
Under review as a conference paper at ICLR 2020

ON THE IMPLICIT MINIMIZATION OF ALTERNATIVE
LOSS FUNCTIONS WHEN TRAINING DEEP NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding the implicit bias of optimization algorithms is important in order
to improve generalization of neural networks. One approach to try to exploit such
understanding would be to then make the bias explicit in the loss function. Con-
versely, an interesting approach to gain more insights into the implicit bias could
be to study how different loss functions are being implicitly minimized when train-
ing the network. In this work, we concentrate our study on the inductive bias
occurring when minimizing the cross-entropy loss with different batch sizes and
learning rates. We investigate how three loss functions are being implicitly mini-
mized during training. These three loss functions are the Hinge loss with different
margins, the cross-entropy loss with different temperatures and a newly intro-
duced Gcdf loss with different standard deviations. This Gcdf loss establishes a
connection between a sharpness measure for the 0− 1 loss and margin based loss
functions. We find that a common behavior is emerging for all the loss functions
considered.

1 INTRODUCTION

In the last few years, deep learning has succeeded in establishing state of the art performances in a
wide variety of tasks in fields like computer vision, natural language processing and bioinformatics
(LeCun et al., 2015). Understanding when and how these networks generalize better is important
to keep improving their performance. Many works starting mainly from Neyshabur et al. (2015),
Zhang et al. (2017) and Keskar et al. (2017) hint to a rich interplay between regularization and the
optimization process of learning the weights of the network. The idea is that a form of inductive
bias can be realized implicitly by the optimization algorithm.

In this paper, we investigate the implicit bias induced from using different learning rates and batch
sizes when minimizing the cross-entropy loss with SGD. A common theory is that more noise in
the gradient bias the solution toward flatter minima (Keskar et al., 2017). We draw a connection
between a particular measure of flatness and margin based loss functions1.

Our contributions are the following:

1. A new loss function (Gcdf loss) that can be interpreted as a measure of flatness for the 0−1
loss (for the top layer’s weights of the network).

2. A methodology consisting in tracking alternative loss functions during training and compar-
ing them for a given training loss value to try to uncover implicit biases in the optimization
algorithm applied to varying the learning rate and batch size in SGD.

3. Experimental results on CIFAR10 and MNIST showing that larger learning rates and
smaller batch sizes are better at implicitly minimizing the cross-entropy loss with larger
temperature parameter, the hinge loss with larger margin parameter and the Gcdf loss with
larger standard deviation parameter. At the opposite, smaller learning rates and larger batch
sizes are better at implicitly minimizing the cross-entropy loss, the hinge loss and the Gcdf
loss with smaller values of their respective parameter.

1The concept of margin has been link to generalization of deep networks; see for example Bartlett et al.
(2017), Poggio et al. (2019) and Jiang et al. (2019)

1



Under review as a conference paper at ICLR 2020

We do not propose to modify optimization algorithms to try to improve large batch training but
we instead try to offer new insights on how the solutions it produces are different from solutions
resulting from small batch training (or larger learning rates). The hope is to eventually succeed at
incorporating the inductive bias in the objective being optimized instead of relying on the implicit
bias of the optimization algorithm. It is not yet clear to what extent this goal can be realized (and by
what means2) and we certainly do not claim to be reaching it. We offer only a partial understanding
of some of the differences between large batch training (or using small learning rates) and small
batch training (or using large learning rates) through the behavior of alternative loss functions during
training.

2 RELATED WORK

It was observed by Zhang et al. (2017) that deep networks can often obtain good results with-
out explicit regularization even if they have the capacity to essentially memorize the training set.
They hypothesized that SGD is probably acting as an implicit regularizer. Also, the earlier work of
Neyshabur et al. (2015) brought forward the idea that optimization might be implicitly biasing the
trajectory toward low norm models. Since then, many works have investigated the idea of implicit
regularization for neural networks (linear or non-linear). For example, Arora et al. (2019) studied
how gradient descent finds low rank solutions for matrix completion with deep linear networks.
Soudry et al. (2018) showed that gradient descent converges to the max-margin solution for logistic
regression and Lyu & Li (2019) provides and extension to deep non-linear homogeneous networks.
In contrast to these works, we study empirically how the optimization algorithm implicitly mini-
mizes alternative loss functions during the course of training.

