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ABSTRACT

Activation in deep neural networks is fundamental to achieving non-linear mappings.
Traditional studies mainly focus on finding fixed activations for a particular set of
learning tasks or model architectures. The research on flexible activation is quite lim-
ited in both designing philosophy and application scenarios. In this study, we propose
a general combined form of flexible activation functions as well as three principles of
choosing flexible activation component. Based on this, we develop two novel flexible
activation functions that can be implemented in LSTM cells and auto-encoder layers.
Also two new regularisation terms based on assumptions as prior knowledge are pro-
posed. We find that LSTM and auto-encoder models with proposed flexible activations
provides significant improvements on time series forecasting and image compressing
tasks, while layer-wise regularization can improve the performance of CNN (LeNet-5)
models with RPeLu activation in image classification tasks.

1 INTRODUCTION

Deep learning is probably the most powerful technique in modern artificial intelligence (LeCun et al.,
2015a). One reason is its ability in approximating complex functions with a large but limited number
of parameters (Cybenko, 1989; Hornik, 1991), while the regular layer structures make it possible to be
trained with efficient back propagation algorithms (Goodfellow et al., 2016).

In a deep neural network, the weights and bias take account of linear transformation of the data flow,
while the activation functions bring in non-linearity. It is remarked in (Hornik, 1991) that activation
functions do not perform equally well if we take minimal redundancy or computational efficiency into
account. Thus the selection of activation function for different tasks is an issue with importance. Tradi-
tionally, people train the weights of linear transformations between layers while keeping the activation
functions fixed, and usually one identical activation function is used for all the neurons on each single
layer. For example, rectifier linear units (Relu) are used as the default choice for the activation in hidden
units for feed forward units and a large proportion of convolutional neural networks (Nair and Hinton,
2010), while sigmoid and tanh functions are used where output values are bounded, such as in output
layers for classification problems and the gate activations in recurrent cells (Gers et al., 1999; Chung
et al., 2014).

The drawback of Relu activation is the issue of dead unit when the input is negative, which makes
people introduce functions with non-zero values in the negative range, including leaky-Relu and Elu
(Maas et al., 2013; Clevert et al., 2015). On the other hand, explosion or vanishing gradients in back
propagation are also issues that harm the performance of model largely due to the shape of activations
(Bengio et al., 1994; Hochreiter, 1998; Pascanu et al., 2012), while techniques such as clipping and batch
normalization can be implemented to alleviate these issues to some extent (Ioffe and Szegedy, 2015; Lin
et al., 2017).

With a large enough neural network and sufficient training time, the model can effectively learn the
patterns from data with possible high accuracy, however it is not straightforward to confirm that learning
process is the most efficient and the results are the most accurate. One possible solution for accelerating
model training is to introduce flexible or trainable activation functions (Agostinelli et al., 2014; He
et al., 2015; Chung et al., 2016). Even though this requires higher computing and storing cost that is
proportional to the number of neurons, the performance of non-linear activation function can be largely
improved, which could be more efficient than increasing the number of basic model parameters or the
number of neurons.
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There are existing works trying to promote the predictive performance of deep neural networks based on
trainable activation functions. As the Leaky Relu function has a hyper-parameter to be optimized, which
is the slope of its negative part, parameterized Relu (PRelu) was proposed to make this slope adapt to
the data within specific neurons and be learned during the training process (He et al., 2015). Meanwhile,
another study proposes the parameterized version of Elu activation, which introduces two parameters to
control the shape of exponential curve in the negative region (Li et al., 2018).

It can also be a blending of different commonly used activations, where the trainable parameters are
the weights for the combination components (Sütfeld et al., 2018; Manessi and Rozza, 2018). Since
different activation functions can have very similar behavior in some specific regions, a more generative
way is to consider their Taylor expansions at 0 point and use a weighted combination of polynomial
functions with different orders instead (Chung et al., 2016). For containing those functions that are not
centered at 0, one choice is to train a piece-wise function adaptively (Agostinelli et al., 2014). The
similar effect can be achieved by Maxout activation, which is quite helpful in promoting the efficiency
of models with dropout (Goodfellow et al., 2013). Beyond that, there are also studies on making the
most of the non-linear properties by introducing adaptation policy on the input (Flennerhag et al., 2018),
which achieve the former state-of-the-art results on several natural language processing (NLP) tasks.

The limitation of existing studies can be illustrated as follows. First, most of existing work focus on
some specific forms of parameterized activation functions rather than a more general form. Second,
there is a lack of study on flexible versions of bounded activations such as sigmoid and tanh. Third, the
experiments of existing work are mainly on convolutional networks rather than other types of architec-
tures such as recurrent networks and auto-encoder networks. In this study, we consider the activation
function as a combination of a set of functions following the constraints of several principles. Based on
these principles, we develop two novel trainable activation functions that can be introduced to LSTM
cells and auto-encoder architecture with significant performance improvement. In addition, layer-wise
regularization on activation parameters is introduced to reduce the variance caused by activation func-
tions. Correspondingly, we use three experiments to show the goodness of two novel activation functions
and the effect of layer-wise regularization on PRelu activation.

