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ABSTRACT

Clustering is the central task in unsupervised learning and data mining. k-means
is one of the most widely used clustering algorithms. Unfortunately, it is generally
non-trivial to extend k-means to cluster data samples beyond Gaussian distribu-
tion, particularly, the clusters with non-convex shape (Beliakov & King, |2006). To
this end, we, for the first time, introduce Extreme Value Theory (EVT) to improve
the clustering ability of k-means. Particularly, the Euclidean space was trans-
formed into a novel probability space denoted as extreme value space by EVT.
We thus propose a novel algorithm called Extreme Value k-means (EV k-means),
including GEV k-means and GPD k-means. In addition, we also introduce the
tricks to accelerate Euclidean distance computation in improving the computa-
tional efficiency of classical k-means. Furthermore, our EV k-means is extended
to an online version, i.e., online Extreme Value k-means, in utilizing the Mini
Batch k-means to cluster streaming data. Extensive experiments are conducted to
validate our EV k-means and online EV k-means on synthetic datasets and real
datasets. Experimental results show that our algorithms significantly outperform
competitors in most cases.

1 INTRODUCTION

Clustering is a fundamental and important task in the unsupervised learning (Jainl 2010} |[Rui Xu &
'Wunschl [2005)). It aims at clustering data samples of high similarity into the same cluster. The most
well-known clustering algorithm is the k-means, whose objective is to minimize the sum of squared
distances to the their closest centroids. k-means has been extensively studied in the literature and
some heuristic have been proposed to approximate it (Jain, 2010; [Dubes & Jain, [1988). The most
famous one is Lloyd’s algorithm (Lloyd, |1982).

The k-means algorithm is widely used due to its simplicity, ease of use, geometric intuition (Bottesch
et al., [2016). Unfortunately, its bottleneck is that computational complexity reaches O(nkd) (Rui
Xu & Wunsch, 2005), since it requires computing the Euclidean distances between all samples and
all centroids. The data is embedded in the Euclidean space (Stemmer & Kaplan, [2018), which
causes the failure on clustering non-convex clusters (Beliakov & Kingl,[2006). Even worse, k-means
is highly sensitive to the initial centroids, which usually are randomly initialized. Thus, it is quite
possible that the objective of k-means converges to a local minimum, which causes the instability
of k-means, and is less desirable in practice. Despite a stable version — k-means++ (Arthur &
Vassilvitskiil 2007) gives a more stable initialization, fundamentally it is still non-trivial to extend
k-means in clustering data samples of non-convex shape.

To solve these problems, this paper, for the first time, improves the clustering ability of k-means by
measuring the similarity between samples and centroids by EVT (Coles et al., 2001)). In particular,
we consider the generalized extreme value (GEV) (Jenkinson, [1955)) distribution or generalized
Pareto distribution (GPD) (Pickands III et al.,|{1975; DuMouchel, |{1975)) to transform the Euclidean
space into a probability space defined as, extreme value space. GEV and GPD are employed to
model the maximum distance and output the probability that a distance is an extreme value, which
indicates the similarity of a sample to a centroid. Further, we adopt the Block Maxima Method
(BMM) (Gumbel, 2012) to choose the maximal distance for helping GEV fit the data. The Peaks-
Over-Thresh (POT) method (Leadbetter, [1991) is utilized to model the excess of distance exceeding
the threshold, and thus very useful in fitting the data for GPD.
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Formally, since both GEV and GPD can measure the similarity of samples and centroids, they
can be directly utilized in k-means, i.e., GEV k-means and GPD k-means, which are uniformly
called Extreme Value k-means (EV k-means) algorithm. In contrast to k-means, EV k-means is
a probability-based clustering algorithm that clusters samples according to the probability output
from GEV or GPD. Furthermore, to accelerate the computation of Euclidean distance, We expand
the samples and the centroids into two tensors of the same shape, and then accelerate with the high-
performance parallel computing of GPU.

For clustering steaming data, we propose online Extreme Value k-means based on Mini Batch k-
means (Sculleyl [2010). When fit the GEV distribution, we use mini batch data as a block and extract
the maximum value. For the fitting of GPD, we dynamically update the threshold. The parameters
of GEV or GPD are learned by stochastic gradient descent (SGD) (LeCun et al.,|1998]).