A highly studied source of implicit bias from the optimization algorithm is the ability to reach flatter
minima. In Keskar et al. (2017), the worst loss that can be obtained when slightly perturbing the
parameters is considered as a measure of sharpness while Neyshabur et al. (2017) considered the
expected loss under Gaussian noise in the weights. We consider a measure of sharpness (section
3) similar to Neyshabur et al. (2017) and we apply it to the 0 − 1 loss directly instead of the usual
surrogate cross-entropy loss.

The batch size and the learning rate are two ways to control the noise in the gradient which might
influence the sharpness of the resulting solution (see for example Smith & Le (2018), Smith et al.
(2018)). In conjunction with increasing the learning rate, different strategies like training for more
epochs (Hoffer et al., 2017), “warm up” (Goyal et al., 2017) and using a separate learning rate for
each layer based on the norm of the weights (You et al., 2017) have been proposed to improve the
performance of large batch training. Instead of trying to offer a new modification to the optimiza-
tion algorithm, we try here to capture the inductive bias into computationally efficient to use loss
functions in the hope of eventually simplifying the design of optimization algorithms.

3 GCDF LOSS

This section introduces a loss function based on the idea of flat minima. It is defined as a measure
of sharpness for the 0 − 1 loss. The main motivation for introducing this loss function is that it
is simultaneously a measure of sharpness and a margin based loss function establishing a clear
relationship between these ideas. Furthermore, as opposed to the cross-entropy loss and the Hinge
loss, it is bounded and non-convex (see section 4.1 for a visual comparison). It thus offers more
diversity to the loss functions investigated in this paper. We start with the binary linear case in 3.1
and then extend to the multi-class case in 3.2. For deep networks, this loss will be applied on the
top layer. It is a possible extension to our work to consider loss functions applied on multiple layers
maybe in a similar fashion to Elsayed et al. (2018).

2see for example Arora et al. (2019) about the difficulties to capture the implicit bias of gradient descent
with norms.

2



Under review as a conference paper at ICLR 2020

3.1 BINARY LINEAR CASE

Let f(w, x) = wTx + b, where w, x ∈ Rn and b ∈ R. Consider the 0 − 1 loss for a binary linear

classifier: L(f(w, x), y) = 1

[
y(wTx+b) < 0

]
, where 1 is the indicator function. Note that we will

write all the loss functions for single examples (x, y) throughout the paper and it will be understood
that the training loss is obtained by taking the mean over the training set. We smooth (or “robustify”)
the 0− 1 loss by considering its expectation under Gaussian noise in the weights. This loss function
will then be denoted by Lσ(w, x, y) when the standard deviation is σ. Consider the random variable
ε ∼ N (0, σ2I), where N (0, σ2I) is a zero mean isotropic Gaussian distribution with covariance
matrix σ2I . Since (w + ε)Tx + b is distributed as a Gaussian distribution with mean wTx + b and
variance σ2||x||2, we get that y((w + ε)Tx+ b) is distributed as a Gaussian distribution with mean
y(wTx+ b) and the same variance. Therefore,

Lσ(w, x, y) = EεL(f(w + ε, x), y) = Φ
(−y(wTx+ b)

σ||x||
)
, (1)

where Φ is the Gaussian cumulative distribution function (Gcdf) given by

Φ(z) =
1√
2π

∫ z

−∞
exp

(−t2
2

)
dt. (2)

If we assume that x is normalized, the loss Lσ is a (decreasing) function of yf(w, x) (it is a margin
based loss function in the terminology from Lin (2004) for example).