2 METHODOLOGY

2.1 PARAMETERIZED ACTIVATION FUNCTIONS

In this study, we introduce a general form of parameterized activation functions linearly combined from
different types of activation functions or a single activation function with multiple parameters. We
assume that the parameters in the combined activation functions can be different for each neuron, which
can be trained during the main training process of the model parameters with back propagation.

oi(z,α
i,βi) =

K∑
k=1

αikak(z,βik),

K∑
k=1

αi,k = 1 (1)

where i indexes the neuron, and z = zl = WlXl−1 + bl is the input of the activation layer indexed by
l. This means that, at each neuron i, it is possible to have its own set of parameters αi = [αi1, ..., αiK ]T

and βi = [βi1, ...,βiK ] where αik is the combination weights and βik is the activation parameter vector
for the k-th component activation ak, respectively. Thus Eq. (1) defines a form of activation function as
a linear combination of a set of basic parameterized non-linear activation functions ak(z,βk) with the
same input x to the neuron. Normally, we have 0 ≤ αi,k ≤ 1 for all k and i. This setting will take
advantage of the low computational costs of existing activation functions, while it will be much easier
to implement weights normalization when we need a bounded activation function.

Since the specific activation function corresponding to each neuron only depends on its own activation
parameters, the back propagation of these activation parameters by stochastic gradient descent can be
done as follows:

αik → αik − γ
∂L

∂αik
→ αik − γ

∂L

∂oi
· ∂oi
∂αik

= αik − γ
∂L

∂oi
· aik(z,βik)

βik → βik − γ
∂L

∂βik
→ βik − γ

∂L

∂oi
· ∂oi
∂βik

= βik − γ
∂L

∂oi
· αik

∂aik(z,βik)

∂βik

(2)

where i is the index of the hidden neuron with output oi and k is the index of combined flexible activation
functions. Here we use a simplified expression that does not include the indices of layer and training
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examples in each mini-batch. γ is the learning rate of gradient descent for all the parameters in activation
functions. With the gradients given by ∂L/∂αik, adaptive optimizers such as AdaGrad (Duchi et al.,
2011), Adam (Kingma and Ba, 2014) and RMSProp (Tieleman and Hinton, 2017) can also be applied.
In general, gradient descent approach and its derivatives can push the activation parameters toward the
direction that minimizes the empirical risk of the model on training data. In practice, considering the
different nature of basic model parameters such as weights and biases and activation function parameters,
it could be more appropriate to implement different learning rates for each of them. However, this will
increase the load of hyper-parameter searching.

To build effective combinations with the general form given by Eq. (1), we introduce the following three
principles for selecting the components:

• Principle 1: Each component should have the same domain as the baseline activation function.
• Principle 2: Each component should have a larger or equal range as the baseline activation function.
• Principle 3: Each component activation functions should be expressively independent of other com-

ponent functions with the following definition.

Definition 1: If a component activation function ak is expressively independent of a set of other
component functions: a1, ..., an, there does not exist a set of combination coefficients α1,...,αn, inner
activation parameters β1,...βn, parameters of the previous linear layers W ′, b′ such that for any input
X , activation parameters βk, and parameters of the previous linear layerWk, bk, the following equation
holds:

ak(zk,βk) = ak(WkX + bk,βk) =

n∑
i=1

αiai(W
′X + b′,βi) =

n∑
i=1

αiai(z
′,βi) (3)

Theorem 1: For a single-layer network with m neurons, if a component activation function fk, which is
not expressively independent of other components, is excluded, we need at most 2m neurons to express
the same mapping.

The first two principles are aiming at keeping the same ranges and domains of the information flow with
the mapping in each layer. The third principle is aiming at reducing the redundant parameters that do not
contribute to the model expressiveness even with limited number of units. A short proof of Theorem is
provided in Appendix A.1. For example, σ1(z) = 1/(1 + e−βz) is not expressively independent with
σ(z) = 1/(1 + e−z) since whenW ′ = βW , we have σ(W ′X) = σ1(WX). Therefore, the combined
activation a(z, β) = α1σ(z) + (1 − α1)σ(βz) will not be a good choice. Based on this, we can then
design the combined trainable activation functions for both bounded or unbounded domains.