The main contributions are described as follows. (1) To the best of our knowledge, this is the first
paper that utilizes EVT to improve k-means in addressing the problem of clustering data of non-
convex shape. We thus propose the novel Extreme Value k-means, including GEV k-means and GPD
k-means. A method for accelerating Euclidean distance computation has also been proposed to solve
the bottleneck of k-means. (2) Under the strong theoretical support provided by EVT, we use GEV
and GPD to transform Euclidean space into extreme value space, and measure the similarity between
samples and centroids. (3) Based on Mini Batch k-means, We propose online Extreme value k-
means for clustering streaming data, which can learn the parameters of GEV and GPD online. We
corroborate the effectiveness of EV k-means and online EV k-means by conducting experiments
on synthetic datasets and real datasets. Experimental results show that EV k-means and online EV
k-means significantly outperform compared algorithm consistently across all experimented datasets.

2 RELATED WORKS

k-means and EVT have been extensively studied in the literature in many aspects (Jain, 2010; Rui
Xu & Wunsch, [2005; |De Haan & Ferreira, 2007). However, to the best of our knowledge, the case
of combination of k-means and EVT has not been given attention by the researchers. Previous work
on k-means focused on the following aspects, such as determining the optimal k, initializing the
centroids, and accelerating k-means. Bandyopadhyay & Maulik| (2002); [Lin et al.| (2005); Van der
Merwe & Engelbrecht| (2003)); [(Omran et al.| (2005)) propose to select the optimal k£ value based on
the genetic algorithm. Initializing the centroids is a hot issue in k-means (Celebi et al., 2013). k-
means++ (Arthur & Vassilvitskii, [2007) is the most popular initialization scheme. Katsavounidis
et al. (1994); [Khan & Ahmad|(2004); Redmond & Heneghan|(2007)) proposed density-based initial
centroid selection method, that is, selecting the initial cluster center according to the density distri-
bution of the samples. Recently, Bachem et al| (2016) propose using Markov chain Monte Carlo
to accelerate k-means++ sampling. There is also a lot of work focused on solving the computa-
tional complexity of k-means. Hamerly| (2010) argued that using triangle inequality can accelerate
k-means. Sinha) (2018]) showed that randomly sparse the original data matrix can significantly speed
up the computation of Euclidean distance.

EVT is widely used in many area, such as natural phenomena, finance, earth sciences, and traffic
prediction. In recent years, EVT has many applications in the field of machine learning. |Scheirer
et al.| (2010; 20115 2012a3b); [Scheirer| (2017) successfully apply extreme value theory to visual
recognition tasks. [Jain et al.| (2014); Scheirer et al.| (2014); [Rudd et al.| (2018)) apply extreme value
theory to open set recognition by modeling unknown data as extreme value. Weng et al.| (2018)
propose to use the EVT for efficient evaluate the Robustness of Neural Networks. [Liu et al.| (2012)
propose the Sparse-GEV model based on the EVT modeling to automatically learn sparse temporal
dependence.

3 PRELIMINARIES

3.1 k-MEANS CLUSTERING ALGORITHM

Denote X = {x,x2,...,x,} C R as the dataset and C = {C},Cy,...,C}} as a partition of
satisfying C; N C; = @,i # j. Let © = {1, pa, . . ., pi } with p; C R? be the centroid of cluster
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Ciyi=1,2,... k, thatis, u; = |Cli| Zzea‘, a. The sum squared error is defined as
k
J(C0) =" |z — pmil3 (1)
i=1 xeC;

Eq. (I) indicates that the smaller J is, the higher degree of closeness between the samples and their
centroid in the cluster, so the similarity of the samples in the cluster is higher. To find the global
minimum of Eq. |I} we need to compute all possible cluster partitions, so k-means is an NP-hard
problem (Aloise et al., 2009). Lloyd’s algorithm (Lloyd, [1982) uses a greedy strategy to approxi-
mate the Eq. (I)) by iteratively optimizing between assigning cluster labels and updating centroids.
Specifically, in assigning cluster labels, a cluster label is assigned to each sample according to the
closest centroid. When the centroid is being updated, each centroid is updated to the mean of all
samples in the cluster. These two steps loop iteratively until the centroids no longer change.

