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ABSTRACT

Graph Neural Networks (GNNs) are a class of deep models that operates on data
with arbitrary topology and order-invariant structure represented as graphs. We in-
troduce an efficient memory layer for GNNs that can learn to jointly perform graph
representation learning and graph pooling. We also introduce two new networks
based on our memory layer: Memory-Based Graph Neural Network (MemGNN)
and Graph Memory Network (GMN) that can learn hierarchical graph representa-
tions by coarsening the graph throughout the layers of memory. The experimental
results demonstrate that the proposed models achieve state-of-the-art results in six
out of seven graph classification and regression benchmarks. We also show that
the learned representations could correspond to chemical features in the molecule
data.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Wu et al., 2019; Zhou et al., 2018; Zhang et al., 2018) are a class
of deep architectures that operate on data with arbitrary topology and order-invariant structure rep-
resented as graphs such as social networks (Kipf & Welling, 2016), knowledge graphs (Schlichtkrull
et al., 2018), molecules (Duvenaud et al., 2015), point clouds (Wang et al., 2018b), and robot designs
(Wang et al., 2019). Unlike regular-structured inputs with spatial locality properties such as grids
(e.g., images and volumetric data) and sequences (e.g., speech and text), GNN inputs are variable-
size graphs consisting of permutation-invariant nodes and interactions among them. GNN models
such as Gated GNN (GGNN) (Li et al., 2015), Message Passing Neural Network (MPNN) (Gilmer
et al., 2017), Graph Convolutional Network (GCN) (Kipf & Welling, 2016), and Graph Attention
Network (GAT) (Velikovi et al., 2018) address this by learning node embeddings through an itera-
tive process of transferring, transforming, and aggregating the node embeddings from topological
neighbors. Each iteration expands the “receptive field” by one hop and after k iterations the nodes
within k hops influence the node embeddings of one another.

GNN models however cannot learn hierarchical representations as they do not exploit the composi-
tionality of the graphs. Recent works such as Differentiable Pooling (DiffPool) (Ying et al., 2018),
TopKPool (Gao & Ji, 2019), and Self-Attention Graph Pooling (SAGPool) (Lee et al., 2019) define
end-to-end parametric “graph pooling” layers that allow learning hierarchical graph representations
by stacking interleaved layers of GNN and pooling layers similar to CNNs. The pooling layers
learn node clusters that are meaningful with respect to the task in the embedding space. These clus-
ters might be communities in a social network or potent functional groups within a chemical dataset.
Nevertheless, these models are not efficient as they require an iterative process of “message passing”
after each pooling layer.

In this paper, we introduce a memory layer for graph representation learning consisting of a multi-
head array of keys and a convolution operator to aggregate the soft cluster assignments from different
heads. The queries to a memory layer are node embeddings from the previous layer and the outputs
are the node embeddings of the coarsened graph. The memory layer does not explicitly require
connectivity information (i.e., adjacency matrix) and unlike GNNs relies on the global informa-
tion rather than local topology. These properties make the memory layers more efficient compared
to graph “message passing” and pooling layers while improving the performance. It also enables
simultaneous representation learning and pooling. We also introduce two networks based on the
proposed memory layers: Memory-based Graph Neural Network (MemGNN) and Graph Memory
Network (GMN). MemGNN consists of a GNN encoder that learns the node embeddings, and lay-
ers of memory that coarsen the graph by learning hierarchical graph representation up to the graph
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embedding. GMN on the other hand learns the hierarchical graph representation purely based on
memory layers and hence does not require “message passing”.

2 RELATED WORKS

Memory-augmented neural networks are deep models that utilize external memory with differ-
entiable read-write operators allowing them to explicitly access the past experiences and are shown
to enhance reinforcement learning (Pritzel et al., 2017), meta learning (Santoro et al., 2016), few-
shot learning (Vinyals et al., 2016), and multi-hop reasoning (Weston et al., 2015). Unlike RNNs
in which the memory is represented within the hidden states of the network, the explicit representa-
tion in the memory-augmented models helps them to store and retrieve longer-term memories with
less parameters. The memory is usually implemented either as a differentiable neural dictionary
(i.e., key-value memory) (e.g., neural episodic control (Pritzel et al., 2017) and product-key memory
layers (Lample et al., 2019)) or a differentiable array (e.g., Neural Turing Machine (NTM) (Graves
et al., 2014), prototypical networks (Snell et al., 2017), and memory networks (Weston et al., 2015)).
Our memory layer consists of a multi-head array and a convolutional layer to aggregate the heads.