2.2 SIGMOID/TANH FUNCTION EXTENSION FOR RNNS

Sigmoid and Tanh activation functions are widely used in recurrent neural networks, including basic
recurrent nets and recurrent nets with cell structure such as LSTMs and GRUs (Gers et al., 1999; Joze-
fowicz et al., 2015; Goodfellow et al., 2016). For example, an LSTM cell has the functional mapping as
follows:

ft = σ(Wfxxt +Wfhht−1 + bf )

it = σ(Wixxt +Wihht−1 + bi)

ot = σ(Woxxt +Wohht−1 + bo)

gt = tanh(Wgxxt +Wghht−1 + bg)

ct = ft ∗ ct−1 + it ∗ gt
ht = ot ∗ tanh(ct)

(4)

The cell structure includes multiple sigmoid and tanh activation functions, which can be replaced by
weighted flexible combination between the original one and another activation function with the same
domain. For the sigmoid function, the output should be in the domain of [0, 1], while for tanh the output
should be in [−1, 1]. In the first case, one simple choice is:

o(z;α, β) = α · σ(z) + (1− α) · f(z;β) (5)

where 0 ≤ α ≤ 1 and

f(z;β) =


0 if z < − 1

2β

βz + 1
2 if − 1

2β ≤ z ≤
1
2β

1 if z > 1
2β

(6)
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In Eq. (5), f(z;β) can be considered as a combination of two Ramp functions bounded between 0 and 1
with parameter b. The shapes of a sample of combined activation with Eq. 5 are shown in Appendix A.3.
Similarly, we can build a function with the same boundary as tanh function, and use the corresponding
combination to replace tanh in the LSTM cell. Consequently, for each combined flexible activation
function, there are two parameters to be optimized during the training process. By combining the original
activation function σ with another function f(z;β) with the same boundary using normalized weights,
the model can be trained with flexible gates and have the potential to achieve better generalization
performance.

2.3 RELU FUNCTION EXTENSION FOR MLPS AND CNNS

The outputs of ReLu function is unbounded on positive side, while the derivative with respect to the
inputs is a Heaviside step function. To build more flexible activation in the condition when ReLu func-
tion is used, we can make a weighted combination between Relu and other non-linear functions with
unbounded ends. In the simplest case, we can make a weighted linear combination between ReLu func-
tion, z3 and z1/3, which can be written as:

o(z;α1, α2) = α1ReLu(z) + α2z
3 + (1− α1 − α2)z1/3 (7)

where α and β are two parameters to be learned with back propagation. By merging basic Relu activation
and two functions that are expressively independent with other components, such as z3 and z1/3, the
model could have the potential to learn non-convexity with much less hidden units. In addition, for very
deep networks, the combination of ReLu-like function and smooth non-ReLu function could facilitate
the information propagation in considering the Edge of Chaos (EOC) (Hayou et al., 2019).

2.4 LAYER-WISE REGULARISATION FOR ACTIVATION PARAMETERS

Similar to the weights decay regularisation for model weights in NN models, we introduce regularisa-
tion terms for parameters in activation functions to avoid over-parameterization during learning process.
When we set the summation of each component’s weights in each flexible activation function to 1, it
is not suitable to implement a L1 or L2 norm on the absolute value of activation weights. Instead, we
use the L2 norm for the absolute difference between each specific activation parameter and the mean of
corresponding parameters in the same layer. In addition, we introduce another L2 regularisation term
controlling the difference between the trained parameters and the initial parameters of benchmark acti-
vation function. This can make sure that the benchmark is actually a specific case of flexible activation,
while the variations can be learned to adapt to the training dataset and controlled by these regularisation
effects. Thus, the cost function can be written as follows:

Cost function =Predictive Loss + δ1
∑
j

λj
2mj

∑
i

∑
k

||αijk − ᾱjk||2 + δ2
∑
i

∑
j

∑
k

||αk0 − αijk||2

+ other terms
(8)

where αijk refers to the kth activation parameter αk for ith element in jth layer, ᾱjk is the average value
of αk in jth layer, αk0 is the combination coefficient of kth component in basic or standard activation
functions (e.g. ReLu), mj is the number of neurons in jth layer, while λj is the layer-wise regularisation
coefficients, and δ is mutual coefficient. We can consider these two regularization terms as prioris. For
the first one, since in the layer structure of deep neural networks, usually different layer is learning
different level of patterns, which could be in favor of using similar activation functions in each layer.
Meanwhile, the second regularization terms can be considered as another priori in assuming that the
initial activation functions are good enough and the learned activation parameters should not differ too
much from the initial values.

