
Under review as a conference paper at ICLR 2020

OFF-POLICY MULTI-STEP Q-LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In the past few years, off-policy reinforcement learning methods have shown
promising results in their application for robot control. Deep Q-learning, how-
ever, still suffers from poor data-efficiency which is limiting with regard to real-
world applications. We follow the idea of multi-step TD-learning to enhance
data-efficiency while remaining off-policy by proposing two novel Temporal-
Difference formulations: (1) Truncated Q-functions which represent the return for
the first n steps of a policy rollout and (2) Shifted Q-functions, acting as the far-
sighted return after this truncated rollout. We prove that the combination of these
short- and long-term predictions is a representation of the full return, leading to the
Composite Q-learning algorithm. We show the efficacy of Composite Q-learning
in the tabular case and compare our approach in the function-approximation set-
ting with TD3, Model-based Value Expansion and TD3(∆), which we introduce
as an off-policy variant of TD(∆). We show on three simulated robot tasks that
Composite TD3 outperforms TD3 as well as state-of-the-art off-policy multi-step
approaches in terms of data-efficiency.

1 INTRODUCTION

In recent years, Q-learning (Watkins and Dayan, 1992) has achieved major successes in a broad
range of areas by employing deep neural networks (Mnih et al., 2015; Silver et al., 2018; Lillicrap
et al., 2016), including environments of higher complexity (Riedmiller et al., 2018) and even in
first real world applications (Haarnoja et al., 2019). Due to its off-policy update, Q-learning can
leverage transitions collected by any policy which makes it more data-efficient compared to on-
policy methods. Deep Q-learning, however, still has a very high demand for data samples which
is limiting with regard to robot applications. One reason for the low data-efficiency is the long
temporal horizon the reward signal has to propagate through. Data-efficiency of on-policy Temporal-
Difference methods can be enhanced by the use of n-step returns, where a Monte Carlo rollout of
length n is combined with a bootstrap of the value function. To employ n-step returns in an off-policy
setting, subtrajectories of the exploratory policy have to be stored. These stored n-step returns,
however, will differ from the true value of the target-policy. In order to benefit from n-step data,
the replay buffer has to be restricted in size or n has to be set to a small value to keep the samples
close to the target-policy (Barth-Maron et al., 2018; Hessel et al., 2018). To avoid these problems,
a dynamics model can be used for imaginary rollouts, the so-called Model-based Value Expansion
(MVE) (Feinberg et al., 2018). Alternatively, the full return can be composed of value functions
with increasing discount, an approach called TD(∆) (Romoff et al., 2019). In this work, we define
a model-free Temporal-Difference formulation which follows the idea of multi-step learning while
remaining off-policy.

Our contributions are threefold. First, we introduce the Composite Q-learning algorithm. For its
formulation, we define Truncated Q-functions, representing the return for the first n steps of a policy
rollout. In addition, we introduce Shifted Q-functions which represent the farsighted return after this
truncated rollout. Both are then combined in a mutual recursive definition of the Q-function for
the final algorithm. Second, we evaluate MVE within TD3, leading to MVE-TD3. And third, we
introduce TD3(∆), an extension of TD(∆) to deep Q-learning. We discuss related work in Section 2,
describe the theoretical background in Section 3 and define Composite Q-learning, MVE-TD3 and
TD3(∆) in Section 4. By breaking down the long-term return into a composition of several short-
term predictions, our method increases data-efficency which we show in the tabular case and for
three simulated robot tasks in Section 5. We then conclude in Section 6.

1

Under review as a conference paper at ICLR 2020

2 RELATED WORK

In order to correct for the deviation from the current target-policy, several methods suggest the
use of Importance Sampling (Precup et al., 2000; 2001; Munos et al., 2016). Approaches based
on Importance Sampling, however, can come with a vast increase in variance or can be of high
cost and are not easily applicable to deterministic policies. One way to remain off-policy in multi-
step Q-learning is to get the Monte Carlo rollout on the basis of the current target-policy applied
to a learned dynamics model (Feinberg et al., 2018; Buckman et al., 2018). Due to accumulating
errors of single-step models, this can lead to severe stability issues in the Q-update, which is also
the conclusion of Feinberg et al. (2018). The authors suggest to average all intermediate i-step
returns to smoothen out the model error, the so-called TD-k trick. In contrast to our work, Feinberg
et al. assume to have access to the true reward function. In order to balance the length of the
model-assisted rollout, Buckman et al. (2018) couple it with an uncertainty estimate from value
function and model ensembles. We alleviate the problem of accumulating error by estimating a
multi-step dynamics model implicitly via consecutive bootstrapping. Most related to our approach
is TD(∆) (Romoff et al., 2019). Romoff et al. formalize a Bellman-operator over the differences
between value functions of increasing discount values. Their approach is on-policy and can therefore
benefit directly from n-step returns. We extend TD(∆) to the off-policy case below. Q-learning can
also be extended to a SARSA-like tree-backup calledQ(σ) (Asis et al., 2018; Hernandez-Garcia and
Sutton, 2018). However, it is an open question how to adjust this idea to continuous action-spaces
and deterministic policies. In the Hybrid Reward Architecture (HRA), van Seijen et al. (2017)
suggest a decomposition of the reward and the estimation of value functions for each part of this
decomposition which are then combined as an approximation of the full return. HRA addresses the
problem of complex rewards and is thus complementary to our work focusing on long time scales.

