved on the dataset by PNG, WebP, FLIF, Bit-Swap and the HiLLoC codec (with
Resnet VAE) presented in this work.

of magnitude, resulting from vectorization. We release an open source implementation based on
‘Craystack’, a Python package which we have written for general prototyping of lossless compression
with ANS.

2 BACKGROUND

In this section we briefly describe the BB-ANS algorithm first introduced by Townsend et al. (2019).
We begin by giving a high-level description of the ANS LIFO entropy coder (Duda, 2009), along
with a new notation for describing the basic ANS operations. Throughout the rest of the paper we use
log to mean the base two logarithm, usually denoted log2, and we measure message lengths in bits.

2.1 ASYMMETRIC NUMERAL SYSTEMS

As an entropy coder, ANS was designed for compressing sequences of discretely distributed symbols.
It achieves a compressed message length equal to the negative log-probability (information content) of
the sequence plus an implementation dependent constant, which is usually less than 32 bits. For long
sequences, the constant overhead has a negligible contribution to the overall compression rate. Thus,
by Shannon’s source coding theorem (Shannon, 1948), ANS coding is guaranteed to be near-optimal
for long sequences.

There are two basic operations defined by ANS, which we will refer to as ‘push’ and ‘pop’. Push
encodes a symbol by adding it to an existing message. It has the signature

push : (message, symbol) 7→ message′. (1)

Pop is the inverse of push, and may be used to decode a symbol and recover a message identical to
that before pushing.

pop : message′ 7→ (message, symbol). (2)

When multiple symbols are pushed in sequence, they must be popped using the precise inverse
procedure, which means popping the symbols in the opposite order. Hence why ANS is referred to as
a last-in-first-out coder, or a stack.

The push and pop operations require access to a probabilistic model of symbols, summarized by a
probability mass function p over the alphabet of possible symbols. The way that symbols are encoded
depends on the model, and pushing a symbol s according to p results in an increase in message length
of log 1

p(s) . Popping s results in an equal reduction in message length. For details on how the ANS
operations are implemented, see Duda (2009).

Note that any model/mass function can be used for the pop operation, i.e. there’s no hard restriction to
use the distribution that was used to encode the message. In this way, rather than decoding the same
data that was encoded, pop can actually be used to sample a symbol from a different distribution. The
pop method itself is deterministic, so the source of randomness for the sample comes from the data
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contained within the message. This sampling operation, which can be inverted by pushing the sample
back onto the stack, is essential for bits back coding.

For convenience, we introduce the shorthand notation s→ p(·) for encoding (pushing) a symbol s
according to p, and s← p(·) for decoding (popping).

2.2 BITS BACK WITH ANS

Suppose we have a model for data x which involves a latent variable z. A sender and receiver wish
to communicate a sample x. They have access to a prior on z, denoted p(z), a likelihood p(x | z) and
a (possibly approximate) posterior q(z |x), but not the marginal distribution p(x). Without access to
p(x), sender and receiver cannot directly code x using ANS. However, BB-ANS specifies an indirect
way to push and pop x. It does not require access to the marginal p(x), but rather uses the prior,
conditional, and posterior from the latent variable model.

Table 1(a) shows, in order from the top, the three steps of the BB-ANS pushing procedure which the
sender can perform to encode x. The ‘Variables’ column shows the variables known to the sender
before each step. 1(b) shows the inverse steps which the receiver can use to pop x, with the ‘Variables’
column showing what is known to the receiver after each step. After decoding x, the third step of
popping, z → q(· |x), is necessary to ensure that BB-ANS pop is a precise inverse of push.

Table 1: Indirectly pushing and popping x using BB-ANS. → and ← denote pushing
and popping respectively. ∆L denotes the change in message length resulting from each
operation. The three steps to push/pop are ordered, starting at the top of the table and
descending.

(a) Pushing x

Variables Operation ∆L

x z ← q(· |x) − log 1
q(z | x)

x, z x→ p(· | z) + log 1
p(x | z)

z z → p(·) + log 1
p(z)

(b) Popping x

Operation Variables ∆L

z ← p(·) z − log 1
p(z)

x← p(· | z) x, z − log 1
p(x | z)

z → q(· |x) x + log 1
q(z | x)

The change in message length from BB-ANS can easily be derived by adding up the quantities in the
∆L column of Table 1. For encoding we get

∆LBB−ANS = − log
1

q(z |x)
+ log

1

p(x | z)
+ log

1

p(z)
(3)

= − log
p(x, z)

q(z |x)
. (4)

Taking the expectation over z gives the expected message length for a datum x

L(x) = −Eq(z | x)

[
log

p(x, z)

q(z |x)

]
(5)

which is the negative evidence lower bound (ELBO), also known as the free energy. This is a
commonly used training objective for latent variable models. The above equation implies that latent
variable models trained using the ELBO are implicitly being trained to minimize the expected message
length of lossless compression using BB-ANS.