3.2 EXTREME VALUE THEORY

In this subsection, we first introduce the statistical aspects of a sample maximum in Extreme value
theory (EVT), which is a branch of statistics dealing with stochastic behavior of extreme events
found in the tails of probability distributions. Let X7, X5, ..., X,, be a sample of independent copy
of X with distribution F'. It is theoretically interesting to consider the asymptotic behavior of sample
maximum and upper order statistics. More specifically, denote M,, = maxj<;<n X; as the sample
maximum, whose distribution is

Pr (M, <z)=F"(z), z€R. 2)
On the other hand, the upper order statistics of the sample is related to the survival function over a
threshold ¢, which is
Pr(X >u+z) 1-F(u+zx)
Pr(X > u) 1— F(u)
Extreme value theory considers the non-degenerated limit when n — oo in Eq. (Z) and w 1 2* in

Eq. (3) by re-scaling the objects, which is presented as the conditions of the maximum domain of
attraction for F'.

PrX >u+z|X >u) = , x>0. 3)

Theorem 3.1 (Fisher-Tippett Theorem (Fisher & Tippett, [1928)) A distribution function F satis-
fis the condition of a maximum domain of attraction: if there exists a constant £ € R and sequences
an > 0,b,,n € N such that

lim F"(anz + by) :exp{—(l—i—gm)_l/&}, 1+&x>0. 4)

n— oo

The shape parameter & is called the extreme value index.

Theorem [3.T|motivates the Block Maxima Method (BMM) (Gumbel, 2012)): for some block size s €
{1,2,...,n}, divide the sample into m = n /s blocks of length s. Since the data is independent,
each block maxima has distribution F'® and can be approximated by a three-parametric generalized
extreme value distribution (GEV) Ggrv (+; 1, 0,&) when the block size s is large enough and the
number of blocks m is sufficient. The class of GEV distributions is defined as

_ -1/¢ _
GGEv(x;u,a,o:exp{—(st “) } 1+ >0, )

g

We treat the case of & = 0 as the limit of £ — 0. An equivalent representation of the maximum
domain of attraction condition is as follows:

Theorem 3.2 (Pickands-Balkema-de Haan Theorem (Balkema & De Haan, |1974)) A  distribu-
tion function F' satisfies the condition of a maximum domain of attraction: if there exists a constant
¢ € R and a positive function o (t) such that

lim 1—F(u+o(u)x)
utx* 1-— F(’LL)
where x* denotes the right end-point of the support of F.

=1+ex) Ve 1+ex>o0. (6)
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(a) Measuring similarity by GPD (b) Isocontour of GPD k-means (¢) Surface of GPD k-means

Figure 1: The clustering results of GPD k-means in three isotropic Gaussian blobs. The color of the
surface and contour in the figures represent the probability density of GPD. The closer to yellow, the
greater the probability density. The closer to blue, the smaller the probability density.

The upper order statistics of a sample usually provides useful information about the tails of the
distribution F'. Then Theorem [3.2] gives rise to an alternative peak-over-threshold (POT) approach
(Pickands IIT et al.L|1975): given sufficient large threshold « in Eq. (]Z[), we have that, for any X; > u,
its conditional distribution can be approximated by a two-parametric generalized Pareto distribution
(GPD) Ggpp(+;0,€), which is defined as

1/
Goppl(z;0,6) =1 — (1 n g%) x>0 %

Similarly, we treat the case of £ = 0 as the limit of £ — 0.

The POT approach focuses on the excess over the threshold u to fit the GPD and asymptotically
characterize the tail features of the distribution, while the BMM only approximates the GEV distri-
bution when m is large enough. The BMM only uses a very small amount of dataset, and there may
be cases where the submaximal value of one block is larger than the maximum value of the other
block, which cannot be utilized. In contrast, POT method uses all data beyond the threshold to fit
the GPD, making full use of the extreme data. However, there is no winner in theory.