3 EXPERIMENTS

3.1 EXPERIMENT WITH RECURRENT NEURAL NETWORKS

For testing the performance of the model with flexible activation in recurrent neural networks, we build
a multiple-layer LSTM model. We change the three sigmoid functions in Eq. (4) to the parameterized
combined function as shown in Eq. (5), then compare the model performances in the cases with or
without flexible activations.
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The dataset being experimented on is a combination of daily stock returns of five G20 countries including
Brazil, Canada, India, China and Japan from 02 Jan, 2009, which is a multi-variate time series data. The
five returns of each day can be considered as an input vector to the corresponding hidden unit, while the
output is one-step ahead forecast given a sequence of historical data. Instead of using random sampling,
we directly split the set of sequences with 30 lagging vectors into training set (64%), validation set
(16%) and test set (20%), while the learning curve on validation set can be obtained during the training.
The loss is selected as the average of mean squared errors of 5 forecasted values with respect to the
true values for each example. For the hyper-parameter setting, the batch size was set to be 50, the
window size is 10 time steps, the number of epochs is 30, while the optimizer implemented in training
is Adam optimizer with the same learning rate on both weights, bias and activation parameters. The
initialization of the flexible activation parameters in replacing sigmoid function is α = 1 and β = 0.1,
which means that we train them from basement settings. Four stacked LSTM models with different layer
configurations are implemented, then we compare the validation and test performances of these models
with fixed and flexible activations by 100 trails with different random initializations for each of them.

We introduce the regularizer proposed in Section 2.4 and tune the corresponding weight decay coefficient
δ for flexible activation parameters. First, for each configuration of layer size, we search for the optimal
values of learning rates from 1000 random samples in the range of [0.001, 0.2] with logarithm sale
when the fixed activation functions are used. Based on these optimized learning rates for fixed models,
we further search for the optimal regularization coefficients for flexible activation functions from the
logarithm sale of range [0.001, 0.1] with 30 random samples. The optimal values of the learning rates and
the regularization coefficients for activation parameters are listed in Table 1. Here we do provide benefit

Table 1: Summary of hyper-parameter settings for LSTMs in the experiment

Model Layer size Params Learning rates Regularization (act)

LSTM-1 [5, 16] 1408 6.71E-3 2.50E-1
LSTM-2 [5, 8, 4, 4] 800 3.47E-3 2.50E-1
LSTM-3 [5, 16, 8] 2208 1.93E-2 2.50E-1
LSTM-4 [5, 16, 16] 3520 4.32E-3 2.50E-1

to fixed models by using their optimal learning rates in the corresponding flexible models. Meanwhile,
to avoid too much extra computational cost paid to flexible models, we use the optimized activation
regularization coefficients of LSTM-1 to all the models. Moreover, we use different configurations of
layer size to compare models with different capacity to some level.

As is shown in Figure 1, the learning curves of model with flexible activation functions (denoted as
“flexible models”) on validation set lie below the corresponding curves of models with fixed activation
functions (denoted as “fixed models”) during most of learning time. Still we consider the average of
minimum validation loss during the learning process in each configuration. The descriptive statistical
analysis of 100 trails in each setting is shown in Table 2.

Table 2: Summary table of stock indices forecasting with Stacked LSTM

Model Data Fixed Flexible Flexible (Regularized)

LSTM-1
validation 1.747E-4 (1.7E-7) 1.747E-4 (1.5E-7) 1.746E-4 (1.4E-7)

test 7.954E-5 (8.1E-7) 7.872E-5 (8.1E-7) 7.724E-5 (4.8E-7)

LSTM-2
validation 1.823E-4 (1.9E-7) 1.804E-4 (2.8E-7) 1.809E-4 (3.1E-7)

test 8.092E-5 (7.7E-7) 7.811E-5 (5.8E-7) 7.841E-5 (5.3E-7)

LSTM-3
validation 1.780E-4 (2.5E-7) 1.771E-4 (2.3E-7) 1.770E-4 (2.2E-7)

test 8.046E-5 (9.3E-7) 7.939E-5 (6.2E-7) 7.794E-5 (5.1E-7)

LSTM-4
validation 1.771E-4 (2.1E-7) 1.756E-4 (2.5E-7) 1.757E-4 (1.9E-7)

test 7.925E-5 (7.0E-7) 7.920E-5 (6.9E-7) 7.919E-5 (5.9E-7)

We can see that in all the configurations of layer size, flexible models outperforms fixed models in terms
of minimum validation error and the test error. Especially in the best-performed case with layer size of
[5, 16], which is neither the largest or the smallest in terms of the number of parameters, the regularized
flexible model achieves an average minimum validation error of 1.746E-04, significantly outperforms all
the other models evaluated in this experiment. Further pair-wise statistical tests with normal assumption
give p-values between 10−2 ∼ 10−6. Meanwhile, this model has only 6.82% more parameters compared
with the corresponding fixed model as is calculated in A.3, which is still much smaller than the poorly
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Figure 1: Comparison between the average learning curves (with error bars) of LSTM models with and
without regularized flexible activation functions on Multi stock indices return data in forecasting multi-
variate return. (a) Two-layer LSTM model with layer sizes: [5, 16, 8]; (b) Three-layer LSTM model with
layer sizes: [5, 8, 4, 4]; (c) One-layer LSTM model with layer sizes: [5, 16]; (d) Two-layer LSTM model
with layer sizes: [5, 16, 16].

performed ones with larger sizes in this experiment. Moreover, this performance improvement can also
be observed in further experiments on other combinations of stock indices. Another randomly drawn
combination is investigated in A.4.2.