3.2 MULTI-CLASS CASE

Suppose the number of classes is m and now consider the affine mapping f(W,x) = Wx+ b with
x ∈ Rn, b ∈ Rm and W ∈ Rm×n. For some fixed x ∈ Rn and denoting by wj the jth row of W ,
let sj := wTj x+ bj be the corresponding score for class j. Finally, let sj(εj) := (wj + εj)

Tx+ bj
be the perturbed score, εj an isotropic Gaussian random variable with mean 0 and covariance matrix
σ2I . For a given class y, we get

P
{
sy(εy) 6= max

j
sj(εj)

}
≤

∑
j 6=y

P
{
sj(εj) > sy(εy)

}
(3)

=
∑
j 6=y

P
{
sj − sy > (εy − εj)Tx

}
(4)

=
∑
j 6=y

Φ

(
sj − sy
||x||σ

√
2

)
, (5)

since (εy − εj)Tx follows a zero mean Gaussian distribution with variance 2σ2||x||2. We define

Lσ(W,x, y) :=
∑
j 6=y

Φ

(
sj − sy
||x||σ

√
2

)
. (6)

This is an upper bound on the probability that the classifier does not predict y under Gaussian noise
on W . We will experiment with this Gcdf loss function on top of feedforward neural networks (and
also with other loss functions) in the following sections. In all the experiments, we use normalization
to enforce ||x|| = 1 (this x now represents the feature vector for the top layer).

4 IMPLICIT MINIMIZATION OF DIFFERENT LOSS FUNCTIONS

In this section, we track different loss functions while training deep neural networks with the cross-
entropy loss varying the learning rates and batch sizes in SGD with momentum. The results in the
main text are obtained while training on CIFAR10. Results on MNIST are given in Appendix A. The
following loss functions are considered: cross-entropy with different values of temperature, Hinge
loss with different margin parameters and the Gcdf loss with different standard deviation parameters.

3



Under review as a conference paper at ICLR 2020

For the cross-entropy loss, the temperature T divides the scores sj before the softmax function. That
is, the probability for class j is then given by

exp(sj/T )∑
k exp(sk/T )

. (7)

Remark that the positive homogeneity of the Relu implies that normalizing each layer of the network
is equivalent to take T equal to the product of the norm of the layers. The cross-entropy loss after
normalization at the end of training is investigated in Liao et al. (2018). In contrast, we consider
here multiple values for T and investigate the behavior during training. Given the probabilities for
each class, the cross-entropy loss (on a single example) is then the negative log probability for the
correct class. For its part, the multi-class Hinge loss with margin parameter γ (on a single example)
is given by ∑

j 6=y

max{0, γ + (sj − sy)}. (8)

The Gcdf loss with standard deviation parameter σ has been described and motivated in the previous
section.

4.1 VISUAL COMPARISON OF THE LOSS FUNCTIONS

Assume that we have two classes and let z = sy − sj (for j 6= y). An example is correctly classified
if z > 0. The Gcdf loss is then given by Φ( −z

σ
√
2
), the Hinge loss by max{0, γ − z} and the cross-

entropy loss by log(exp(−zT )+1). These functions are plotted in figure 1. They share one interesting
characteristic on the side z > 0: when their parameter (σ, T or γ) gets larger, the loss takes more
time to get closer to zero when z increases. This kind of “heavier tail” behavior can encourage larger
z values for some training points at the expense of other closer to zero training points more easily.

(a) (b) (c)

Figure 1: In (a), we have the Gcdf loss for different values of sigma. In (b), the Cross-entropy loss
for different temperatures and in (c), the Hinge loss for different margins.

4.2 TRAINING CURVES OF THE ALTERNATIVE LOSS FUNCTIONS

In figures 2, 3 and 4, we investigate the effect of the size of the learning rate by considering the
implicit training curves of the Gcdf loss, the cross-entropy loss and the Hinge loss for different
values of their respective parameter (σ, T or γ). The learning rate is kept constant throughout
training (no decaying schedule is used). We consider a small learning rate of 0.001 and a larger
learning rate of 0.1. For the three loss functions considered, the larger learning rate is clearly better
at implicitly minimizing them for larger values of their parameter. A similar conclusion holds when
considering different batch sizes as is shown in figures 5, 13 (Appendix B) and 14 (Appendix B).
In this case, the smaller batch size (256) is much better at implicitly minimizing the loss functions
for larger values of their parameter than the larger batch size (16384). As a technical aside, note
that ghost batch normalization Hoffer et al. (2017) is used when training with large batch sizes. The
gradients are accumulated on a sequence of smaller mini-batches of size 256 before updating the
weights.