3 BACKGROUND

We consider tasks modelled as Markov decision processes (MDP), where an agent executes ac-
tion at ∈ A in some state st ∈ S following its stochastic policy π. According to the dy-
namics model M of the environment, the agent transitions into some state st+1 ∈ S and re-
ceives scalar reward rt. The agent aims at maximizing the expected long-term return Rπ(st) =

Eaj≥t∼π,sj>t∼M[
∑T−1
j=t γ

j−trj |st], where T is the (possibly infinite) temporal horizon of the MDP
and γ ∈ [0, 1] the discount factor. It therefore tries to find π∗, s.t. Rπ∗ ≥ Rπ for all π. If the model
of the environment is unknown, model-free methods based on the Bellman Optimality Equation over
the so-called action-value Qπ(st, at) = Eaj>t∼π,sj>t∼M[

∑T−1
j=t γ

j−trj |st, at] can be used. In the
following, we abbreviate Eaj>t∼π,sj>t∼M[·|st, at] by Et,π,M[·]. One popular representative of
continuous model-free reinforcement learning is the Deep Deterministic Policy Gradient algorithm
(DDPG) (Lillicrap et al., 2016). In DDPG, actor µ is a deterministic mapping from states to actions,
µ : S 7→ A, representing the actions that maximize the critic Qµ, i.e. µ(st) = arg maxaQ

µ(st, a).
Q and µ are estimated by function approximators Q(·, ·|θQ) and µ(·|θµ), parameterized by θQ and
θµ. The critic is optimized on the mean squared error between predictions Q(sj , aj |θQ) and targets
yj = rj +γQ′(sj+1, µ

′(sj+1|θµ
′
)|θQ′), where Q′ and µ′ are target networks, parameterized by θQ

′

and θµ
′
. The parameters of µ are optimized following the deterministic policy gradient theorem (Sil-

ver et al., 2014), i.e. ∇θµ ←[1
m

∑
j ∇aQ(s, a|θQ)|s=sj ,a=µ(sj |θµ)∇θµµ(s|θµ), and the parameters

of the target networks are updated according to θQ
′ ← [(1−τ)θQ

′
+τθQ and θµ

′ ← [(1−τ)θµ
′
+τθµ,

with τ ∈ [0, 1]. TD3 (Fujimoto et al., 2018) adds three adjustments to vanilla DDPG. First, the min-
imum prediction of two distinct critics is taken for target calculation to alleviate overestimation bias,
an approach belonging to the family of Double Q-learning algorithms (van Hasselt et al., 2016). Sec-
ond, Gaussian smoothing is applied to the target-policy, addressing the variance in updates. Third,
actor and target networks are updated every d-th gradient step of the critic, to account for the problem
of moving targets.

4 OFF-POLICY MULTI-STEP Q-LEARNING

In this section, we introduce the Composite Q-learning algorithm, an off-policy multi-step reinforce-
ment learning method to enhance data-efficiency, along with MVE-TD3 and TD3(∆) as baselines.

2

Under review as a conference paper at ICLR 2020

QTr
1+QTr

2· · ·QTr
n

rtrt

QSh
1QSh

2· · ·QSh
n

+Q

rt
γγ

γγ

γ

γ

γ

Intermediate PredictionsComposite Q

(a)

st at

2 fully connected layers (500, leaky ReLU)

fully connected
(500, leaky ReLU) QTr

1 Q
Tr
2 . . . Q

Tr
n

fully connected
(500, leaky ReLU) QSh

1 Q
Sh
2 . . . QSh

n

Q

(b)

Figure 1: (a) Structure of Composite Q-learning. Target networks are omitted for visibility. Q·i
denotes the Truncated and Shifted Q-functions at step i and Q the Composite Q-function. In-
coming edges yield the targets for the corresponding heads. Edges denoted by γ are discounted.
(b) Architecture of the Composite Q-network used in our experiments in Section 5.2.

4.1 COMPOSITE Q-LEARNING

The main motivation behind this work is the assumption that learning values on short time scales
can be achieved faster than for the full temporal horizon of a task, which can be prohibitively long.
As Murphy (2005) shows for the fixed-batch fitted Q-iteration case, the number of samples needed
to achieve a certain generalization error is exponential in the horizon of the MDP. As discussed
in Jin et al. (2018), Q-learning with UCB-exploration has total regret polynomial in the horizon
of the MDP and exponential with ε-greedy exploration (Kearns and Singh, 2002). We thus argue
that truncated horizons for a fixed MDP translate to lower sample complexity of value-estimation.
Building upon this idea, we estimate the return of n-step rollouts of the target-policy via Truncated
Q-functions which we then combine to the full return with model-free Shifted Q-functions, an ap-
proach we call Composite Q-learning, while remaining purely off-policy. Since these quantities
cannot be estimated directly from single-step transitions, we introduce a consecutive bootstrapping
scheme based on intermediate predictions. For an overview, see Figure 1a. The full algorithm is in
the appendix. Code can be found in the supplementary.