Graph Neural Networks use “message passing” mechanism to learn node embeddings over graphs.
GraphSAGE (Hamilton et al., 2017b) learns embedding by sampling and aggregating neighbor
nodes whereas GAT (Velikovi et al., 2018) uses attention to aggregate embeddings from all neigh-
bors. GCN models extend the convolution operator to arbitrary topology. Spectral GCNs (Bruna
et al., 2014; Defferrard et al., 2016; Kipf & Welling, 2016) use spectral filters over graph Laplacian
to define the convolution operator in the Fourier domain. These models are less efficient compared
to spatial GCNs (Schlichtkrull et al., 2018; Ma et al., 2019) which directly define the convolution on
graph patches centered on nodes. Our memory layer uses a feed-forward network to learn the node
embeddings.

Graph pooling methods can be categorized into two classes: global and hierarchical pooling. In
former all node embeddings are pooled into a single graph embedding using arithmetic operators
(e.g., summation) (Hamilton et al., 2017a; Kipf & Welling, 2016) or neural networks operating over
sets (e.g., Set2Set (Vinyals et al., 2015) and SortPool (Morris et al., 2019)). Hierarchical methods
coarsen the graph in each layer to capture the hierarchical structure information. Non-parametric
pooling methods (e.g., Clique pooling (Luzhnica et al., 2019), kNN pooling (Wang et al., 2018a), and
Graclus (Dhillon et al., 2007)) relying on topological information are efficient, but cannot compete
with the performance of parametric models (e.g., DiffPool (Ying et al., 2018) and edge contraction
pooling (Diehl, 2019)).

DiffPool (Ying et al., 2018) trains two parallel GNNs to compute node embeddings and cluster
assignments respectively, using a graph classification loss along with link prediction and entropy
losses to regularize the model, whereas Mincut pooling (Bianchi et al., 2019) trains a sequence of a
GNN and an MLP using a task-specific loss and an unsupervised loss that encourages the model to
minimize the minCUT objective while clustering the connected nodes together. TopKPool (Cangea
et al., 2018; Gao & Ji, 2019) computes a node score by learning a projection vector and then drops
all the nodes except the nodes with top scores. SAGPool (Lee et al., 2019) extends the TopKPool
by using graph convolutions to take neighbor node features into account. We impose a clustering-
friendly distribution as our distance metric to define the pooling operator.

3 METHOD

3.1 MEMORY LAYER

We define a memory layerM(l) : Rnl×dl 7−→ Rnl+1×dl+1 in layer l as a parametric function that
learns to map nl node embeddings of size dl to nl+1 node embeddings of size dl+1 such that nl+1 <
nl. The memory layer learns to coarsen an input set of nodes while projecting their embeddings
into a new space. A memory layer shown in Figure 1 consists of a multi-head array of keys and
a convolutional layer. A common practice in memory networks for computing the output is to
use softmax scores over inner product of queries and keys (i.e., wj = softmax(q>j kj) and m =∑
j wjvj where wj is the normalized score and m is the output vector) (Lample et al., 2019). In
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Figure 1: Proposed Architecture for hierarchical graph representation learning using proposed mem-
ory layers. Query network learns to project the initial node attributes to a query embedding space
and each memory layer coarsens the queries while mapping them to a newer query space.

this work we instead treat the input node embeddings as queries Ql ∈ Rnl×dl and the keys Kl ∈
Rnl+1×dl as the cluster centroids of the queries. Hence we impose a clustering-friendly distribution
as our distance metric. Following (Xie et al., 2016; Maaten & Hinton, 2008), we use the Student’s
t-distribution as a kernel to measure the normalized similarity between query qi and key kj :

Ci,j =

(
1 + ||qi − kj ||2/τ

)− τ+1
2

∑
j′

(
1 + ||qi − kj′ ||2/τ

)− τ+1
2

(1)

where Cij is the normalized score between query qi and key kj (i.e., probability of assigning node
i to cluster j) and τ is the degree of freedom of the Student’s t-distribution (i.e., temperature). One
can interpret C ∈ Rnl+1×nl as either the soft cluster assignments or the attention scores.