4



Under review as a conference paper at ICLR 2020

(a) (b)

Figure 2: Tracking the the cross-entropy loss with different temperatures while training with the
standard cross-entropy loss (T = 1) on CIFAR10. A relatively large learning rate of 0.1 is used
in (a) while a much smaller learning rate of 0.001 is used in (b). Even though both learning rates
succeed at minimizing to almost zero the loss function they are trained on, the smaller learning rate
does not implicitly minimize as well the cross-entropy loss for larger temperatures.

(a) (b)

Figure 3: Tracking the Hinge loss with different margin parameters while training with the standard
cross-entropy loss on CIFAR10. A relatively large learning rate of 0.1 is used in (a) while a much
smaller learning rate of 0.001 is used in (b). Even though both learning rates succeed at minimizing
to almost zero the loss function they are trained on, the smaller learning rate does not implicitly
minimize as well the Hinge loss for larger margins.

4.3 ALTERNATIVE LOSS VERSUS ACTUAL TRAIN LOSS

At a given fixed training loss value two training runs have made the same progress toward minimiz-
ing their objective function but they might not have made the same progress with respect to other
measures of performance. The other measures of performance considered here are of course our
alternative loss functions. In figure 6, we plot the Gcdf loss against the actual train loss for different
runs corresponding to different learning rates. We can see that smaller learning rates are actually
better at minimizing the Gcdf loss with smaller σ during training while larger learning rates are
better at minimizing the Gcdf loss with larger σ. There exists an intermediate value (here σ = 1)
where all the learning rates considered in our experiments are essentially equivalent at implicitly
minimizing the Gcdf loss. The train error behaves similarly to the Gcdf loss with a small value of
σ. In the binary case, the Gcdf loss converges pointwise to the 0− 1 loss almost everywhere (except
at 0) when σ goes to 0. It would therefore make sense to actually define the Gcdf loss for σ = 0
to be the train error (in the binary case; some modifications are needed in the multi-class case). In
this light, it is not surprising that figure 6a and 6d are showing a similar behavior. In order to make
even more clear how different choices of learning rates are not implicitly minimizing the alternative
loss functions for different parameters (σ, T or γ) in the same way, we plotted the alternative losses

5



Under review as a conference paper at ICLR 2020

(a) (b)

Figure 4: Tracking the Gcdf loss with different standard deviation parameters while training with
the standard cross-entropy loss on CIFAR10. A relatively large learning rate of 0.1 is used in (a)
while a much smaller learning rate of 0.001 is used in (b). Even though both learning rates succeed
at minimizing to almost zero the loss function they are trained on, the smaller learning rate does not
implicitly minimize as well the Gcdf loss for larger standard deviations.

(a) (b)

Figure 5: Tracking the Gcdf loss with different standard deviation parameters while training with the
standard cross-entropy loss on CIFAR10. A relatively small batch size of 256 is used in (a) while a
much larger batch size of 16384 is used in (b). Even though both batch sizes succeed at minimizing
to almost zero the loss function they are trained on, the larger batch size does not implicitly minimize
as well the Gcdf loss for larger values of σ.

against their respective parameter for some fixed training loss value in figure 7. Similar results are
obtained on MNIST (see figure 12 in Appendix A). See also figure 16 (Appendix B) for the results
when considering different batch sizes on CIFAR10.