Note that, as Table 1 shows, the first step of encoding a data point, x, using BB-ANS is to, counter-
intuitively, decode (and thereby sample) a latent z ← q(· |x). This requires that there is already a
buffer of random data pushed to the ANS coder, which can be popped. This data used to start the
encoding process is recovered after the final stage of decoding, hence the name ‘bits back’.

If we have multiple samples to compress, then we can use ‘chaining’, which is essentially repeated
application of the procedure in Table 1 (Townsend et al., 2019). In Section 3.4 we describe how we
build up an initial buffer of compressed data by using a different codec to code the first images in a
sequence.
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x→ p(· | z) z → p(·)
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Figure 2: Visualizing the process of pushing images and latents from a VAE to the vec-
torized ANS stack with Craystack. The ANS stack head is shaped such that images and
latents can be pushed and popped in parallel, without reshaping. Beneath the shaped top of
the stack is the flat message stream output by ANS.

3 SCALING UP BITS BACK WITH ANS

We now discuss the techniques we introduce to scale up BB-ANS.

3.1 FULLY CONVOLUTIONAL MODELS

When all of the layers in the generative and recognition networks of a VAE are either convolutional or
elementwise functions (i.e. the VAE has no densely connected layers), then it is possible to evaluate
the recognition network on images of any height and width, and similarly to pass latents of any height
and width through the generative network to generate an image. Thus, such a VAE can be used as a
(probabilistic) model for images of any size.

We exploit this fact, and show empirically in Section 4 that, surprisingly, a fully convolutional VAE
trained on 32 × 32 images can perform well (in the sense of having a high ELBO) as a model for 64
× 64 images as well as far larger images. This in turn corresponds to a good compression rate, and
we implement lossless compression of arbitrary sized images by using a VAE in this way.

3.2 VECTORIZED LOSSLESS COMPRESSION

The primary computational bottlenecks in the original BB-ANS implementation (Townsend et al.,
2019) were loops over data and latent variables occurring in the Python interpreter. We have been
able to vectorize these, achieving an implementation which can scale to large ImageNet images. The
effect of vectorization on runtime is shown in Figure 4.

A vectorized implementation of ANS was described in Giesen (2014) using SIMD instructions. This
works by expanding the size of the ANS stack head, from a scalar to a vector, and interleaving the
output/input bit stream. We implement this in our lossless compression library, Craystack, using
Numpy. We ensure that the compression rate overhead to vectorization is low by using the BitKnit
technique described in Giesen (2015), see Appendix D for more detail. Having vectorized, we found
that most of the compute time for our compression was spent in neural net inference, whether running
on CPU or GPU, which we know to already be reasonably well optimized.

In Craystack, we further generalize the ANS coder using Numpy’s n-dimensional array view interface,
allowing the stack head to be ‘shaped’ like an n-dimensional array, or a nested Python data-structure
containing arrays. We can then use a shape which fits that of the data that we wish to encode or
decode. When coding data according to a VAE we use an ANS stack head shaped into a pair of
arrays, matching the shapes of the observation x and the latent z. This allows for a straightforward
implementation and clarifies the lack of data dependence between certain operations, such as the
x→ p(· | z) and z → p(·) during encoding, which can theoretically be performed concurrently. This
vectorized encoding process is visualized in Figure 2.
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3.3 DISCRETIZATION

It is standard for state of the art latent variable models to use continuous latent variables. Since
ANS operates over discrete probability distributions, if we wish to use BB-ANS with such models it
is necessary to discretize the latent space so that latent samples can be communicated. Townsend
et al. (2019) described a static discretization scheme for the latents in a simple VAE with a single
layer of continuous latent variables, and showed that this discretization has a negligible impact on
compression rate. The addition of multiple layers of stochastic variables to a VAE has been shown to
improve performance (Kingma et al., 2019; Kingma et al., 2016; Maaløe et al., 2019; Sønderby et al.,
2016). Motivated by this, we propose a discretization scheme for hierarchical VAEs with multiple
layers of latent variables.