3.2 EXPERIMENT WITH DEEP AUTO-ENCODER

The deep auto-encoder based on neural networks is widely implemented in data compression and dimen-
sion reduction (Baldi, 2012; Goodfellow et al., 2016). In this experiment, we use two fully connected
auto-encoder networks, for which both the encoder and decoder have three hidden layers. The difference
between these two basement models is the sizes of two layers in each of the encoder and decoder. The
following are the flow graphs of these two models.

Input(28*28)→ Linear(28*28, 128) ReLu−−−→ Linear(128, d1) ReLu−−−→ Linear(d1, 12)
ReLu−−−→ Linear(12, d2)→ Coding→ Linear(d2, 12) ReLu−−−→ Linear(12, 64) ReLu−−−→

Linear(64, 128) ReLu−−−→ Linear(128, 28*28)→ Output(28*28)

(9)

Here we use d1 and d2 to denote the layer sizes differ in two models. For the first model “AE1”,
d1 = 36 and d2 = 6, while for the second model “AE2”, d1 = 64 and d2 = 3. For models with
flexible activation, we replace the ReLu activation function with the parameterized function shown in
Eq.(9), as well as the existing PReLu activation (He et al., 2015). To avoid adding too many extra
parameters, we only introduce flexible activation functions in the 3th and 4th ReLu layes in AE1, while
for AE2, they are only introduced in the 2th and 5th ReLu layers. In each trail, we randomly sampled
4,800 training examples, other 1,200 validation examples from 60,000 training examples in the original
MNIST dataset, and evaluate the model by the whole 10,000 test examples. The batch size was set to

6



Under review as a conference paper at ICLR 2020

0 10 20 30 40 50
(a) Time Step (AE 1)

0.030

0.035

0.040

0.045

0.050

0.055

0.060

av
er

ag
e 

re
co

ns
tru

ct
io

n 
er

ro
r (

M
SE

) ReLu
PReLu
Flexible

0 10 20 30 40 50
(b) Time Step (AE 2)

0.040

0.045

0.050

0.055

0.060 ReLu
PReLu
Flexible

Figure 2: Comparison between the average learning curves (with error bars) of auto-encoder models
with and without regularized flexible activation functions on MNIST dataset.

100 and the learning rates of Adam are optimized based on the validation performance of the basement
models, which is set to be 0.00645. The training curves are averaged by 50 trails, and the results is
demonstrated in Figure 2.

As we can see, for both the two auto-encoder architectures, flexible models out-perform the fixed ones
with stable performances. In AE2, the newly proposed activation function significantly outperform
PReLu in almost all the epochs, where the flexible activations are added in 2th and 5th ReLu layers.
Table 3 gives the corresponding summary for comparing both the validation and test performances
of these configurations. It is shown that the test cost and minimum validation cost of flexible models

Table 3: Comparison of auto-encoder models with and without flexible activation functions

Model Params Data ReLu PReLu Flexible

AE1 212,070
validation 3.511E-2 (9.7E-4) 3.106E-2 (2.6E-4) 3.120E-2 (1.9E-4)

test 3.519E-2 (9.9E-4) 3.108E-2 (2.7E-4) 3.122E-2 (1.9E-4)

AE2 219,891
validation 3.898E-2 (6.6E-4) 3.877E-2 (6.6E-5) 3.708E-2 (7.8E-5)

test 3.960E-2 (6.5E-3) 3.948E-2 (6.9E-5) 3.770E-2 (6.9E-5)

are generally better than that of fixed models with statistical significance in both the two stacked auto-
encoder architectures. This advantage can be justified by the results on the test set. The performance of
AE1 is generally better since the length of encoded vector is 6 rather than 3 as in AE2. Meanwhile, the
flexible models has only less than 0.03% extra amount of parameters compared with the corresponding
fixed ones. Further experiments demonstrated in A.4.3 show that flexible auto-encoder models with 5
encoder layers and 5 decoder layers also outperform fixed models.

3.3 EXPERIMENTS WITH CONVOLUTIONAL NEURAL NETWORK (LENET-5)

This experiment investigates the performance of layer-wisely regularized PRelu function in CNNs, it is
done with LeNet-5 on CIFAR-10 for image classification (LeCun et al., 2015b; He et al., 2015). The
model architecture is shown as follows:

Input(32*32*3)→ Conv2d(3, 6, 5) ReLu−−−→ MP(2)→ Conv2d(6, 16, 5) ReLu−−−→ MP(2)

→ Linear(16*5*5, 120)
BN, ReLu−−−−−→ Linear(120, 84)