To increase the model capacity we model the memory as a multi-head array. Applying a query
against the memory therefore will generate a multi-head cluster assignment tensor [C0, ...,C|h|]
where |h| denotes the number of heads. To aggregate the heads into a single assignment matrix we
apply a convolution over the heads as follows:

C(l) = Γφ

(
|h|
‖
h=0

Ch
)
∈ Rnl×nl+1 (2)

where Γφ is a convolutional layer parametrized by φ, || is the concatenation operator, and C(l) is the
aggregated cluster assignment matrix.

The values (Vl ∈ Rnl+1×dl ) are defined as the product of the scores and the original queries and
represent the coarsened embeddings in the same space as the input queries.

V(l) = C(l)>Q(l) ∈ Rnl+1×dl (3)
The values are then passed through a non-linear unit consisting of a weight matrix W and a
LeakyReLU activation function to project the coarsened embeddings from Rnl+1×dl into a new
space Rnl+1×dl+1 .

Q(l+1) = LeakyReLU
(

WV(l)
)
∈ Rnl+1×dl+1 (4)

Thanks to these parametrized transformations, a memory layer learns both hierarchical graph pool-
ing and node embeddings simultaneously in an end-to-end fashion. The computed outputs are the
input queries to the subsequent memory layer M(l+1). Hence for a graph classification task, one
can simply stack layers of memory up to the level where the input graph is coarsened into a single
node representing the global graph embedding and then feed it to a fully-connected layer to predict
the graph class as follows:

Y = softmax
(

MLP
(
M(l)

(
M(l−1)

(
....M(0) (Q0)

))))
(5)

where Q0 is the initial query embedding generated by the query network 1.
1 We use initial node embeddings and initial query embeddings interchangeably throughout the paper.
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3.2 GMN ARCHITECTURE

A GMN is a stack of memory layers on top of a query network that generates the initial query
embeddings without any “message passing” processes involved. Similar to set neural networks
(Vinyals et al., 2015) and transformers (Vaswani et al., 2017) graph nodes in a GMN are treated as a
permutation-invariant set of embeddings. The query network projects the initial node attributes into
an embedding space representing the initial query space.

Assume a training set D = [g1, g2, ..., gN ] of N graphs where each graph is represented as g =
(A,X, Yn, Yg) and A ∈ {0, 1}n×n denotes the adjacency matrix, X ∈ Rn×din is the initial node
attribute, Yn ∈ Rn is the node label, and Yg is the graph label. Depending on the task X, Yn
or Yg can be empty. Considering that the GMN model treats a graph as a set of order-invariant
nodes that does not use “message passing”, and considering that the memory layers do not rely on
connectivity information, the topological information of each node should be encoded into its initial
node embedding by the query network. Inspired by transformers (Vaswani et al., 2017) we encode
the topological information along with the initial node attribute into the initial query embeddings
using the query network as follows:

Q(0) = LeakyReLU (W1 [LeakyReLU(AW0) ‖ X]) (6)

Here adjacency matrix A is fed to a non-linear unit parameterized by W0, concatenated by the
initial node attribute, and then jointly fed to a non-linear unit parameterized by W1. Hence, the
query network is implemented as a two-layer feed-forward neural network.

3.3 MEMGNN ARCHITECTURE

Unlike the GMN architecture, the query network in MemGNN relies on the iterative process of
“message passing” and aggregation to compute the initial query embeddings. The initial query Q0
generated by the query network of a MemGNN is defined as follows.

Q(0) = Gθ (A,X) (7)

where query networkGθ is an arbitrary parameterized “message passing” GNN (Gilmer et al., 2017;
Li et al., 2015; Kipf & Welling, 2016; Velikovi et al., 2018).