The discretization described in Townsend et al. (2019) is formed by dividing the latent space into
intervals of equal mass under the prior p(z). For a hierarchical model, the prior on each layer depends
on the previous layers:

p(z1:L) = p(zL)

L−1∏
l=1

p(zl | zl+1:L). (6)

It isn’t immediately possible to use the simple static scheme from Townsend et al. (2019), since
the marginals p(z1), . . . , p(zL−1) are not known. Kingma et al. (2019) estimate these marginals by
sampling, and create static bins based on the estimates. They demonstrate that this approach can
work well. We propose an alternative approach, allowing the discretization to vary with the context
of the latents we are trying to code. We refer to our approach as dynamic discretization.

In dynamic discretization, instead of discretizing with respect to the marginals of the prior, we
discretize according to the conditionals in the prior, p(zl | zl+1:L). Specifically, for each latent layer l,
we partition each dimension into intervals which have equal probability mass under the conditional
p(zl | zl+1:L). This directly generalizes the scheme used in BB-ANS Townsend et al. (2019).

Dynamic discretization is more straightforward to implement because it doesn’t require callibrating
the discretization to samples. However it imposes a restriction on model structure, in particular it
requires that posterior inference is done top-down. This precludes the use of Bit-Swap. In Section
3.3.1 we contrast the model restriction from dynamic discretization with the bottom-up, Markov
restriction imposed by Bit-Swap itself.

We give further details about the dynamic discretization implementation we use in Appendix A.

3.3.1 MODEL RESTRICTIONS
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Figure 3: Graphical models representing the generative and inference models with HiLLoC
and Bit-Swap, both using a 3 layer latent hierarchy. The dashed lines indicate dependence
on the fixed observation.

The first stage of BB-ANS encoding is to pop from the posterior, z1:L ← q(· |x). When using
dynamic discretization, popping the layer zl requires knowledge of the discretization used for zl and
thus of the conditional distribution p(zl | zl+1:L). This requires the latents zl+1:L to have already
been popped. Because of this, latents in general must be popped (sampled) in ‘top-down’ order, i.e.
zL first, then zL−1 and so on down to z1.
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The most general form of posterior for which top-down sampling is possible is

q(z1:L |x) = q(zL |x)

L−1∏
l=1

q(zl | zl+1:L, x). (7)

This is illustrated, for a hierarchy of depth 3, in Figure 3b. The Bit-Swap technique (Kingma et al.,
2019) requires that inference be done bottom up, and that generative and inference models must
both be a Markov chain on z1, . . . , zL, and thus cannot use skip connections. These constraints are
illustrated in Figure 3c,d. Skip connections have been shown to improve model ELBO in very deep
models (Sønderby et al., 2016; Maaløe et al., 2019). HiLLoC does not have this constraint, and we
do utilize skip connections in our experiments.

3.4 STARTING THE BITS BACK CHAIN

As discussed in Section 3.3, our dynamic discretization method precludes the use of Bit-Swap for
reducing the one-time cost of starting a BB-ANS chain. We propose instead to use a significantly
simpler method to address the high cost of coding a small number of samples with BB-ANS, namely
we code the first samples using a different codec. The purpose of this is to build up a sufficiently large
buffer of compressed data to permit the first stage of the BB-ANS algorithm - to pop a latent sample
from the posterior. In our experiments we use the ‘Free Lossless Image Format’ (FLIF) (Sneyers
& Wuille, 2016) to build up the buffer. We chose this codec because it performed better than other
widely used codecs, but in principal any lossless codec could be used.

The amount of previously compressed data required to pop a posterior sample from the ANS stack
(and therefore start the BB-ANS chain) is roughly proportional to the size of the image we wish to
compress, since in a fully convolutional model the size of the latent space is determined by the image
size.

We can exploit this to allow us to obtain a better compression rate than FLIF as quickly as possible.
We do so by partitioning the first images we wish to compress with HiLLoC into smaller patches.
These patches require a smaller data buffer, and thus we can use the superior HiLLoC coding sooner
than if we attempted to compress full images. We find experimentally that, generally, larger patches
have a better coding rate than smaller patches. Therefore we increase the size of the image patches
being compressed with HiLLoC as more images are compressed and the size of the data buffer grows,
until we finally compress full images once the buffer is sufficiently large. For our experiments on
compressing full ImageNet images, we compress 32×32 patches, then 64×64, then 128×128 before
switching to coding the full size images directly. Note that since our model can compress any shape
image, we can compress the edge patches which will have different shape if the patch size does
not divide the image dimensions exactly. Using this technique means that our coding rate improves
gradually from the FLIF coding rate towards the coding rate achieved by HiLLoC on full images. We
compress only 5 ImageNet images using FLIF before we start compressing 32×32 patches using
HiLLoC.