4 THE EXTREME VALUE k-MEANS ALGORITHM

4.1 MEASURING SIMILARITY BY EXTREME VALUE THEORY

Measuring similarity with Euclidean distance is the core step of k-means clustering. Similarly,
for all clustering algorithms, how to measure the distance (dissimilarity) or similarity between the
samples and the centroids is a very important issue (Rui Xu & Wunsch, 2005) as it determines the
performance of the algorithm. However, due to the properties of Euclidean distance, k-means fails
for clustering non-convex clusters. Therefore, this paper proposes to use the EVT to transform the
Euclidean space into a probability space called the extreme value space. Fig. [1(a)] demonstrates
measuring similarity by GEV or GPD. The Euclidean distance from g; and g3 to @, is much larger
than the Euclidean distance from g1 and 3 to the most of surrounding samples, i.e. ||z — 1 ||2 >
lzi — p1ll2, i € Cq and ||x, — psllz > ||@i — psll2, i € Cs. Therefore, ||z, — p1]l2 and
||z — pes]|2 are maximums with respect to ||z; — p1l|2, €, € Cy and ||z, — ps||2, z; € C3 with
different degree. We want a distribution that can be used to model maximum distance and reflect
the probability that a distance is an extreme value, which in turn reflects the similarity between the
sample and the centroid. Obviously, the EVT is a good choice.

As described in Section [3.2] the BMM can be applied to fit the GEV distribution. In order
to fit a GEV distribution for each cluster, we first compute the Euclidean distance d;; between
© = {p1, 2, ..., pr} and each sample z; € X, i.e., d;; = ||&; — ;2. Then we divided them
equally into m blocks of size s = L (possibly the last block with no sufficient observations can
be discarded), and then the maximum value of each block is taken to obtain the block maximum
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sequence M. 4
M :{MlaMQ,“-;Mmj} (8)

We use M7 to estimate the parameters of GEV distributions for cluster C;. In our approach, we
assume the location parameter is zero for the reason that the position of centroids change small in the
later stage of clustering, where the most commonly used estimating method, maximum likelihood
estimation (MLE), is implemented to estimate the two parameters of the GEV. The log likelihood
function of GEV is derived from Eq. (5),

1 m; MJ m; M] _1/5_1
Lepv(Mj;05,§5) = —mjlog(o;) — (1 + ?) > log (1 +&— ) -> <1 +&G— ) & 70
J J

i=1 J i=1

oM M
Lepy(Mj;05) = —mjlog(oj) — Z L Zexp —0—% , & =0
i=1 J

i—1 %I
j ©))
14+¢; Af] > 0 when &; # 0. We get the estimated value ¢; and &; of o; and §; by maximizing

Lggv.

Alternatively, we use the POT method to model the excess of Euclidean distance d; exceeding
threshold u; for centroid pt; and fit the GPD. We first compute the excess that is defined as

yj:djfuja dj>uj7yj:{y{ay§7"'7yij} (10)

where £; is the total number of observations greater than the threshold u;. Then we also implement
MLE to estimate the parameters of the GPD. The log likelihood function of GPD can be derived

from Eq. (7)),

iyji)7 & #0
J

k.
. 1.
Lapp(y';05,&5) = kjlog&; — kjlogo; — (1+ g)zbg(l +=
J =1

(11
k;
Lapp(y/;05) = —kjlog& — o7 Y g & =0
=1

yf > 0Owhen&; > 0and 0 < yg < f% when &; < 0. We get the estimated value &; and éj of 0
J
and §; by maximizing the Lgpp. Finally, we can obtain similarity between x; and pu; through the
GEV and GPD: R
Sij = 1= Gapv(dij; 65,8;)

. (12)
Sij =1—Geapp(dij — uj;65,&5)

4.2 OPTIMIZATION FOR k-MEANS WITH EVT

The traditional k-means algorithm clusters samples into clusters in view of the closeness to the
centroids of clusters. As described in Section 4.1} we can model the distribution classes of GEV
and GPD to measure the similarity between the samples and the centroids. Thus we propose GEV
k-means and GPD k-means, which are uniformly called Extreme Value k-means (EV k-means)
algorithm. In contrast to k-means, the proposed EV k-means is a probability-based clustering al-
gorithm as it instead clusters samples by the probability output from GEV or GPD. The larger the
block size s and the threshold « of BMM and POT, the smaller the deviation of MLE, but the larger
the variance of MLE. Conversely, the smaller the block size s and the threshold u, the larger the
deviation of the MLE, but the smaller the variance of the MLE. How to choose these two hyper-
parameters has not yet had a standard method, and it is necessary to comprehensively balance the
relationship between deviation and variance in practical applications. Therefore, we set the block
size by grid search and set threshold adaptively. Specifically, we first set the hyperparameter « to
indicate the percentage of excess for all samples. Then we sort d; from big to small, and the u is set
to the an-th of sorted d;.