5 DISCUSSION AND CONCLUSION

Suppose ε is distributed according to an isotropic Gaussian distribution with covariance matrix σ2I
and mean 0. Under a second order approximation to the cross-entropy loss Lc(w, x, y) at w, we

get Eε
[
Lc(w + ε, x, y)

]
≈ Lc(w, x, y) + σ2

2 Tr(H), where H is the Hessian of Lc(w, x, y). For

simplicity consider the binary case. Furthermore, since we restricted ourselves to loss functions
applied on the top layer only, assume that ε is applied only to the weights of the top layer. In our
setup, the Hessian H is now restricted to the weights of the final layer. Since the 0 − 1 loss is
bounded above by the cross-entropy loss (times a factor 1/ log(2)), we get

Lσ(w, x, y) ≤ 1

log(2)
Eε
[
Lc(w + ε, x, y)

]
≈ Lc(w, x, y)

log(2)
+

σ2

2 log(2)
Tr(H). (9)

6



Under review as a conference paper at ICLR 2020

(a) (b)

(c) (d)

Figure 6: For each value of the training loss (cross-entropy) achieved during training on CIFAR10,
we plot the Gcdf loss at that time on the y axis. In (a), we use a smaller value of σ = 0.5, in (b) an
intermediate value of σ = 1 and in (c) a larger value of σ = 8. The train error is plotted against the
train loss in (d). Four training runs corresponding to four different learning rates are drawn in each
case.

(a) (b) (c)

Figure 7: At a given fixed cross-entropy training loss (here approximately 0.6 in all cases), the Gcdf
loss for varying σ’s in (a), the cross-entropy loss with varying temperatures in (b) and the Hinge loss
with varying γ’s in (c) are plotted. Larger learning rates obtain better values of the alternative losses
for larger σ’s, temperatures and γ’s while smaller learning rates are generally better for smaller
values of these parameters.

Therefore, an optimization algorithm succeeding at finding a solution with small cross-entropy loss
and small mean curvature of the cross-entropy loss must have a small Gcdf loss also. This might
help to explain why larger learning rates and smaller batch sizes are good at implicitly minimizing

7



Under review as a conference paper at ICLR 2020

the Gcdf loss. Note however that this argument has some weaknesses. First, the approximation is
only local and so might not be good for larger values of σ. Second, it cannot explain why smaller
learning rates and larger batch sizes are better for smaller values of σ. Future work could concentrate
on finding a rigorous explanation for these results.

Understanding the inductive biases of different optimization algorithms for training deep networks
might allow to make the bias more explicit, that is to incorporate it in the loss function. We think
that one strategy to make progress toward this long term goal might be to study how alternative loss
functions are being implicitly minimized by a given optimization algorithm. This paper considered
the learning rate and batch size parameters when training with SGD. A clear avenue for future
research is to extend the investigation to adaptive first-order methods (which can sometimes exhibit
worse generalization performance than SGD (Wilson et al., 2017)) and second-order methods.

REFERENCES

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. CoRR, abs/1905.13655, 2019. URL http://arxiv.org/abs/1905.13655.

Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds
for neural networks. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, pp. 6240–6249, 2017. URL http://papers.nips.cc/paper/
7204-spectrally-normalized-margin-bounds-for-neural-networks.

Gamaleldin F. Elsayed, Dilip Krishnan, Hossein Mobahi, Kevin Regan, and Samy Bengio. Large
margin deep networks for classification. In Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8
December 2018, Montréal, Canada., pp. 850–860, 2018. URL http://papers.nips.cc/
paper/7364-large-margin-deep-networks-for-classification.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training im-
agenet in 1 hour. CoRR, abs/1706.02677, 2017. URL http://arxiv.org/abs/1706.
02677.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the generaliza-
tion gap in large batch training of neural networks. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December
2017, Long Beach, CA, USA, pp. 1731–1741, 2017.

Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy Bengio. Predicting the generalization
gap in deep networks with margin distributions. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019. URL https://
openreview.net/forum?id=HJlQfnCqKX.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017. URL https://openreview.net/forum?
id=H1oyRlYgg.

Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Nature, 521(7553):436–444,
2015. doi: 10.1038/nature14539. URL https://doi.org/10.1038/nature14539.

Qianli Liao, Brando Miranda, Andrzej Banburski, Jack Hidary, and Tomaso A. Poggio. A surprising
linear relationship predicts test performance in deep networks. CoRR, abs/1807.09659, 2018.
URL http://arxiv.org/abs/1807.09659.