4 EXPERIMENTAL RESULTS

Using Craystack, we implement HiLLoC with a Resnet VAE (RVAE) (Kingma et al., 2016). This
powerful hierarchical latent variable model achieves ELBOs comparable to state of the art autore-
gressive models2. In all experiments we used an RVAE with 24 stochastic hidden layers, diagonal
Gaussian distributions for the conditional prior and posterior distributions on the latents of each layer,
and a discretized logistic distribution over observed variables. The RVAE utilizes skip connections,
which are important to be able to effectively train models with such a deep latent hierarchy.

We trained the RVAE on the ImageNet 32 training set, then evaluated the RVAE ELBO and HiLLoC
compression rate on the ImageNet 32 test set. To test generalization, we also evaluated the ELBO
and compression rate on the tests sets of ImageNet64, CIFAR10 and full size ImageNet. For full size
ImageNet, we used the partitioning method described in 3.4. The results are shown in Table 2.

2Unlike autoregressive models, for which decoding time scales with number of pixels, and is in practice
extremely slow, both encoding and decoding with RVAEs are fast.
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For HiLLoC the compression rates are for the entire test set, except for full ImageNet, where we use
500 random images from the test set.

Table 2: Compression performance of HiLLoC with RVAE compared to other codecs.
Rates measured in bits/dimension (raw data is 8 bits/dimension). For HiLLoC we display
compression rate and theoretical performance (ELBO). All HiLLoC results are obtained
from the same model, trained on ImageNet 32.

ImageNet 32 ImageNet 64 Cifar-10 ImageNet

Generic PNG 6.39 5.71 5.87 4.71
WebP 5.29 4.64 4.61 3.66
FLIF 4.52 4.19 4.19 3.37

Flow-based IDF3 4.18 3.90 3.34 -
LBB4 3.88 3.70 3.12 -

VAE-based Bit-Swap 4.50 - 3.82 3.51
HiLLoC 4.20 3.90 3.56 3.13
HiLLoC (ELBO) (4.18) (3.89) (3.55) (3.10)

The fact that HiLLoC achieves state of the art compression rates relative to the baselines even under a
change of distribution is striking, and provides strong evidence of its efficacy as a general method
for lossless compression of natural images. Naively, one might expect a degradation of performance
relative to the original test set when changing the test distribution—even more so when the resolution
changes. However, in the settings we studied, the opposite was true, in that the average per-pixel
ELBO (and thus the compressed message length) was lower on all other datasets compared to the
ImageNet 32 validation set.

In the case of CIFAR, we conjecture that the reason for this is that its images are simpler and
contain more redundancy than ImageNet. This theory is backed up by the performance of standard
compression algorithms which, as shown in Table 2, also perform better on CIFAR images than they
do on ImageNet 32. We find the compression rate improvement on larger images more surprising.
We hypothesize that this is because pixels at the edge of an image are harder to model because they
have less context to reduce uncertainty. The ratio of edge pixels to interior pixels is lower for larger
images, thus we might expect less uncertainty per pixel in a larger image.

32x32 64x64 128x128
size

100

101

102

103

tim
e 
(s
)

vectorized
serial

Figure 4: Runtime of vectorized vs. serial ANS implementations. We observe a speedup of
nearly three orders of magnitude for all image sizes benchmarked.

To demonstrate the effect of vectorization we timed compression of single images at different, fixed,
sizes, using a fully vectorized and a fully serial implementation. The results are shown in Figure 4,
which clearly shows a speedup of nearly three orders of magnitude for all image sizes.

3Integer discrete flows (Hoogeboom et al., 2019).
4Local bits back (Ho et al., 2019).
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5 DISCUSSION

Our experiments demonstrate HiLLoC as a bridge between large scale latent variable models and
compression. To do this we use simple variants of pre-existing VAE models. Having shown that bits
back coding is flexible enough to compress well with large, complex models, we see plenty of work
still to be done in searching model structures (i.e. architecture search), optimizing with a trade-off
between compression rate, encode/decode time and memory usage. Particularly pertinent for HiLLoC
is latent dimensionality, since compute time and memory usage both scale with this. Since the model
must be stored/transmitted to use HiLLoC, weight compression is also highly relevant. This is a
well-established research area in machine learning (Han et al., 2016; Ullrich et al., 2017).