4.1.1 TRUNCATED Q-FUNCTIONS

In order to formalize the off-policy estimation of n-step returns, assume that n� (T − 1) and that
(T − 1− t) mod n = 0 for task horizon T . We make use of the following observation:

Qπ(st, at) = Et,π,M
[
rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · ·+ γT−1rT−1

]
= Et,π,M

[t+n−1∑
j=t

γj−trj

+ γn

t+2n−1∑
j=t+n

γj−(t+n)rj


+ · · ·+ γT−n

 T−1∑
j=T−n

γj−(T−n)rj

].
(1)

That is, we can define the action-value as the combination of partial sums of length n. We can
then define the Truncated Q-function as Qπn(st, at) = Et,π,M[

∑t+n−1
j=t γj−trj], which we plug into

Equation (1):

Qπ(st, at) = Et,π,M[Qπn(st, at) + γnQπn(st+n, at+n) + · · ·+ γT−nQπn(sT−n, aT−n)]. (2)

Theorem 1. Let Qπ1 (st, at) = rt be the one-step Truncated Q-function and Qπi>1(st, at) =
rt + γEt,π,M[Qπi−1(st+1, at+1)] the i-step Truncated Q-function. Then Qπi (st, at) represents the
truncated return Qπi (st, at) = Et,π,M[

∑t+i−1
j=t γj−trj].

Following Theorem 1 (the proof can be found in the supplementary), we approximate Qπn(st, at)

off-policy via consecutive bootstrapping. Let QTr(·, ·|θQTr
) denote a function approximator with

3

Under review as a conference paper at ICLR 2020

parameters θQ
Tr

and n outputs, subsequently called heads, estimating Qπi . Each output QTr
i boot-

straps from the prediction of the preceding head, with the first approximating the immediate reward
function. The targets are therefore given by:

yTr
j,1 = rj and yTr

j,i>1 = rj + γQTr′
i−1(sj+1, µ

′(sj+1|θµ
′
)|θQTr′

i−1), (3)

where µ′ corresponds to the actor maximizing the full Q-value as defined in Section 3. That is,
QTr represents evaluations of µ at different stages of truncation and yTr

j,i<n serve as intermediate
predictions to get yTr

j,n. We then only use QTr
n , which implements the full n-step return, as the first

part of the composition of the Q-target. Please note that in order to estimate Equation (2), the
dynamics model would be needed to get st+c·n of a rollout starting in st. In the following, we
describe an approach to achieve an estimation of Equation (2) model-free.

4.1.2 SHIFTED Q-FUNCTIONS

To get an estimation for the remainder of the rollout Qπn:∞ = Et,π,M[γnQ(st+n, at+n)] after n
steps, we use a consecutive bootstrapping formulation of the Q-prediction.
Theorem 2. Let Qπ1:∞(st, at) = Et,π,M[γQπ(st+1, at+1)] be the one-step Shifted Q-function and
Qπi>1:∞(st, at) = Et,π,M[γQπi−1:∞(st+1, at+1)] the i-step Shifted Q-function. Then Qπi:∞(st, at)

represents the shifted return Qπi:∞(st, at) = Et,π,M[γiQπ(st+i, at+i)].

Again, the proof of Theorem 2 can be found in the supplementary. Let QSh(·, ·|θQSh
) denote the

function approximator estimating the Shifted Q-function Qπn:∞, parameterized by θQ
Sh

. We can
shift the Q-prediction by bootstrapping without taking the immediate reward into account, so as to
skip the first n rewards of a target-policy rollout. The Shifted Q-targets for heads QSh

i therefore
become:

ySh
j,1 = γQ′(sj+1, µ

′(sj+1|θµ
′
)|θQ′) and ySh

j,i>1 = γQSh′
i−1(sj+1, µ

′(sj+1|θµ
′
)|θQSh′

i−1). (4)

4.1.3 COMPOSITION

Following the definitions of Truncated and Shifted Q-functions, we can compose the full return.

Theorem 3. Let Qπn(st, at) = Et,π,M[
∑t+n−1
j=t γj−trj] be the truncated return and

Qπn:∞(st, at) = Et,π,M[γnQ(st+n, at+n)] the shifted return. Then Qπ(st, at) = Qπn(st, at) +
Qπn:∞(st, at) represents the full return, i.e. Qπ(st, at) = Et,π,M[

∑∞
j=t γ

j−trj].

The incorporation of truncated returns breaks down the time scale of the long-term prediction by
the Shifted Q-function. For details, see the proof of Theorem 3 in the supplementary. We can thus
define the Composite Q-target as:

yQj = rj + γ(QTr′
n (sj+1, µ

′(sj+1|θµ
′
)|θQTr′

n) +QSh′
n (sj+1, µ

′(sj+1|θµ
′
)|θQSh′

n)), (5)

approximated by Q(·, ·|θQ) with parameters θQ. Since we have true reward rj , we include it in the
target. We jointly estimateQTr,QSh andQwith function approximatorQC(·, ·|θQC). Let SEC denote
the squared error between targets yCj and predictions QC(sj , aj |θQ

C
). See Figure 1b for the detailed

architecture of the Composite Q-network. Each pair QTr
i +QSh

i |1≤i≤n is a complete approximation
of the true Q-value. The circular dependency can lead to stability issues, due to the amplification
of propagated errors. We add a regularization term to the loss penalizing the deviation between the
prediction of Q and the n different Q-pairs to keep estimates in a narrow range. It is implemented
as the weighted mean squared error, i.e. the loss function becomes:

L =
1

m

m∑
j=1

(
SEC + β

1

n

n∑
i=1

(
Q(sj , aj |θQ)−

(
QTr
i (sj , aj |θQ

Tr
i) +QSh

i (sj , aj |θQ
Sh
i)
))2

)
, (6)

for batch of size m and with β being the regularization weight. Actor µ is then updated on Q.