In our implementation of MemGNN we use a modified variant of GAT (Velikovi et al., 2018).
Specifically, we introduce an extension to the original GAT model called edge-based GAT (e-GAT)
and use it as the query network. Unlike GAT, e-GAT learns attention weights not only from the
neighbor nodes but also from the input edge attributes as well. This is especially important for data
containing edge information (e.g., various bonds among atoms represented as edges in molecule
datasets). In an e-GAT layer, attention score between two neighbor nodes is computed as follows.

αij =
exp

(
LeakyReLU

(
W
[
Wnh

(l)
i ‖Wnh

(l)
j ‖Weh

(l)
i→j

]))
∑
k∈Ni

exp
(

LeakyReLU
(

W
[
Wnh

(l)
i ‖Wnh

(l)
k ‖Weh

(l)
i→k

])) (8)

where h(l)i and h(l)i→j denote the embedding of node i and the embedding of the edge connecting node
i to its one-hop neighbor node j in layer l, respectively. Wn and We are learnable node and edge
weight matrices and W is the parameter of a single-layer feed-forward network that computes the
attention. The attention score is then used to update the node embeddings as follows:

h
(l+1)
i = LeakyReLU

∑
j∈Ni

αijh
(l)
j

 (9)

3.4 TRAINING

We train the model using a loss function that consists of two terms: an unsupervised clustering
loss and a task-specific loss. The unsupervised loss is inspired by deep clustering methods (Razavi
et al., 2019; Xie et al., 2016; Aljalbout et al., 2018). It encourages the model to learn clustering-
friendly embeddings in the latent space by urging it to learn from high confidence assignments
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with the help of an auxiliary target distribution. To apply this, we define the unsupervised loss as the
KullbackLeibler (KL) divergence loss between the soft assignmentsC(l) (i.e., computed in Equation
2) and the auxiliary distribution P (l) as follows:

L(l)
h = KL(P (l)||C(l)) =

∑
i

∑
j

P
(l)
ij log

P
(l)
ij

C
(l)
ij

(10)

For the target distributions P (l), we use the distribution proposed in Xie et al. (2016) which normal-
izes the loss contributions and improves the cluster purity while emphasizing on the samples with
higher confidence. This distribution is defined as follows.

P
(l)
ij =

(
C

(l)
ij

)2
/
∑
i

C
(l)
ij∑

j′

(
C

(l)
ij′

)2
/
∑
i

C
(l)
ij′

(11)

We then define the loss as follows:

L =
1

N

N∑
n=1

(
wLo + (1− w)

L∑
l=1

L(l)
h

)
(12)

where Lo is the task-dependent objective (e.g., cross-entropy loss for graph classification), L is the
number of memory layers, L(l)

h is the KL divergence between soft cluster assignments and the target
distribution in layer l, and w is a scalar weight. To stabilize the training the gradients of the task-
specific loss are back-propagated batch-wise while the gradients of the unsupervised loss are applied
epoch-wise by periodically switching w between 0 and 1. We optimize the model parameters w.r.t
the defined objective using mini-batch stochastic gradient descent.

4 EXPERIMENTS

4.1 DATASETS

We use seven graph benchmarks including five graph classification and two graph regression bench-
marks to evaluate the proposed method. These datasets are commonly used in both graph kernel
(Borgwardt & Kriegel, 2005; Yanardag & Vishwanathan; Shervashidze et al., 2009; Ying et al.,
2018; Shervashidze et al., 2011; Kriege et al., 2016) and GNN (Cangea et al., 2018; Ying et al.,
2018; Lee et al., 2019; Gao & Ji, 2019) literature. They are as follows (i.e., first two benchmarks are
regression tasks and the rest are classification tasks):

ESOL (Delaney, 2004) contains water solubility data for compounds.
Lipophilicity (Gaulton et al., 2016) contains experimental results of octanol/water distribution of
compounds.
Bace (Subramanian et al., 2016) provides quantitative binding results for a set of inhibitors of human
β-secretase 1 (BACE-1).
DD (Dobson & Doig, 2003) is used to distinguish enzyme structures from non-enzymes.
Enzymes (Schomburg et al., 2004) is for predicting functional classes of enzymes.
Proteins (Dobson & Doig, 2003) is used to predict the protein function from structure.
COLLAB (Yanardag & Vishwanathan) is for predicting the field of a researcher given her ego-
collaboration graph.