Our experiments also demonstrated that one can achieve good performance on a dataset of large
images by training on smaller images. This result is promising, but future work should be done to
discover what the best training datasets are for coding generic images. One question in particular is
whether results could be improved by training on larger images and/or images of varying size. We
leave this to future work. Another related direction for improvement is batch compression of images
of different sizes using masking, analogous to how samples of different length may be processed in
batches by recurrent neural nets.

Whilst this work has focused on latent variable models, there is also promise in applying state of
the art fully observed auto-regressive models to lossless compression. We look forward to future
work investigating the performance of models such as WaveNet (van den Oord et al., 2016) for
lossless audio compression as well as PixelCNN++ (Salimans et al., 2017) and the state of the art
models in Menick & Kalchbrenner (2019) for images. Sampling speed for these models, and thus
decompression, scales with autoregressive sequence length, and can be very slow. This could be
a serious limitation, particularly in common applications where encoding is performed once but
decoding is performed many times. This effect can be mitigated by using dynamic programming (Le
Paine et al., 2016; Ramachandran et al., 2017), and altering model architecture (Reed et al., 2017), but
on parallel architectures sampling/decompression is still significantly slower than with VAE models.

On the other hand, fully observed models do not require bits back coding, and therefore do not have
to pay the one-off cost of starting a chain. Therefore they may be well suited to situations where one
or a few i.i.d. samples are to be communicated. Similar to the way that we use FLIF to code the first
images for our experiments, one could initially code images using a fully observed model then switch
to a faster latent variable model once a stack of bits has been built up.

6 CONCLUSION

We presented HiLLoC, an extension of BB-ANS to hierarchical latent variable models, and show that
HiLLoC can perform well with large models. We open-sourced our implementation, along with the
Craystack package for prototyping lossless compression.

We have also explored generalization of large VAE models, and established that fully convolutional
VAEs can generalize well to other datasets, including images of very different size to those they were
trained on. We have described how to compress images of arbitrary size with HiLLoC, achieving
a compression rate superior to the best available codecs on ImageNet images. We look forward to
future work reuniting machine learning and lossless compression.
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A REPARAMETERIZING DISCRETIZED LATENTS

After discretizing the latent space, the latent variable at layer l can be treated as simply an index il
into one of the intervals created by the discretization. As such, we introduce the following notation
for pushing and popping according to a discretized version of the posterior.

il ↔ Ql(· | il+1:L, x) (8)

Where Ql(· | il+1:L, x) is the distribution over the intervals of the discretized latent space for zl,
with interval masses equal to their probability under q(zl | z̃l+1:L, x). The discretization is created
from splitting the latent space into equal mass intervals under p(zl | z̃l+1:L). The mass of a given
interval under some distribution is the CDF at the upper bound of the interval minus the CDF at
the lower end of the interval. We have used z̃ to indicate that these will be discrete zl values that
are reconstructed from the indices il. In practise we take z̃l(il) to be the centre of the interval
indexed by il. It is important to note that the Ql has an implicit dependence on the previous prior
distributions p(zk|zk+1:L) for k ≥ l, as these prior distributions are required to calculate z̃l+1:L and
the discretization of the latent space.

Since we discretize each latent layer to be intervals of equal mass under the prior, the prior distribution
over the indices il becomes a uniform distribution over the interval indices, U(il), which is not
dependent on i6=l. Note that this allows us to push/pop the il according to the prior in parallel. The
full encoding and decoding procedures with a hierarchical latent model and the dynamic discretization
we have described are shown in Table 3. Note that the operations in the two tables are ordered top to
bottom.

Variables Operation

x iL ← QL(· |x)

x, iL iL−1 ← QL−1(· | iL, x)

...
...

x, i2:L i1 ← Q1(· | i2:L, x)

x, i1:L x → p(· | z̃1:L(i1:L))

i1:L i1:L → U(·)
(a) Encoding

Operation Variables

i1:L ← U(·) i1:L

x ← p(· | z̃1:L(i1:L)) x, i1:L

i1 → Q1(· | i2:L, x) x, i2:L

i2 → Q2(· | i3:L, x) x, i3:L

...
...

iL → QL(· |x) x

(b) Decoding

Table 3: The BB-ANS encoding and decoding operations, in order from the top, for a
hierarchical latent model with l layers. The Ql are posterior distributions over the indices
il of the discretized latent space for the lth latent, zl. The discretization for the lth latent is
created such that the intervals have equal mass under the prior.