The algorithm of GEV k-means has three steps: Given the dataset X, block size s and k initial
centroids (obtained randomly or using k-means++ algorithm). During the step of fitting a GEV
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distribution, we firstly use BMM to select the maximal sample data M J. Then, we estimate the GEV
parameters 6; and éj by MLE using M; for centroid p;. So each cluster has its own independent
GEV distribution. In the assigning labels step, each sample is assigned a cluster label based on the
maximum similarity, i.e., \; = argmax;c ¢ o 5} Sij- In the updating centroid step, each centroid
is updated to the mean of all samples in the cluster, i.e., p; = ﬁ >ow cc, - There three steps are
iterated until the centroids no longer change.

The algorithm of GPD k-means is very similar to GEV k-means, except that the fitting GPD dis-
tribution step. GPD k-means use the POT to model the excess of Euclidean distance exceeding
threshold and fit the GPD. Fig. and Fig. show the clustering results of GPD k-means in
three isotropic Gaussian blobs and show that the closer to the centroids, the greater the probability
density.

4.3 SPEEDING UP

The main bottleneck of the k-means is the computation of the Euclidean distances for the reason
that the Euclidean distances between all samples and all centroids need to be computed. In naive
implementation, double-layer nested for loop is often used to perform operations on the CPU, which
is very slow. This paper proposes an accelerated computation method to solve this bottleneck.
Firstly, let matrix X € R™*¢ represents samples consisting of n d-dimensional samples, and matrix
C € R¥*4 represents centroids consisting of k d-dimensional centroids. Secondly, insert a dimen-
sion between the two dimensions of matrix X and copy X along the new dimension to tensor X
with shape of [n, k,d]. A similar operation for matrix C, adding a new dimension before the first
dimension and copy C along the new dimension to tensor C with shape of [n, k, d|. Finally, the Eu-
clidean distances between all samples and all centroids are D; ; = || X — C||» that can be accelerate
with the advantages of GPU parallel computing. The overall Extreme Value k-means algorithm is
illustrated in Algorithm|[I]

4.4  ONLINE LEARNING FOR CLUSTERING STREAMING DATA

In the era of Big Data, data is no longer stored in memory, but in the form of streams (Bugdary &
Maymon, 2019). Therefore, clustering streaming data is a very important and challenging problem.
It is very necessary to design an Extreme Value k-menas algorithm that can learn online for cluster-
ing streaming data. This paper proposes the online Extreme Value k-means for clustering streaming
data based on Mini Batch k-means (Sculley, |2010). When fit the GEV distribution, we use mini
batch data as a block and choose the maximum value for learning the parameters of GEV online.
For the fitting of the GPD, the online EV k-means can dynamically update the threshold « and learn
the parameters of GPD online.

The Online Extreme Value k-means algorithm is illustrated in Algorithm[2] The algorithm randomly
choose a mini batch contains b samples from the data stream each iteration. On the first iteration, it
initializes the parameters of each GEV or GPD, and initializes centroid C' on the mini batch.

Then compute the Euclidean distances D using the accelerated computation method we proposed,
update u; to tan-th of sorted h, and compute the maximum M7 and excess y;. Because the GEV and
GPD parameters have not been updated at the first iteration, so S;; cannot be computed. Therefore,
from the second iteration, the algorithm clusters the mini batch samples based on Mini Batch k-
means. Finally, the negative log-likelihood function of all GEVs or GPDs is summed to obtain L,
and the L, is minimized by SGD to update the parameters of GEV or GPD, which is equivalent to

maximizing 2?21 Lerv(M7;04,&;) and Z?:l Lapp(y;0,&5).
5 EXPERIMENTS AND RESULTS

5.1 EVALUATION METRICS

We evaluate the performance of the clustering algorithm by three widely used metrics, unsupervised
clustering accuracy (ACC) (Cai et al., 2010), normalized mutual information (NMI) (Vinh et al.,
2010), and adjusted rand index (ARI) (Vinh et al.2010). Note that the values of ACC and NMI are



Under review as a conference paper at ICLR 2020

Algorithm 1: Extreme Value k-means

Input: samples X € R™*%, number of cluster k, block size s for GEV k-means, the percentage of excess a
for GPD k-means