4.2 TD3(∆) AND MVE-TD3

Most related to Composite Q-learning are TD(∆) (Romoff et al., 2019) and MVE-DDPG (Feinberg
et al., 2018). In this section, we describe how to extend TD(∆) to an off-policy setting and how to
combine MVE and TD3.

4

Under review as a conference paper at ICLR 2020

TD3(∆) Another way to divide the value function into multiple time scales is TD(∆) (Romoff
et al., 2019). To this point, it has only been applied in an on-policy setting. In favor of comparability,
we extend TD(∆) to Q-learning, yielding TD3(∆). The main idea of TD(∆) is the combination of
different value functions corresponding to increasing discount values. Let γ∆ denote a fixed ordered
sequence of increasing discount values, i.e. γ∆ = (γ1, γ2, . . . , γk)>|γi>1>γi−1

. We can then define
delta functions Wi as W1 = Qγ1

and Wi>1 = Qγi −Qγi−1
. Let Q∆(·, ·|θQ∆

) denote the function
approximator estimating Qγ1≤i≤k . Based on the derivations in (Romoff et al., 2019), the targets for
Q-learning can be formalized as:

yγj,1 = rj + γ1Q
′
γ1

(sj+1, µ
′(sj+1|θµ

′
)|θQ′γ1) and

yγj,i>1 = (γi − γi−1)Q′γi−1
(sj+1, µ

′(sj+1|θµ
′
)|θQ

′
γi−1) + γiW

′
i (sj+1, µ

′(sj+1|θµ
′
)|θW ′i),

(7)

which can then be used in any Q-learning algorithm. The authors suggest the use of n-step targets
within TD(∆) which is not easily applicable in an off-policy setting. In our experiments, we there-
fore compare our approach to single-step TD3(∆). The algorithm can be found in the appendix.

MVE-TD3 We also apply Model-based Value Expansion within TD3, subsequently called MVE-
TD3. We add Gaussian policy smoothing to the rollout of the model. In contrast to Feinberg et al.
(2018), however, we do not assume to have knowledge about the reward function. Our model
therefore approximates both, dynamics and reward.

5 EXPERIMENTAL RESULTS

We evaluate Composite Q-learning in both, the tabular setting and the actor-critic method TD3.

5.1 TABULAR COMPOSITE Q-LEARNING

To analyze the effect of incorporating short-term prediction QTr
n in the Q-update, we apply Com-

posite Q-learning in the tabular case to the MDP of horizon K given in Figure 2a. We compare it
to vanilla Q-learning, as well as multi-step Q-learning based on subtrajectories of the exploratory
policy and imaginary rollouts of the target-policy with the true model of the MDP.

s0

s1

s2

. . .

sK−3

sK−2sK−1

a,−1

a,−1

a,−1

a,−1

a,−100

b,−2

b,−2

b,−2

b,−2

b,−2

c,−3

c,−3

c,−3

c,−30

c,−3

(a)

0 1 2 3 4 5
Updates ×106

−25

−20

−15

−10

−5

0

Q
-v

al
u

e
fo

r
st

at
e
s 0

an
d

ac
ti

on
a

Composite Q-learning

Multi-step Q-learning w/ True Model

On-policy Multi-step Q-learning

Q-learning

Tr0

Tr1

Tr2

Tr3

(b)

Figure 2: (a) In this MDP of horizon K, the agent ought to arrive at terminal state sK−1 using
actions {a, b, c}. The initial state is s0 and the optimal policy is given in red. (b) Results for the
MDP with a horizon of K = 20. The true optimal Q-value for state s0 and action a is −20. Dashed
lines indicate convergence to the optimal policy.

5

Under review as a conference paper at ICLR 2020

Results for K = 20 are depicted in Figure 2b. All approaches update the Q-function with a learning
rate of 10−3 on the same fixed batch of 103 episodes with a percentage of 10% non-optimal transi-
tions. For the multi-step approaches, we set rollout length n = 4 and update the Shifted Q-function
with a learning rate of 10−2. The short-term predictions converge much faster than the value func-
tion in Q-learning. Based on the results in Figure 2b, we believe this to be also the reason for the
folded learning curve of Composite Q-learning. In the beginning, the target-policy is non-optimal,
hence the Truncated Q-functions adapt to the non-optimal policy rather quickly. However, once the
truncated estimations represent the optimal values, they are propagated to the full return in Com-
posite Q-learning almost immediately. The erroneous updates of on-policy multi-step Q-learning
lead to convergence to a wrong action-value which is underlining the importance of truly off-policy
learning. However, if the true model can be used for the rollout, this can be really effective. The dif-
ference in convergence speed between Q-learning and Composite Q-learning grows with increasing
horizon, as shown in Table 1. This is in line with the findings of Jin et al. (2018) who establish a
connection between the horizon of an MDP and the sample complexity of value estimation.