For more information regarding the characteristics of the datasets refer to Appendix A.4 and for
implementation details see A.1.

4.2 RESULTS

To evaluate the performance of our models on DD, Enzymes, Proteins, and COLLAB datasets,
we follow the experimental protocol in (Ying et al., 2018) and perform 10-fold cross-validation to
evaluate the model performance and report the mean accuracy over all folds. We also report the
performance of four kernel-based methods including Graphlet (Shervashidze et al., 2009), shortest
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Table 1: Mean validation accuracy over 10-folds.

Method Dataset
Enzymes Proteins DD COLLAB

Graphlet (Shervashidze et al., 2009) 41.03 72.91 64.66 64.66
Shortest Path (Borgwardt & Kriegel, 2005) 42.32 76.43 78.86 59.10
Weisfeiler-Lehman (WL) (Shervashidze et al., 2011) 53.43 73.76 74.02 78.61
WL Optimal Assignment (Kriege et al., 2016) 60.13 75.26 79.04 80.74
PatchySan (Niepert et al., 2016) − 75.00 76.27 72.60
GraphSage + MeanPool (Hamilton et al., 2017a) 54.25 70.48 75.42 68.25
ECC (Simonovsky & Komodakis, 2017) 53.50 72.65 74.10 67.79
Set2Set (Vinyals et al., 2015) 60.15 74.29 78.12 71.75
SortPool (Morris et al., 2019) 57.12 75.54 79.37 73.76
DiffPool (Ying et al., 2018) 60.53 76.25 80.64 75.48
CliquePool (Luzhnica et al., 2019) 60.71 72.59 77.33 74.50
Sparse HGC (Cangea et al., 2018) 64.17 75.46 78.59 75.46
Mincut Pool (Bianchi et al., 2019) − 76.5 80.3 83.4
TopKPool (Gao & Ji, 2019) − 77.68 82.43 77.56
SAGPool (Lee et al., 2019) − 71.86 76.45 −
GMN (ours) 78.66 82.07 82.24 77.26
MemGNN (ours) 75.50 81.35 82.92 77.0

path (Borgwardt & Kriegel, 2005), Weisfeiler-Lehman (WL) (Shervashidze et al., 2011), and WL
Optimal Assignment (Kriege et al., 2016), and eleven deep models. The results are shown in Table
1.

Table 1 demonstrates that: (i) our proposed models significantly improve the performance on DD,
Enzymes, and Proteins datasets by absolute margins of 14.49%, 4.75%, and 0.49% accuracy, respec-
tively, (ii) both proposed models achieve better performance on these three datasets compared to the
baselines, (iii) MemGNN outperforms GMN on COLLAB whereas MGN achieves better result on
the Enzymes, Proteins, and DD datasets.

On the COLLAB dataset our models are outperformed by Mincut pool (Bianchi et al., 2019), a
variant of DiffPpool (i.e., diffpool-det) (Ying et al., 2018) and WL Optimal Assignment (Kriege
et al., 2016). The first two models are GNNs augmented with explicit clustering domain-knowledge
2 whereas the third method is based on graph kernels. We speculate that because of the high edge-
to-node ratio of COLLAB (i.e., 33.23) the augmentations help in extracting near-optimal cliques.

For the remaining datastes we follow the evaluation protocol in (Wu et al., 2018) and report the
Root-Mean-Square Error (RMSE) for the regression tasks (i.e., ESOL and Lipophilicity) and the
Area Under the Curve Receiver Operating Characteristics (AUC-ROC) measure for the BACE clas-
sification task. Considering that these datasets contain initial edge attributes (refer to Appendix A.4
for further details), we train the MemGNN model and compare the results to the baseline mod-
els reported in (Wu et al., 2018) including graph-based methods such as GCN, MPNN, Directed
Acyclic Graph (DAG) based models, Weave as well as other conventional methods such as Kernel
Ridge Regression (KRR) and Influence Relevance Voting (IRV). Tables 2 and 3 demonstrate that
our MemGNN model achieves state-of-the-art results by absolute margin of 0.04 and 0.1 RMSE
on ESOL and Lipophilicity benchmarks and margin of 4.0% AUC-ROC on BACE benchmark. For
further details on these datasets and the baselines see (Wu et al., 2018).