BN, ReLu−−−−−→ Linear(84, 10)→ Output
(10)

where “MP” refers to max-pooling layer, while “BN” refers to batch normalization. In flexible models ,
we only replace the ReLu activation in the last layer with (6). In each trail, we still randomly sample 20%
of the training set in CIFAR-10 as validation set and use the whole remaining 80% as the training data.
The whole test set in CIFAR-10 are used as the test set in our experiment as well. With a naive random
search, the optimized learning rate for fixed model is 0.0012, while the regularization coefficients for
the parameter based on this learning rate in flexible is 0.032. Meanwhile, the batch size is still set to be
100.
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The average cross-entropy loss on validation set during the training whole time of 10 epochs is given
by Figure 3. We can see that the average loss curve of PReLu with layer-wise regularization is almost
always below the curve of fixed ReLu and PReLu without regularization, while all the three sets of
models are over-fitted after 8th epoch. To check the significance, the corresponding summary statistics
for 50 trails is shown in Table 4, where the test results are given by accuracy in classification.

We can see that in Table 4, the average minimal validation cross-entropy loss of regularized flexible mod-
els still achieves significant improvement compared with fixed ones (ReLu) and flexible model without
regularization (PReLu). Even though the mean accuracy of fixed model seems to be slightly better with
batch normalization, it is quite insignificant considering the standard errors. Since the stopping time
(10 epochs) is not optimized for both models, this does not make much sense considering the existence
of over-fitting. The significant validation results indicate that layer-wise regularization on activation
parameters could provide an improvement on models with flexible activation functions even in finely
designed benchmark architectures such as LeNet-5.
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Figure 3: Comparison between the average learning curves (with error bars) of CNN models (LeNet-5)
with and without regularized flexible activation functions on CIFAR-10 dataset.

Table 4: Comparison of ReLu, PReLu and PReLu with Layer-wise Regularization in LeNet-5

Model Params Data ReLu PReLu PReLu reg

LeNet-5 61,706
validation 1.084 (5.7E-3) 1.0796 (4.6E-3) 1.075 (4.7E-3)
test (acc) 62.35 (2.0E-1) 62.39 (1.7E-1) 62.67 (1.6E-1)

LeNet-5 (BN) 62,522
validation 1.086 (5.9E-3) 1.083 (4.9E-3) 1.072 (4.9E-3)
test (acc) 62.53 (2.3E-1) 62.36 (2.0E-1) 62.48 (1.7E-1)

4 CONCLUSION

In this study, we proposed a set of principles for designing flexible activation functions in a weighted
combination form. Especially, we developed a novel flexible activation function that can be implemented
to replace sigmoid and tanh functions in the RNN cells with bounded domains, as well as an alterna-
tive one to replace ReLu or PReLu activation in architectures with unbounded domains. In addition,
two regularization terms considering the nature of layer-wise feature extraction and goodness of original
activation functions are proposed, which is essential in achieving stable improvement of the models. Ex-
periments on multiple time series forecasting show that, with replacing sigmoid activation by the flexible
combination proposed in this study, stacked LSTMs can achieve significant improvement. Meanwhile,
another proposed flexible combination could significantly improve the performance of auto-encoder net-
works in image compression. Further experiments indicate that the models with moderately optimized
regularized coefficients could also improve the performance of PReLu in CNN (LeNet-5) architectures
for image classification. In future studies, it is worthwhile to investigate other flexible activations in com-
bined form based on the proposed framework and principles in this paper, while theoretical justification
of the goodness or effectiveness of these activation functions is also a topic of interest.
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A APPENDIX

A.1 EXPRESSIVELY INDEPENDENT

Definition 1: If a component activation function fk is expressively independent of a set of other compo-
nent functions: f1, ..., fn, there does not exist a set of combination coefficients α1,...,αn, inner activation
parameters β1,...βn, parameters of the previous linear layersW ′, b′, such that for any inputX , activation
parameters of function βk, and parameters of the previous linear layer: Wk, bk, the following equation
holds:

fk(WkX + bk, βk) =

n∑
i=1

αifi(W
′X + b′, βi) (11)

Theorem 1: For a single-layer network with m neurons, if a component activation function fk, which
is not expressively independent of other component functions, is excluded, we need at most 2m neurons
to express the same mapping.

Proof: For any original combined activation function: F =
∑n
i=1 αifi. Assume that fk is not

expressively independent. If we exclude fk from the combination and get F ′ =
∑n
i=1,i6=k αifi, then

for any input X , parameters of the previous linear layer: W , b, and activation parameters: {β}ni=1 of a
specific neuron, we have:

F (WX + b, β) =

n∑
i=1,i6=k

αifi(WX + b, βi) + fk(WX + b, βk) (12)

and there exist W ′, b′ and {β}ni=1,i6=k such that:

F (WX + b, β) =

n∑
i=1,i6=k

αifi(WX + b, βi) +

n∑
i=1,i6=k

α
′

ifi(W
′X + b′, β

′

i) (13)

which can be expressed by two neurons with function {f}ni=1,i6=k with corresponding weights and bias
in the previous linear layer. Therefore, for a single-layer network with m neurons, we need at most 2m
neurons without fk to express the any mappings by the original function.