Table 1: Comparison of convergence speed between tabular Q-learning and tabular Composite Q-
learning for the MDP given in Figure 2a with n = 4.

Horizon K 10 20 50 100

Speed up to Q-learning 11.15% 44.28% 57.47% 66.16%

5.2 COMPOSITE Q-LEARNING WITH FUNCTION APPROXIMATION

We evaluate TD3, Composite TD3, MVE-TD3 and TD3(∆) on three robot simulation tasks of
OpenAI Gym (Brockman et al., 2016) based on MuJoCo (Todorov et al., 2012): Walker2d-v2,
Ant-v2 and Hopper-v2. A visualization of the environments is depicted in Figure 3.

Figure 3: Visualization of Walker2d-v2 (left), Ant-v2 (middle) and Hopper-v2 (right).

Parameter Setting Since the underlying algorithm is TD3 in all cases, we keep the main param-
eters the same across all approaches. Learning rate, target update and actor setting are the same
as in the default setting of TD3. We use Gaussian exploration noise with σ = 0.15. The critic in
Composite Q-learning consists of four layers with 500 neurons and leaky ReLU activation, the critic
in all other approaches and the model in MVE-TD3, with a learning rate of 10−3, has two layers.
However, we also evaluate TD3 and TD3(∆) with the same critic setting as Composite TD3, see
Figure 6 in the supplementary. This corresponds to the most stable setting we could find for TD3
with the given subset of MuJoCo tasks. For Composite TD3, we set n = 50 and β = 10−4 for
Walker2d-v2 and Hopper-v2 and β = 5 · 10−5 for Ant-v2. For TD3(∆), we use the γ-schedule as
suggested by the authors, i.e. γ1 = 0 and γi>1 = γi−1+1

2 , with an upper limit of 0.99 (Romoff et al.,
2019). For MVE-TD3, we use a rollout length of 3, as described in Feinberg et al. (2018).

Data Efficiency We choose the area under the learning curve as performance measure, which is a
common way to evaluate data-efficiency and learning stability (see e.g. Hessel et al. (2018)). Since
vanilla TD3 can have severe stability issues for a small number of runs, we compare median and
interquartile ranges. As listed in Table 2, Composite TD3 outperforms TD3, as well as state-of-the-
art multi-step approaches, in terms of learning speed throughout training. After the considered time
frame of 4 · 105 transitions, Composite TD3 has a 18%, 11% and 19% larger area under the median
learning curve, in comparison to vanilla TD3. As depicted in Figure 4, MVE-TD3 is highly sensi-
tive w.r.t. accumulating errors in reward and state prediction, even when applying the TD-k trick.

6

Under review as a conference paper at ICLR 2020

0

1000

2000

3000

4000

R
et

u
rn

Walker2d-v2

Composite TD3

TD3

MVE-TD3

TD3(∆)

0

1000

2000

3000

Ant-v2

Composite TD3

TD3

MVE-TD3

TD3(∆)

0

1000

2000

3000

Hopper-v2

Composite TD3

TD3

MVE-TD3

TD3(∆)

0 1 2 3 4
Transitions ×105

0.0

0.5

1.0

1.5

2.0

2.5

T
D

-E
rr

or

Q
Tr50

Tr40

Tr30

Tr20

Tr10

Tr5

Tr1

0 1 2 3 4
Transitions ×105

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q
Tr50

Tr40

Tr30

Tr20

Tr10

Tr5

Tr1

0 1 2 3 4
Transitions ×105

0.0

0.5

1.0

1.5

2.0

Q
Tr50

Tr40

Tr30

Tr20

Tr10

Tr5

Tr1

Figure 4: Results (top) and TD-errors (bottom) for Walker2d-v2 (left), Ant-v2 (middle) and
Hopper-v2 (right). The plots show median and interquartile ranges over 11 training runs, each
representing mean evaluation performance over 100 initial states. The lower plots show TD-errors
over time for the different horizons of the Truncated Q-function, as well as the TD-errors for the
complete Q-estimate. Please note that TD-error here means the deviation from the associated target.

However, if dynamics and reward are estimated with high accuracy, model-based rollouts can be
very effective, as the results show for Ant-v2. Based on our experiments, TD3(∆) seems to be less
sensitive than MVE-TD3, albeit also less efficient than Composite TD3. The maximum return found
by all approaches within 4 · 105 transitions can be seen in Table 3.

Table 2: Normalized area under the median learning curve over 11 training runs.

Samples Method Walker2d-v2 Ant-v2 Hopper-v2

2 · 105 TD3 81.63% 87.73% 84.02%
Composite TD3 100.00% 100.00% 100.00%

MVE-TD3 49.71% 81.56% 86.02%
TD3(∆) 89.04% 96.79% 73.85%

3 · 105 TD3 78.97% 87.64% 78.00%
Composite TD3 100.00% 100.00% 100.00%

MVE-TD3 44.27% 85.92% 56.62%
TD3(∆) 86.65% 94.35% 71.80%

4 · 105 TD3 81.25% 88.93% 80.68%
Composite TD3 100.00% 100.00% 100.00%

MVE-TD3 43.94% 88.03% 43.77%
TD3(∆) 87.98% 94.50% 79.93%

7

Under review as a conference paper at ICLR 2020

Table 3: Maximum return of the median learning curve over 11 training runs within 4 · 105 samples.