Output: clusters C

Initialize centroid C € R**;

repeat

Ci=2,1<j<k

Perform transformation on X and C' to obtain X and C, and then compute D = ||X — C||2;

forj=1,2,...,kdo

// GEV k-means

Obtain M7 from d..; by BMM;

Estimate the &, fj by MLE on M7;

// GPD k-means

Obtain 4’ from D. ; by POT;

Estimate the 7, éj by MLE on 37;

end

fori=1,2,...,ndo

Ai = argmax;eqi,2,....k} Sijs

C>\j = C>\j Jx;

end
forj=1,2,...,kdo

M = ﬁ Zmecj T,
end
until centroids no longer change;
return clusters C;

Algorithm 2: online Extreme Value k-means

Input: samples X € R™*?, number of cluster k, mini-batch size b, the percentage of excess o
OQutput: centroid C
Initialize u; =0, h =[], N =0;
fort =1,2,...,n/ddo
M < choose b samples randomly from X;
if t == 1 then

‘ Initialize centroid C' € R**¢ and the parameters of GEVs or GPDs;
end
Perform transformation on M and C' to obtain M and C, and compute the D = ||M — C|2;
for j=1,2,... ,kdo
// online GEV k-means
M’ = max(D. ;) // online GPD k-means
h.append(D. ;[D. ; > u;]), Sort h from big to small and set u; = h[tan];
Y =D.;[D.; > u;] — uy;
end
if t > 2 then
fori=1,2,...,bdo

A; = arg mane{m, Lk} Sigs

N[N] =N+ 1;
iy N
o= (1 =7)Ch,,: +7M;,;
end
end
L, :—ZJ 1LGEV(M 0;,&)// online GEV k-means
L, Zj:1 Lepp(y’;04,€;) // online GPD k-means

Compute the gradient 5/ L and then update the parameters of the GEV or GPD;
end
return centroid C';
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Figure 2: Visualization of five synthetic datasets shows the result of our Extreme Value k-means
compared to k-means and k-means++. The results of the six algorithms from top to down are the
clustering results on the datasets D1, D2, D3, D4 and D5, respectively. The six algorithms from the
first column to the sixth column are respectively k-means, k-means++, GEV k-means (RM), GEV
k-means (++), GPD k-means (RM), GPD k-means (++).

in the range of 0 to 1, with 1 indicating the best clustering and O indicating the worst clustering.
The value of ARI is in range of -1 to 1, -1 indicates the worst clustering, and 1 indicates the best
clustering.

5.2 SYNTHETIC DATASET DEMONSTRATION

We demonstrate our algorithm compared to other algorithms on five two-dimensional synthetic
datasets. As illustrated in Fig. |ZL there are the clustering results of the datasets D1, D2, D3, D4
and D5 from top to down. D1 consists of 5 isotropic Gaussian clusters, each of which has 100 sam-
ples. D2 consists of two ‘C’-shaped clusters in the same direction, each of which has 250 samples.
D3 consists of two clusters, each of which has 500 samples including a Gaussian blob and a "C’-
shaped region. D4 consists of a Gaussian cluster having 500 samples and a ’C’-shaped cluster having
250 samples. The difference between D5 and D3 is that the lower cluster in D5 has no *C’-shaped
region, and Gaussian blobs has a larger variance. In D5, the upper cluster has 500 samples and the
lower cluster has 250 samples. The centroids of GEV k-means and GPD k-means can be initialized
randomly or using k-means++. Let ‘RM’ and ‘“++” denote randomly and using k-means++ initialize
centroids, respectively. Therefore, there are six algorithms in this experiment, k-means, k-means++,
GEV k-means (RM), GEV k-means (++), GPD k-means (RM), GPD k-means (++), respectively.
From the clustering results of the six algorithms on five different synthetic data in Fig. [2], it can
be seen that GEV k-means (RM), GEV k-means (++), GPD k-means (RM) and GPD k-means (++)
can successfully cluster convex and non-convex clusters, but the clustering results of k-means and
k-means++ on non-convex but visibly well-separated clusters are completely unsuccessful.