4.3 ABLATION STUDY

4.3.1 EFFECT OF INTRODUCING EDGE FEATURE

To investigate the effect of the proposed e-GAT model, we train our MemGNN model using both
GAT and e-GAT models as the query network. Considering that ESOL, Lipophilicity, and BACE
datasets contain different edge types, we set them as our target benchmarks. Since nodes have richer

2In diffpool-det assignment matrices are generated using a deterministic graph clustering algorithm and
Mincut pool explicitly introduces graph mincut objective to the loss function.
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Table 2: RMSE on ESOL and Lipophilicity.
Method Dataset

ESOL Lipophilicity
validation test validation test

Multitask 1.17 1.12 0.85 0.86
Random Forest 1.16 1.07 0.84 0.88
XGBoost 1.1 0.99 0.78 0.80
GCN 1.05 0.97 0.68 0.66
MPNN 0.55 0.58 0.76 0.72
KRR 1.65 1.53 0.89 0.89
DAG 0.74 0.82 0.86 0.84
Weave 0.57 0.61 0.73 0.72
MemGNN (ours) 0.53 0.54 0.55 0.56

Table 3: AUC-ROC for BACE dataset.
Method validation test
Logistic Regression 71.9 78.1
KernelSVM 73.9 86.2
XGBoost 75.6 85.0
Random Forest 72.8 86.7
IRV 71.5 83.8
Multitask 69.6 82.4
Bypass 74.5 82.9
GCN 62.7 78.3
Weave 63.8 80.6
MemGNN (ours) 84.4 90.7

features compared to edges, we set the node and edge feature dimensions to 16 and 4, respectively.
The comparative evaluation of the performance of the two models on the ESOL dataset is shown in
Appendix A.2 demonstrating that e-GAT achieves better results on the validation set in each epoch
compared to the standard GAT model. We observed the same effect on Lipophilicity and BACE
datasets too.

4.3.2 TOPOLOGICAL EMBEDDING

To investigate the effect of the topological embeddings on the GMN model, we evaluated three initial
topological features including adjacency matrix, normalized adjacency matrix, and Random Walk
with Restart (RWR). RWR is the steady diffusion state of Markovian random walk that captures the
pair-wise relevance score between nodes within a graph and is used in methods such as personalized
PageRank (Tong et al., 2006). It is computed once before the training using ~ti = (1−p)(I−cÃ)−1~ei
where ~ti denotes the RWR vector of score for node i, p is the restart probability, Ã is the normalized
adjacency matrix, and ~ei is the one-hot vector representing node i. For further details about RWR
relevance scores please see section A.3. The results suggested that using the adjacency matrix as the
initial feature achieves the best performance. For instance, 10-fold cross validation accuracy of a
GMN model trained on ENZYMES with adjacency matrix, normalized adjacency matrix, and RWR
is 78.66%, 77.16%, and 77.33%, respectively.

4.3.3 DOWN-SAMPLING NEIGHBORS BASED ON RANDOM WALKS

We investigated two methods to down-sample the neighbors in dense datasets such as COLLAB
(i.e., average of 66 neighbors per node) to enhance the memory and computation. The first method
randomly selects 10% of the edges whereas the second method ranks the neighbors based on their
RWR scores with respect to the center node and then keeps the top 10% of the edges. We trained the
MemGNN model on COLLAB using both sampling methods which resulted in 73.9% and 73.1%
10-fold cross validation accuracy for random and RWR-based sampling methods respectively, sug-
gesting that random sampling performs slightly better than a random walk ranking and sampling
method.