A.2 THE SHAPES OF COMBINED FLEXIBLE ACTIVATION FUNCTIONS

A.3 CALCULATING THE NUMBER OF PARAMETERS

When batch-normalization is not implemented, the number of parameters in each deep neu-
ral network is equal to the number of weighs plus the number of bias. For an FFNN,
N = NW + Nb = ΣL−1i=1 nini+1 + ΣLi=2ni, where L is the number of layers including input
layer, hidden layer and output layer, while ni is the number of units in ith layer. If flexible ac-
tivations are introduced in all hidden and output units, with two independent extra parameters in
each unit, the total number of model parameters will increase by Na = 2

∑L
i=2 ni. The number

of parameters in basic RNN models is depend on the type of hidden cells used, in general it is
N = g

∑L−1
i=1 (ni+1(ni+1 + ni) + ni+1), where g is the number of weight matrices in each cell. For

basic RNN, g = 1, for GRU, g = 3, and for LSTM, g = 4. Meanwhile, the extra number of parameters
needed for RNNs with flexible activations is Na = 2

∑K
i=2 sini, where si is the number of activation

functions replaced by flexible ones in ith layer.

Following this derivation, in the LSTM models used in Section 3, we can make a summary table
for the increasing ratio of model parameters in each case. As shown in Table 5, we can see that the

Table 5: Comparison of number of parameters in different settings of LSTM models.

model layer size basic model flexible activa-
tion

ratio of in-
crease

1 [5, 16, 8] 2208 144 6.52%
2 [5, 8, 4, 4] 800 96 12.00%
3 [5, 16] 1408 96 6.82%
4 [5, 16, 16] 3520 192 5.45%
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Figure 4: The shapes of combined activation function proposed in Section 2.2 with different set of
parameters.

models with flexible activations have about 5% to 10% increase in the number of parameters. However,
it is shown in Table 6 that model 1, model 3 and model 4 have very similar validation performances
during training even though their number of parameters varies in much higher (even more than 100%)
proportions, while the corresponding validation performances for models with flexible activations are
better than all the models with fixed activations.

Similarly, in Table 2, the best performed model with layer size [5, 18] has a single hidden layer
and the number of parameters is between the model with layer sizes [5, 16, 8] and [5, 8, 4, 4]. Therefore,
the number of parameters does not really matters in this range when we consider the minimum
validation performance in a long training time, and the improvement of model performance can be
explained by the advantage of introducing flexible activation with trainable parameters.

For the two deep auto-encoder models studied in Section 3.3, the number of basic model pa-
rameters can be calculated with the formula as same as feed-forward neural network, which is:
N = NW + Nb = ΣL−1i=1 nini+1 + ΣLi=2ni. Based on the layer structure shown in Eq. (9), the deep
auto-encoder model AE2, for example, has 219,891 basic parameters. Meanwhile, the extra parameters
in flexible activation functions is 48, which is only 0.022% of the basic parameters.

For the CNN Lenet-5 model in Section 3.3, the basic model parameters include those in convo-
lutional layers as well as those in full connected layers. The number of parameters of each convolutional
neural network is: Nc = (n ∗ n ∗ l + 1) ∗ k, where n is the filter size, while l and k represent the input
and output feature maps. The total number of two convolutional layers in Eq. (10) is 2,572, and the
number of parameters in fully connected layers is 59,134, giving a total number of 61,706 parameters in
our Lenet-5 model. For model with batch normalization, the number of batch normalization parameters
is 4*(120+84) = 816, and the total number of parameters is 61,706 + 816 = 62,522. In addition, for
flexible models, the extra activation parameters introduced into the second last layer is 84*2=168,
which is only about 0.13% of the total number of basic parameters.

To sum up, the results at least show that we can achieve a quite significant performance improvement
with only a small proportion of extra parameters in the flexible activation functions. Although the
same mapping may be learned without flexible activation functions, it may need much more number

12
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of parameters or much larger effort of hyper-parameter searching with a bunch of different model
architectures.

A.4 EXTENDED EXPERIMENTAL RESULTS

A.4.1 FORECASTING UNI-VARIATE TARGET WITHOUT REGULARISATION ON ACTIVATION
PARAMETERS

In the first experiment for LSTM model on multi-variate financial time series data, we focus on the case
when the target is uni-variate. Here we choose the one-step-ahead daily return of Brazil index as the
target to be predicted, while the indices of other four countries in the dataset are used as predictors along
with the historical data of the target. To avoid the uncertainty caused by different hyper-parameters for
different models, we use the recommended learning rate of 0.01 for Adam optimizer for all the models
in this experiment. In addition no regularizer for flexible activations is added in this stage, which will
be considered later.
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Figure 5: Comparison between the learning curve of LSTM model with and without flexible activation
functions on Multi stock indices return data in forecasting uni-variate return. (a) Two-layer LSTM
model with layer sizes: [5, 16, 8]; (b) Three-layer LSTM model with layer sizes: [5, 8, 4, 4]; (c) One-
layer LSTM model with layer sizes: [5, 16]; (d) Two-layer LSTM model with layer sizes: [5, 16, 16].