B CODEC FOR VARIABLE IMAGE SIZES

Here we describe a codec to compress a set of images of arbitrary size. The encoder now adds the
dimensions of the image being coded to the stream of compressed data, such that the decoder knows
what shape the image will be before decoding it. Since we are using a vectorized ANS coder, as
described in Section 3.2, we resize the top of the coder in between each coding/decoding step such
that the size of the top of the coder matches the sizes of the image and latents being coded. The codec
is detailed in Table 4.

To make the resizing procedure efficient, we resize via ‘folding’ the top of the vectorized ANS coder
such that we are roughly halving/doubling the number of individual ANS coders each time we fold.
This makes the cost of the resize logarithmic with the size difference between the vectorized coder
and the targeted size.

11
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Table 4: Codec for an image, x, with shape s. We code the image via the HiLLoC codec,
and the dimensions of the image with the uniform codec, U . Since the coder has the same
size, init_size, before and after encoding/decoding, we can use this codec repeatedly to
code any number of arbitrary sized images.

Variables Operation

x, s resize_coder(s)

x, s x→ HiLLoC(·)
s resize_coder(init_size)

s s→ U(·)
(a) Encoding

Operation Variables

s← U(·) s

resize_coder(s) s

x← HiLLoC(·) x, s

resize_coder(init_size) x, s

(b) Decoding

C COMPRESSION WITH PIXELVAE

To further demonstrate HiLLoC, we implement it with a PixelVAE model. We use a model with
two latent layers, although the posterior is fully factorized. The implementation requires nesting
an autoregressive codec inside the BB-ANS codec, since the observations and one of the latent
layers in PixelVAE have autoregressive generative distributions. Handling this complexity showcases
Craystack, which was designed to support this kind of composition. It would also have been
prohibitively slow to run on the datasets we compress without the vectorized ANS scheme discussed
in Section 3.2.

The achieved compression rate on the entire ImageNet validation set is displayed in Table 5.

The autoregressive component of the PixelVAE generative model leads to an asymmetry between the
times required for compression and decompression. Compression with the PixelVAE model is readily
parallelizable across pixels, since we already have access to the pixel values we wish to compress
and thus also the conditional distributions on each pixel. However, decompression (equivalently,
sampling) is not parallelizable across pixels, since we must decompress a pixel value in order to
give us access to the conditional distribution on the next pixel. This means the time complexity of
decompression is linear in the number of pixels, making it prohibitively slow for most image sizes.

Table 5: The ELBO and compression rate of HiLLoC with PixelVAE, trained to convergence
on ImageNet 64, compared to other schemes. All schemes are evaluated on the ImageNet
64 validation set, and measured in bits per pixel-channel.

PixelVAE

Raw data PNG WebP FLIF HiLLoC ELBO

8 5.71 4.64 4.19 3.94 (3.67)

D VECTORIZATION WITHOUT OVERHEADS

To ensure that the compression rate overhead from using vectorization is low, we use a technique from
the BitKnit codec (Giesen, 2015). When we reach the end of encoding, we could simply concatenate
the integers in the (vector) stack head to form the final output message. However, this is inefficient
because the stack head is not uniformly distributed. As discussed in Giesen (2015), elements of the
top of the stack have a probability mass roughly

p(h) ∝ 1/h. (9)

Equivalently, the length of h is approximately uniformly distributed. More detailed discussion and an
empirical demonstration of this is given by Bloom (2014). An efficient way to form the final output
message at the end of decoding, is to fold the stack head vector by repeatedly encoding half of it
onto the other half, until only a scalar remains, using the above distribution for the encoding. We
implement this technique in Craystack and use it for our experiments. The number of (vectorized)
encode steps required is logarithmic in the size (i.e. the number of elements) of the stack head.

12
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Some of the overhead from vectorization also comes at the start of encoding, when, in existing
implementations, the elements of the stack head vector are initialized to copies of a fixed constant.
Information from these copies ends up in the message and introduces redundancy which scales with
the size of the head. This overhead can be removed by initializing the stack head to a vector of length
1 and then growing the length of the stack head vector gradually as more random data is added to the
stack, by decoding new stack head vector elements according to the distribution (9).
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