Environment TD3 Composite TD3 MVE-TD3 TD3(∆)

Walker2d-v2 3961.79 4390.80 2049.99 4101.27
Ant-v2 2933.26 3172.28 3019.21 3042.50

Hopper-v2 2888.24 3043.91 1080.72 3046.59

TD-error Analysis To test our intuition stated in the motivation, we refer to the lower row of
Figure 4 which shows the TD-errors for the different stages of truncation, as well as the TD-errors
for the complete Q-estimate. All Truncated Q-estimates have lower TD-error throughout learning
and it can be seen that the TD-error is consistently higher for longer horizons. This reaffirms our
hypothesis that learning is easier on shorter horizons. The Composite Q-target therefore reflects the
true action-value faster which is beneficial for Q-learning.

Sensitivity to Hyperparameters Lastly, we evaluate the influence of n and β, exemplary for the
Walker2d-v2 environment. The results can be seen in Figure 5. Shorter truncation horizons can
lead to faster convergence, but the variance increases. If n is rather large, however, it can slow
learning down. The same holds if the regularization weight β is set to a high value. On the other
hand, regularization is needed to keep the predictions in a narrow range, since it can lead to stability
issues, otherwise.

0 1 2 3 4
Transitions ×105

0

1000

2000

3000

4000

R
et

u
rn

n = 7 n = 50 n = 150

0 1 2 3 4
Transitions ×105

β = 10−5 β = 10−4 β = 10−3

Figure 5: Results for Composite TD3 in the Walker2d-v2 environment with different truncation hori-
zons n (left) and different regularization weights β (right). The plots show median and interquartile
ranges over 11 training runs, each representing mean evaluation performance over 100 initial states.

6 CONCLUSION

We introduced Composite Q-learning, an off-policy learning method that divides the long-term value
into smaller time scales. It combines Truncated Q-functions acting on a short horizon with Shifted
Q-functions for the remainder of the rollout. We analyzed the efficacy of Composite Q-learning in
the tabular case and showed that the benefit of short-term predictions increases with growing task
horizon. We further evaluated MVE-TD3 and introduced TD3(∆), an off-policy variant of TD(∆).
We showed on three simulated robot tasks that Composite TD3 outperforms vanilla TD3 by 18%,
11% and 19% in terms of area under the median learning curve. We also showed that Composite
TD3 is able to achieve state-of-the-art data-efficiency compared to other approaches in off-policy
multi-step learning.

Going forward, the uncertainty estimate based on the variance of the Composite Q-network could
be of benefit in both, update calculation and exploration. We further leave the application of the
truncated formulation of other quantities such as state change or auxiliary costs as future work.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua
Bengio and Yann LeCun, editors, 4th International Conference on Learning Representations,
ICLR, 2016.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom van de
Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving
sparse reward tasks from scratch. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 4344–4353. PMLR, 10–15 Jul 2018.

Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, and Sergey Levine. Learning
to walk via deep reinforcement learning. In Proceedings of Robotics: Science and Systems, 2019.

Gabriel Barth-Maron, Matthew W. Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva TB,
Alistair Muldal, Nicolas Heess, and Timothy P. Lillicrap. Distributed distributional deterministic
policy gradients. In 6th International Conference on Learning Representations, ICLR, 2018.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In Sheila A. McIlraith and Kilian Q. Weinberger,
editors, Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),
the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), pages 3215–3222. AAAI Press,
2018.

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I. Jordan, Joseph E. Gonzalez, and Sergey
Levine. Model-based value expansion for efficient model-free reinforcement learning. CoRR,
abs/1803.00101, 2018. URL http://arxiv.org/abs/1803.00101.

Joshua Romoff, Peter Henderson, Ahmed Touati, Yann Ollivier, Emma Brunskill, and Joelle Pineau.
Separating value functions across time-scales. CoRR, abs/1902.01883, 2019. URL http://
arxiv.org/abs/1902.01883.

Doina Precup, Richard S. Sutton, and Satinder P. Singh. Eligibility traces for off-policy policy
evaluation. In Pat Langley, editor, Proceedings of the 17th International Conference on Machine
Learning ICML, pages 759–766. Morgan Kaufmann, 2000.

Doina Precup, Richard S. Sutton, and Sanjoy Dasgupta. Off-policy temporal difference learning with
function approximation. In Carla E. Brodley and Andrea Pohoreckyj Danyluk, editors, Proceed-
ings of the 18th International Conference on Machine Learning ICML, pages 417–424. Morgan
Kaufmann, 2001.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc G. Bellemare. Safe and efficient off-
policy reinforcement learning. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle
Guyon, and Roman Garnett, editors, Advances in Neural Information Processing Systems 29,
pages 1046–1054, 2016.

9

http://arxiv.org/abs/1803.00101
http://arxiv.org/abs/1902.01883
http://arxiv.org/abs/1902.01883

Under review as a conference paper at ICLR 2020

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble value expansion. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems 31, NeurIPS, pages 8234–8244,
2018.

Kristopher De Asis, J. Fernando Hernandez-Garcia, G. Zacharias Holland, and Richard S. Sutton.
Multi-step reinforcement learning: A unifying algorithm. In Sheila A. McIlraith and Kilian Q.
Weinberger, editors, Proceedings of the 32nd AAAI Conference on Artificial Intelligence, pages
2902–2909. AAAI Press, 2018.