5.3 REAL DATASET EXPERIMENT

We evaluated the proposed EV k-means on nine real datasets: iris (n = 150,d = 4,k = 3),
breast cancer (n = 683,d = 10,k = 2), live disorders (n = 145,d = 5,k = 2), heart (n =



Under review as a conference paper at ICLR 2020

Table 1: Results of Extreme Value k-means on real data

. ACC ARI NMI ACC ARI NMI ACC ARI NMI
Algorithm — - -
iris breast cancer liver disorders
k-means 0.8133 0.6111 0.6596 | 09105 0.6715 0.5565 | 0.6903  0.1334 0.1038
k-means++ 0.7840 0.5870 0.6515 | 09114 0.6742 0.5621 | 0.7097  0.1508 0.1154
GEV k-means (RM) | 0.8467 0.6412 0.7424 | 0.8946  0.6216 0.5259 | 0.7241 0.1685 0.4492
GEV k-means (++) 0.8467 0.6412 0.7424 | 0.8946 0.6216 0.5614 | 0.7172  0.1548 0.4264
GPD k-means (RM) | 0.8600 0.6656 0.7227 | 0.9209 0.7068 0.5977 | 0.7448  0.2208 0.2228
GPD k-means (++) 0.8667 0.6765 0.7192 | 0.9209 0.7076 0.6018 | 0.7448 0.2208 0.2228
heart diabetes glass
k-means 0.8193  0.4062 0.3203 | 0.6780  0.1242 0.0792 | 0.4341 0.1606  0.3027
k-means++ 0.8081 0.3781 0.2946 | 0.6633  0.1006 0.0630 | 0.4645 0.1832 0.3203
GEV k-means (RM) | 0.8259 0.4227 0.6466 | 0.7214  0.1861 0.1181 | 0.5234  0.2440 0.3942
GEV k-means (++) 0.8259 0.4227 0.5771 | 0.7083  0.1599 0.1078 | 0.4907 0.2096 0.3802
GPD k-means (RM) | 0.8444 0.4724 0.3858 | 0.7174  0.1818 0.1339 | 0.5093 0.2361 0.3845
GPD k-means (++) 0.8481 0.4827 0.3909 | 0.7240 0.1939 0.1276 | 0.5421 0.2754 0.4152
vehicle MNIST CIFAR10

k-means 0.3662 0.0712 0.1044 | 0.8276  0.8164 0.8867 | 0.7168  0.7153  0.8966
k-means++ 0.3693 0.0805 0.1192 | 0.8583  0.8361 0.8961 | 1.0000 1.0000 1.0000
GEV k-means (RM) | 0.3842 0.1100 0.1557 | 0.9751 0.9454  0.9344 | 1.0000 1.0000 0.9460
GEV k-means (++) 0.3830 0.1012 0.1502 | 09758 0.9469 0.9370 | 1.0000 1.0000 1.0000
GPD k-means (RM) | 0.4007 0.1127 0.1569 | 0.9792  0.9543 0.9418 | 0.8940 0.8916 0.9644
GPD k-means (++) 0.3936  0.1006 0.1731 | 0.9794 0.9547 0.9420 | 1.0000 1.0000 1.0000

270,d = 13,k = 2), diabetes (n = 768,d = 8,k = 2), glass (n = 214,d = 9,k = 6), vehicle
(n = 846,d = 18,k = 4), MNIST and CIFAR10. The first seven datasets are available from
LIBSVM Data website [H MNIST is a dataset comprises 60,000 training gray-scale images and
10,000 gray-scale images of handwritten digits O to 9. Each of the training images is represented by
an 84-dimensional vector obtained by LeNet (LeCun et al.l |[1998). So the MNIST dataset we use
has 60,000 samples with 84 features belonging to 10 classes, i.e., n = 60,000,d = 84,k = 10.
CIFARI1O is a dataset containing 50,000 taining and 10,000 test color images with 32 x 32 pixels,
grouped into 10 different classes of equal size, representing 10 different objects. Each of the training
images is represented by a 512-dimensional vector extracted by a ResNet-18 (He et all [2016).
Therefore, the CIFAR10 we use in the experiment has 50,000 samples with 512 features grouped in
10 classes, i.e., n = 50,000, d = 84, k = 10.