4.3.4 EFFECT OF NUMBER OF KEYS AND HEADS

We stipulate that although keys represent the clusters, the number of keys is not necessarily propor-
tional to the number of the nodes in the input graphs. In fact, datasets with smaller graphs might have
more meaningful clusters to capture. For example, molecules are comprised of numerous functional
groups and yet the average number of nodes in the ESOL dataset is 13.3. Moreover, our experiments
show that for the ENZYMES dataset with average number of 32.69 nodes, the best performance is
achieved with 10 keys whereas for the ESOL dataset 64 keys results in the best performance. In
ESOL 8, 64, and 160 keys result in RMSE of 0.56, 0.52, and 0.54, respectively. We also observe
that keeping the number of parameters fixed, increasing the number of memory heads improves per-
formance. For instance, when the model is trained on ESOL with 160 keys and 1 head it achieves
RMSE of 0.54 whereas when trained with 32 keys of 5 heads the same model achieves RMSE of
0.53.
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(a) (b)

Figure 2: Visualization of the learned clusters of two molecules instances from (a) ESOL and (b)
Lipophilicity datasets. The visualizations show that the learned clusters correspond to known chem-
ical groups. Note that a node without label represents a carbon atom. For more visualizations and
discussion see section A.5

4.3.5 WHAT DO THE KEYS REPRESENT?

Intuitively, the keys in our memory layers represent the cluster centroids and enhance the model
performance by capturing meaningful structures and coarsening the graph. To investigate this intu-
ition we use the learned keys to interpret the knowledge learned by models through visualizations.
Figure 2 visualizes the learned clusters over atoms (i.e., atoms with same color are within the same
cluster) indicating that the clusters mainly consist of meaningful chemical substructures such as a
carbon chain and a Hydroxyl group (OH) (i.e., Figure 2a), as well as a Carboxyl group (COOH) and
a benzene ring (i.e., Figure 2b). From a chemical perspective, Hydroxyl and Carboxyl groups as
well as carbon chains have a significant impact on the solubility of the molecule in water or lipid.
This confirms that the network has learned chemical features that are essential for determining the
molecule solubility.

5 CONCLUSION

We proposed an efficient memory layer and two deep models for hierarchical graph representation
learning. We evaluated the proposed models on seven graph classification and regression tasks and
achieved state-of-the-art results on six of them. We also experimentally showed that the learned
representations can capture the chemical features of the molecules that are well-known and effective
for each specific task. Our study indicates that node attributes concatenated with corresponding
proper topological embeddings in combination with one or more memory layers achieves notable
results without using any message passing mechanism.
We also showed that for the topological embedding, that arises from the graph structure, the binary
adjacency matrix is sufficient and thus no further pre-processing step is required for extracting these
positional embeddings such as random walk with restart relevance scores. Although connectivity of
the nodes is not directly imposed to the model, keys in the embedding space can process the set of
nodes and properly cluster and aggregate the learned embeddings.

6 LIMITATIONS AND FUTURE DIRECTIONS

In section 4.2 we discussed that on the COLLAB dataset approaches injected with domain-
knowledge such as min-cut pooling can achieve better performance. Analyzing samples in this
dataset suggests that in graphs with dense communities, such as cliques, our model lacks the ability
to properly detect these dense sub-graphs.
We plan to introduce an approach based on our current architecture that can be employed for node
classification tasks as well by considering the learned features from clusters from different layers of
hierarchies.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Elie Aljalbout, Vladimir Golkov, Yawar Siddiqui, Maximilian Strobel, and Daniel Cremers. Clus-
tering with deep learning: Taxonomy and new methods. arXiv preprint arXiv:1801.07648, 2018.

Filippo M. Bianchi, Daniele Grattarola, and Cesare Alippi. Mincut pooling in graph neural networks.
arXiv preprint arXiv:1907.00481, 2019.

Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Fifth IEEE
international conference on data mining, pp. 8–pp. IEEE, 2005.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In International Conference on Learning Representation (ICLR),
2014.
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hierarchical graph classifiers. In Advances in neural information processing systems, Relational
Representation Learning Workshop, 2018.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We implemented the model with Pytorch (Paszke et al., 2017) and optimized the network using
Adam (Kingma & Ba, 2014) optimizer. We trained the model for a maximum of 2000 epochs
with scheduler that decreases learning rate every 500 epochs. The model uses batch-normalization
(Ioffe & Szegedy, 2015), skip-connection, LeakyRelu activation function, and dropout (Srivastava
et al., 2014) for regularization. Since we benchmarked our model on different datasets, we decided
the hidden dimension and number of learnable parameters for each using random hyper-parameter
search strategy. We plan to make the code along with the best performing hyper-parameters publicly
available soon.

A.2 E-GAT COMPARISON

In section 4.3.1 we introduced e-GAT. Figure 3a illustrates RMSE for both GAT and e-GAT based
MemGNN on the validation set of the ESOL dataset. Since this is a regression task we plotted the
R2 score for these methods on the validation set. It is clear that e-GAT performs better compared to
normal GAT on both metrics.

A.3 RANDOM WALK WITH RESTART

Consider a weighted or unweighted graph G. A random agent starts traversing the graph from node
i and iteratively walks towards its neighbors with a probability proportional to the edge weight that
connects them. The agent also may restart the traverse from the starting node i with probability p.
Eventually, the agent will stop at node j with a probability called relevance score of node j with
respect to node i (Tong et al., 2006). The relevance score of node i with every other node of the
graph is summarized in ~ti in equation 13 where ~ti is the RWR corresponding to node i, p is the
restart probability, A is the normalized adjacency matrix and ~ei is the one-hot vector representing
node i.

~ti = pÃ~ti + (1− p)~ei (13)

Solving this linear system results in ~ri defined in equation 14

~ti = (1− p)(I − cÃ)−1~ei (14)

Now we can nominate the nodes with higher relevance score w.r.t. node i for receiving messages
in an MeMGNN or use them as topological embeddings in a GMN. Note that the restart probability
in equation 14 defines how far the agent can walk from the source node and therefore the ~ti can
represent whether local or global structures around the node i. We used p = 0.5 in our studies.
Calculating the inverse of the adjacency matrix of a big graph is costly. Although we could exactly
compute it for all of our datasets but there are existing methods to make the estimation more efficient
(Tong et al., 2006).

A.4 DATATASETS STATISTICS

Table 4 indicates the statistics of the datasets we used for graph classification and regression tasks.

12



Under review as a conference paper at ICLR 2020

Table 4: Properties of the benchmark dataset.

Name Task Graphs Classes Avg. Nodes Avg. Edges Node Attr. Edge Attr.
Enzymes classification 600 6 32.63 62.14 18 0
Proteins classification 1113 2 39.06 72.82 29 0
DD classification 1178 2 284.32 715.66 0 0
COLLAB classification 5000 3 74.49 2475.78 0 0
Bace classification 1513 2 34.09 36.86 32 7
ESOL regression 1144 - 13.29 13.68 32 7
Lipophilicity regression 4200 - 27.04 29.50 32 7
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Figure 3: (a) Validation R2 score on ESOL with GAT and e-GAT. (b) Validation MSE on ESOL
with GAT and e-GAT.

A.5 NETWORK LEARNED CLUSTERS

Figure 4 shows how unsupervised loss helps the model to push the nodes into different clusters
resulting in distinct clusters. Figures 4a and 4c demonstrate clusters with unsupervised loss and
Figures 4b and 4d show computed clusters without unsupervised loss. Clearly the unsupervised loss
helps the model to avoid collapsing into a few number of meaningless clusters.
Figure 5 represents meaningful chemical groups extracted by MemGNN. Figures 5b and 5d are from
LIPO and figure 5a and 5c are from ESOL dataset respectively.
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(a) (b)

(c) (d)

Figure 4: Unsupervised loss helps the model with learning distinct clusters.

(a) (b)

(c) (d)

Figure 5: Clusters learned by a MeMGNN for ESOL and LIPO dataset. Chemical groups like OH
(hydroxyl group), CCl3, COOH (carboxyl group), CO (ketone group) as well as benzene rings have
been recognized during the learning procedure. These chemical groups are highly active and have a
great impact on the solubility of molecules.
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