J. Fernando Hernandez-Garcia and Richard S. Sutton. Understanding multi-step deep rein-
forcement learning: A systematic study of the DQN target. Deep Reinforcement Learn-
ing Workshop (NeurIPS 2018), 2018. URL https://sites.google.com/view/
deep-rl-workshop-nips-2018/home#h.p_7z_mbUjm5DxN.

Harm van Seijen, Mehdi Fatemi, Romain Laroche, Joshua Romoff, Tavian Barnes, and Jeffrey
Tsang. Hybrid reward architecture for reinforcement learning. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems, pages 5392–5402, 2017.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin A. Riedmiller.
Deterministic policy gradient algorithms. In Proceedings of the 31th International Conference
on Machine Learning, ICML, volume 32 of JMLR Workshop and Conference Proceedings, pages
387–395, 2014.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, ICML, volume 80 of Proceedings of Machine
Learning Research, pages 1582–1591. PMLR, 2018.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Dale Schuurmans and Michael P. Wellman, editors, Proceedings of the 30th AAAI
Conference on Artificial Intelligence, pages 2094–2100. AAAI Press, 2016.

Susan A. Murphy. A generalization error for q-learning. J. Mach. Learn. Res., 6:1073–1097, 2005.

Chi Jin, Zeyuan Allen-Zhu, Sébastien Bubeck, and Michael I. Jordan. Is q-learning provably effi-
cient? In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-
Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems, pages 4868–4878, 2018.

Michael J. Kearns and Satinder P. Singh. Near-optimal reinforcement learning in polynomial time.
Machine Learning, 49(2-3):209–232, 2002.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/
abs/1606.01540.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pages 5026–
5033. IEEE, 2012.

10

https://sites.google.com/view/deep-rl-workshop-nips-2018/home#h.p_7z_mbUjm5DxN
https://sites.google.com/view/deep-rl-workshop-nips-2018/home#h.p_7z_mbUjm5DxN
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540

Under review as a conference paper at ICLR 2020

A ALGORITHM FOR COMPOSITE TD3

A detailed description of Composite DDPG is given in Algorithm 1, where the adjustments of TD3
are omitted for simplicity. In order to transform Algorithm 1 to its TD3-equivalent, Gaussian policy
smoothing has to be added to all targets in Line 8, as well as taking the minimum prediction of two
distinct critics for each target. Furthermore, actor and target networks have to be updated with delay.

Algorithm 1: Composite DDPG
1 initialize critic QC , actor µ and targets QC ′, µ′

2 initialize replay bufferR
3 for episode = 1..E do
4 get initial state s1

5 for t = 1..T do
6 apply action at = µ(st|θµ) + ξ, where ξ ∼ N (0, σ)
7 observe st+1 and rt and save transition (st, at, st+1, rt) inR
8 calculate targets:

yTr
j,1 = rj

yTr
j,i>1 = rj + γQTr′

i−1(sj+1, µ
′(sj+1|θµ

′
)|θQ

Tr′
i−1)

ySh
j,1 = γQ′(sj+1, µ

′(sj+1|θµ
′
)|θQ

′
)

ySh
j,i>1 = γQSh′

i−1(sj+1, µ
′(sj+1|θµ

′
)|θQ

Sh′
i−1)

yQj = rj + γ(QTr′
n (sj+1, µ

′(sj+1|θµ
′
)|θQ

Tr′
n) +QSh′

n (sj+1, µ
′(sj+1|θµ

′
)|θQ

Sh′
n))

yCj =
[
yQj , y

Tr
j,1, y

Tr
j,i>1, y

Sh
j,1, y

Sh
j,i>1

]
9 update QC on minibatch b of size m fromR according to Equation (6)

10 update µ on Q
11 adjust parameters of QC ′ and µ′

B ALGORITHM FOR TD3(∆)

A detailed description of DDPG(∆) is given in Algorithm 2. The authors suggest the use of n-step
samples which is not easily applicable in an off-policy setting. In our experiments, we therefore
compare our approach to single-step TD3(∆). To transform DDPG(∆) to TD3(∆), the adjustments
as described in Appendix A have to be applied analogously.

Algorithm 2: DDPG(∆)
1 initialize critic Q∆, actor µ and targets Q∆′, µ′

2 initialize replay bufferR
3 set discount values γ∆ = (γ0, γ1, . . . , γk)ᵀ

4 for episode = 1..E do
5 get initial state s1

6 for t = 1..T do
7 apply action at = µ(st|θµ) + ξ, where ξ ∼ N (0, σ)
8 observe st+1 and rt and save transition (st, at, st+1, rt) inR
9 calculate targets:

yγj,1 = rj + γ1Q
′
γ1

(sj+1, µ
′(sj+1|θµ

′
)|θQ

′
γ1)

yγj,i>1 = (γi − γi−1)Q′γi−1
(sj+1, µ

′(sj+1|θµ
′
)|θQ

′
γi−1)

+γiW
′
i (sj+1, µ

′(sj+1|θµ
′
)|θW

′
i)

10 update Q∆ on minibatch b of size m fromR
11 update µ on Qγk
12 adjust parameters of Q∆′ and µ′

11

Under review as a conference paper at ICLR 2020

C TRUNCATED Q-FUNCTIONS

Theorem 1. Let Qπ1 (st, at) = rt be the one-step Truncated Q-function and Qπi>1(st, at) =
rt + γEt,π,M[Qπi−1(st+1, at+1)] the i-step Truncated Q-function. Then Qπi (st, at) represents the
truncated return Qπi (st, at) = Et,π,M[

∑t+i−1
j=t γj−trj].