Yi Lin. A note on margin-based loss functions in classification. Statistics and Probability Let-
ters, 68(1):73 – 82, 2004. ISSN 0167-7152. URL http://www.sciencedirect.com/
science/article/pii/S0167715204000707.

8

http://arxiv.org/abs/1905.13655
http://papers.nips.cc/paper/7204-spectrally-normalized-margin-bounds-for-neural-networks
http://papers.nips.cc/paper/7204-spectrally-normalized-margin-bounds-for-neural-networks
http://papers.nips.cc/paper/7364-large-margin-deep-networks-for-classification
http://papers.nips.cc/paper/7364-large-margin-deep-networks-for-classification
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1706.02677
https://openreview.net/forum?id=HJlQfnCqKX
https://openreview.net/forum?id=HJlQfnCqKX
https://openreview.net/forum?id=H1oyRlYgg
https://openreview.net/forum?id=H1oyRlYgg
https://doi.org/10.1038/nature14539
http://arxiv.org/abs/1807.09659
http://www.sciencedirect.com/science/article/pii/S0167715204000707
http://www.sciencedirect.com/science/article/pii/S0167715204000707


Under review as a conference paper at ICLR 2020

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
CoRR, abs/1906.05890, 2019. URL http://arxiv.org/abs/1906.05890.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
networks. In Proceedings of The 28th Conference on Learning Theory, COLT 2015, Paris, France,
July 3-6, 2015, pp. 1376–1401, 2015. URL http://proceedings.mlr.press/v40/
Neyshabur15.html.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring gen-
eralization in deep learning. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017,
Long Beach, CA, USA, pp. 5947–5956, 2017. URL http://papers.nips.cc/paper/
7176-exploring-generalization-in-deep-learning.

Tomaso A. Poggio, Andrzej Banburski, and Qianli Liao. Theoretical issues in deep networks:
Approximation, optimization and generalization. CoRR, abs/1908.09375, 2019. URL http:
//arxiv.org/abs/1908.09375.

Samuel L. Smith and Quoc V. Le. A bayesian perspective on generalization and stochastic gradient
descent. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018. URL https:
//openreview.net/forum?id=BJij4yg0Z.

Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. Don’t decay the learning
rate, increase the batch size. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.
URL https://openreview.net/forum?id=B1Yy1BxCZ.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, and Nathan Srebro. The implicit bias of gradient
descent on separable data. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.
URL https://openreview.net/forum?id=r1q7n9gAb.

Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9
December 2017, Long Beach, CA, USA, pp. 4148–4158, 2017.

Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size to 32k for imagenet training.
CoRR, abs/1708.03888, 2017. URL http://arxiv.org/abs/1708.03888.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings,
2017. URL https://openreview.net/forum?id=Sy8gdB9xx.

A RESULTS ON MNIST

This section contains the results when training a 6-layer fully connected network with batch nor-
malization on MNIST. No data augmentation is used. The optimization algorithm is SGD with
momentum (0.9) and without weight decay. The learning rate is constant during all training.

B MORE RESULTS ON CIFAR10

This section contains additional results when training a convolutional network with batch normal-
ization on CIFAR10. The network consists of two convolutional layers with max pooling followed
by 3 fully connected layers. No data augmentation is used. The optimization algorithm is SGD with
momentum (0.9) and without weight decay. The learning rate is constant during all training.

9

http://arxiv.org/abs/1906.05890
http://proceedings.mlr.press/v40/Neyshabur15.html
http://proceedings.mlr.press/v40/Neyshabur15.html
http://papers.nips.cc/paper/7176-exploring-generalization-in-deep-learning
http://papers.nips.cc/paper/7176-exploring-generalization-in-deep-learning
http://arxiv.org/abs/1908.09375
http://arxiv.org/abs/1908.09375
https://openreview.net/forum?id=BJij4yg0Z
https://openreview.net/forum?id=BJij4yg0Z
https://openreview.net/forum?id=B1Yy1BxCZ
https://openreview.net/forum?id=r1q7n9gAb
http://arxiv.org/abs/1708.03888
https://openreview.net/forum?id=Sy8gdB9xx


Under review as a conference paper at ICLR 2020

(a) (b)

Figure 8: Tracking the Gcdf loss with different standard deviation parameters while training with
the standard cross-entropy loss on MNIST. A relatively large learning rate of 0.1 is used in (a) while
a much smaller learning rate of 0.001 is used in (b).