We repeat each experiment 10 times with different random seeds and took the maximum of the
results of 10 times experiments as the final result. In each of the experiments, all algorithms that
initialize centroids randomly or by using k-means++ start from the same initial centroids. The results
of EV k-means on real datasets are shown in Tab. [I| As shown in Table 1, our proposed EV k-means
performs significantly outperform on all real datasets than k-means and k-means++. Surprisingly,
the results of k-means++, GEV k-means (++) and GPD k-means (++) on CIFAR10 all achieve 1 ,
since the images of CIFAR10 have three channels, which provides more information for clustering .

5.4 STREAMING DATASET EXPERIMENT

We compare online EV k-means with k-means, k-means++, Mini Batch k-means (RM) and Mini
Batch k-means (++) on MNIST and CIFAR10. As illustrated in Tab. [2] the values of the three
metrics of online EV k-means are slightly smaller than the values of EV k-means. However, the
values of the three metrics of Mini Batch k-means are much smaller than the values of k-means.
For example, the values of the three metrics of Mini Batch k-means on MNIST are 10%, 17%, 8%
smaller than the values of k-means. However, the values of the three metrics of online GVE k-means
(RM) on MNIST are 4%, 8%, 5% smaller than the values of GVE k-means (RM).

'https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Table 2: Results of online Extreme Value k-means on streaming data
ACC ARI NMI ACC ARI NMI

Algorithm

MNIST CIFARI10
k-means 0.8276  0.8164 0.8867 | 0.7168 0.7153  0.8966
k-means++ 0.8583 0.8361 0.8961 | 1.0000 1.0000 1.0000

Mini Batch k-means (RM) | 0.7465 0.6759 0.8167 | 0.6091 0.5137 0.8355
Mini Batch k-means (++) 0.8244 0.8018 0.8798 | 1.0000 1.0000 1.0000

GEV k-means (RM) 09751 09454 0.9344 | 1.0000 1.0000 0.9460
GEV k-means (++) 0.9758 0.9469 0.9370 | 1.0000 1.0000 1.0000
GPD k-means (RM) 09792 09543 0.9418 | 0.8940 0.8916 0.9644
GPD k-means (++) 09794 09547 0.9420 | 1.0000 1.0000 1.0000

online GEV k-means (RM) | 0.9375 0.8705 0.8832 | 0.8505 0.8511 0.9407
online GEV k-means (++) | 0.8478 0.8255 0.8920 | 1.0000 1.0000  1.0000
online GPD k-means (RM) | 0.9530 0.8987 0.8921 | 0.8568 0.8627  0.9400
online GPD k-means (++) 0.9669 0.9286 0.9156 | 1.0000 1.0000 1.0000
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Figure 3: On a dataset of 5 Gaussian clusters with 5000 samples, we analyze our acceleration
method, block size s and the percentage of excess a.

5.5 ABLATION STUDY

In Fig. 3(a)] *for loop’ means that the Euclidean distance is computed on the CPU using a double-
layer nested for loop, and *Tensor GPU’ indicates the use of the acceleration method we proposed.
As shown in Fig. [3(a)l the computational time using the *for loop’ method increases linearly with
the increase of nkd. Compared to *for loop’, using the *Tensor GPU’ method can significantly
accelerate the computation of Euclidean distance for the computational time is almost unchanged
with the increase of nkd. shows that as the block size increases, ACC, ARI, and NMI both
show a sharp drop first, then gradually rise, and finally remain steady. This confirms the Theorem
3.1, the block size should be large enough, then the distribution function F' can approximate the
GEV distribution. In the application, this paper suggests that the block size s > . As shown in
as « increases, ACC, ARI, and NMI show a steady trend. In order to meet the conditions of
Theorem 3.2, o should be relatively small to get a large enough «. In the experiment of this paper,
we set o to 0.1.

6 CONCLUSIONS

This paper introduces Extreme Value Theory into k-means to measure similarity by transforming the
Euclidean space into extreme value space. Based on the strong theoretical support provided by EVT,
this paper proposes Extreme Value k-means, a novel algorithm for the task of k-means clustering.
In view of the bottleneck of k-means, this paper proposes a practical method to accelerate the com-
putation of Euclidean distance. As for streaming data clustering, this paper presents online Extreme
Value k-means that can perform clustering streaming data. We evaluate the performance of our al-
gorithm on synthetic datasets and real datasets. The results show that our algorithm significantly
outperform k-means and k-means++ on all datasets.

10
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