Proof. Proof by induction. Qπ1 (st, at) = rt by definition. The theorem follows from induction step:

Qπi (st, at) = rt + γEt,π,M
[
Qπi−1(st+1, at+1)

]
= rt + γEt,π,M

(t+1)+(i−1)−1∑
j=(t+1)

γj−(t+1)rj


= rt + γEt,π,M

 t+i−1∑
j=(t+1)

γj−(t+1)rj


= rt + Et,π,M

 t+i−1∑
j=(t+1)

γj−trj


= Et,π,M

t+i−1∑
j=t

γj−trj

 .

D SHIFTED Q-FUNCTIONS

Theorem 2. Let Qπ1:∞(st, at) = Et,π,M[γQπ(st+1, at+1)] be the one-step Shifted Q-function and
Qπi>1:∞(st, at) = Et,π,M[γQπi−1:∞(st+1, at+1)] the i-step Shifted Q-function. Then Qπi:∞(st, at)

represents the shifted return Qπi:∞(st, at) = Et,π,M[γiQπ(st+i, at+i)].

Proof. Proof by induction. Qπ1:∞(st, at) = Et,π,M[γQπ(st+1, at+1)] by definition. The theorem
follows from induction step:

Qπi:∞(st, at) = Et,π,M
[
γQπi−1:∞(st+1, at+1)

]
= Et,π,M

[
γ(γi−1Qπ(st+1+i−1, at+1+i−1))

]
= Et,π,M

[
γ(γi−1Qπ(st+i, at+i))

]
= Et,π,M

[
γiQπ(st+i, at+i)

]
.

E RESOLVING THE MUTUAL RECURSION

Theorem 3. Let Qπn(st, at) = Et,π,M[
∑t+n−1
j=t γj−trj] be the truncated return and

Qπn:∞(st, at) = Et,π,M[γnQ(st+n, at+n)] the shifted return. Then Qπ(st, at) = Qπn(st, at) +
Qπn:∞(st, at) represents the full return, i.e. Qπ(st, at) = Et,π,M[

∑∞
j=t γ

j−trj].

12

Under review as a conference paper at ICLR 2020

Proof.

Qπ(st, at) = Qπn(st, at) +Qπn:∞(st, at)

= Et,π,M

t+n−1∑
j=t

γj−trj + γnQπ(st+n, at+n)


= Et,π,M

t+n−1∑
j=t

γj−trj + γn

(
Qπn(st+n, at+n) +Qπn:∞(st+n, at+n)

)
= Et,π,M

t+n−1∑
j=t

γj−trj + γn

(
t+2n−1∑
j=t+n

γj−t−nrj + γnQπ(st+2n, at+2n)

)
= Et,π,M

t+n−1∑
j=t

γj−trj +

t+2n−1∑
j=t+n

γj−trj + γ2nQπ(st+2n, at+2n)


= Et,π,M

t+2n−1∑
j=t

γj−trj + γ2nQπ(st+2n, at+2n)

 .
Repeating this process then gives Qπ(st, at) = Et,π,M[

∑∞
j=t γ

j−trj].

Due to the composite structure, the Shifted Q-function represents the long-term sum of partial re-
turns provided by the Truncated Q-function, as opposed to single reward values.

F TD3 AND TD3(∆) WITH LARGER NETWORKS

To further analyze the impact of the Composite Q-learning structure, we evaluate TD3 and TD3(∆)
with the same number of parameters for the critic, as depicted in Figure 6. The approaches do not
seem to make use of the additional capacity and reveal a worse performance in the given time frame.

0 2 4
Transitions ×105

0

1000

2000

3000

4000

R
et

u
rn

Walker2d-v2

TD3

TD3 4L

TD3(∆)

TD3(∆) 4L

0 2 4
Transitions ×105

0

1000

2000

3000

Ant-v2

TD3

TD3 4L

TD3(∆)

TD3(∆) 4L

0 2 4
Transitions ×105

0

1000

2000

3000

Hopper-v2

TD3

TD3 4L

TD3(∆)

TD3(∆) 4L

Figure 6: Results for TD3 and TD3(∆) with the same number of parameters for the critic as Com-
posite TD3, i.e. four layers with 500 neurons. The plots show median and interquartile ranges over
11 training runs, each representing mean evaluation performance over 100 initial states. We denote
approaches using a critic with four layers by 4L.

13

	Introduction
	Related Work
	Background
	Off-policy Multi-step Q-learning
	Composite Q-learning
	Truncated Q-functions
	Shifted Q-functions
	Composition

	TD3(-delta) and MVE-TD3

	Experimental Results
	Tabular Composite Q-learning
	Composite Q-learning with Function Approximation

	Conclusion
	Algorithm for Composite TD3
	Algorithm for TD3(-Delta)
	Truncated Q-functions
	Shifted Q-functions
	Resolving the Mutual Recursion
	TD3 and TD3(-Delta) with Larger Networks