(a) (b)

Figure 9: Tracking the Gcdf loss with different standard deviation parameters while training with
the standard cross-entropy loss on MNIST. A relatively small batch size of 256 is used in (a) while
a much larger batch size of 16384 is used in (b).

(a) (b)

Figure 10: Tracking the Hinge loss with different margin parameters while training with the standard
cross-entropy loss on MNIST. A relatively large learning rate of 0.1 is used in (a) while a much
smaller learning rate of 0.001 is used in (b).

10



Under review as a conference paper at ICLR 2020

(a) (b)

Figure 11: Tracking the the cross-entropy loss with different temperatures while training with the
standard cross-entropy loss (T = 1) on MNIST. A relatively large learning rate of 0.1 is used in (a)
while a much smaller learning rate of 0.001 is used in (b).

(a) (b) (c)

Figure 12: At a given fixed cross-entropy training loss (here approximately 0.08 in all cases), the
Gcdf loss for varying σ’s in (a), the cross-entropy loss with varying temperatures in (b) and the
Hinge loss with varying γ’s in (c) are plotted. Larger learning rates obtain better values of the
alternative losses for larger σ’s, temperatures and γ’s while smaller learning rates are generally
better for smaller values of these parameters. The training dataset is MNIST.

(a) (b)

Figure 13: Tracking the Hinge loss with different margin parameters while training with the standard
cross-entropy loss on CIFAR10. A relatively batch size of 256 is used in (a) while a much larger
batch size of 16384 is used in (b). Even though both batch sizes succeed at minimizing to almost
zero the loss function they are trained on, the larger batch size does not implicitly minimize as well
the Hinge loss for larger margins.

11



Under review as a conference paper at ICLR 2020

(a) (b)

Figure 14: Tracking the cross-entropy loss with different temperature parameters while training
with the standard cross-entropy loss (T = 1) on CIFAR10. A relatively batch size of 256 is used
in (a) while a much larger batch size of 16384 is used in (b). Even though both batch sizes succeed
at minimizing to almost zero the loss function they are trained on, the larger batch size does not
implicitly minimize as well the cross-entropy loss for larger temperatures.

(a) (b) (c)

Figure 15: For each value of the training loss (cross-entropy) achieved during training on CIFAR10,
we plot the Gcdf loss at that time on the y axis. In (a), we use a smaller value of σ = 0.5, in (b) an
intermediate value of σ = 1 and in (c) a larger value of σ = 8. Three training runs corresponding to
three different batch sizes are drawn in each case. Larger batch sizes are slightly better at minimizing
the Gcdf loss with small σ during training while smaller batch sizes are better at minimizing the
Gcdf loss with larger σ. There exists an intermediate value (here σ = 1) where all the batch sizes
considered in our experiments are essentially equivalent at implicitly minimizing the Gcdf loss.

(a) (b) (c)

Figure 16: At a given fixed cross-entropy training loss (here approximately 0.6 in all cases), the Gcdf
loss for varying σ’s in (a), the cross-entropy loss with varying temperatures in (b) and the Hinge loss
with varying γ’s in (c) are plotted. The small batch size obtain better values of the alternative losses
for larger σ’s, temperatures and γ’s while the large batch size is better for smaller values of these
parameters. The training dataset is CIFAR10.

12


	Introduction
	Related work
	Gcdf loss
	binary linear case
	Multi-class case

	Implicit minimization of different loss functions
	Visual comparison of the loss functions
	Training curves of the alternative loss functions
	Alternative loss versus actual train loss

	Discussion and conclusion
	Results on MNIST
	More results on CIFAR10