The result for learning curve of recurrent neural networks for multiple time series stock indices
data is shown in Figure 5. We find that for all stacked LSTM models with different layer configurations,
the version with flexible activations outperforms the version with fixed activation in most of the
learning time. To understand the significance of the improvement, we perform two statistical tests by
assuming the validation performance of the model with different random initialization following normal
distributions.
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Table 6: Summary table of stock indices forecasting with Stacked LSTM

model Layer size
Fixed Activation Flexible Activation

p-valuemean of min S.E. mean of min S.E.

1 [5, 16, 8] 2.194E-04 1.77E-07 2.185E-04 1.91E-07 8.173E-03
2 [5, 8, 4, 4] 2.272E-04 9.09E-07 2.228E-04 7.47E-07 8.311E-05
3 [5, 16] 2.191E-04 1.77E-07 2.186E-04 1.91E-07 4.507E-02
4 [5, 16, 16] 2.193E-04 1.26E-07 2.187E-04 1.27E-07 2.632E-04

It is shown in Table 6 that the averages of minimum validation cost by using stacked LSTM
with flexible activation are significantly smaller than that with fixed activation in terms of stock indices
forecasting. On the other hand, we find that their costs after 30 epochs on test set both outperform
traditional ARIMA models in on the same dataset (Asteriou and Hall, 2011; Ariyo et al., 2014), which
is 0.0002217. In terms of the standard errors, it does not show that one of these two set of models are
more robust to the noise in initialization than the other.

Table 7: Comparison between different forecasting methods on test set

model RW ARIMA(5,1,0)
LSTM fixed LSTM flexible

mean S.E. mean S.E.

test mse 3.030E-04 2.217E-04 1.669E-04 3.173E-06 1.644E-04 2.18E-06

Table 7 shows the performances of different forecasting methods on test set, where the stacked
LSTM models with flexible activations outperforms other methods including Naive random walk,
ARIMA(5, 1, 0) and LSTM with fixed activations, in terms of the average test MSE for the whole 200
trails. However, since the test results of LSTM model is based on the model after 30 epochs rather than
the optimal number of epoch during the training, the performance of LSTM with flexible activations is
not significantly lower than that of fixed activations considering both the means and standard errors.

Table 8: Summary table of stock indices forecasting with Stacked LSTM

model Layer size
Fixed Activation Flexible Activation

p-valuemean of min S.E. mean of min S.E.

LSTM-1 [5, 16, 8] 1.980E-04 1.55E-06 1.972E-04 2.39E-06 2.47E-02
LSTM-2 [5, 8, 4, 4] 2.006E-04 6.91E-07 1.998E-04 2.07E-06 4.91E-03
LSTM-3 [5, 16] 1.916E-04 6.39E-07 1.913E-04 4.89E-07 5.03E-03
LSTM-4 [5, 16, 16] 1.933E-04 1.56E-06 1.918E-04 1.12E-06 3.88E-08

A.4.2 LSTM WITH A DIFFERENT COMBINATION OF STOCK INDICES

In the extended experiment on multiple stock indices forecasting with LSTM, we selected a combination
of four different stock indices including indices of British, Australia, Korea and Russia. We do the ex-
periment with two different window sizes (10 and 30), while the regularization coefficients for activation
parameters are not optimized on the new dataset and window size. The corresponding results are shown
in Figure 7 and Table 9.

A.4.3 5-LAYER AUTO-ENCODER

This is for checking the robust of flexible auto-encoder models with deeper architecture. The diagram
of data flow is shown as follows.

Input(28*28)→ Linear(28*28, 128) ReLu−−−→ Linear(128, 64) ReLu−−−→ Linear(64, 36)
ReLu−−−→ Linear(36, 12) ReLu−−−→ Linear(12, 6)→ Coding→ Linear(6, 12) ReLu−−−→ Linear(12, 36) ReLu−−−→

Linear(36, 64) ReLu−−−→ Linear(64, 128) ReLu−−−→ Linear(128, 28*28)→ Output(28*28)
(14)
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Figure 6: Comparison between the average learning curves (with error bars) of LSTM models with
and without regularized flexible activation functions on Multi stock indices return data in forecasting
multi-variate return.

Table 9: Summary table of stock indices forecasting with Stacked LSTM

Model
Window Size

Data Fixed Flexible Flexible (Regularized)

LSTM-1
10 validation 1.552E-4 (1.6E-7) 1.549E-4 (1.4E-7) 1.549E-4 (1.2E-7)
10 test 7.863E-5 (1.0E-6) 7.871E-5 (1.3E-6) 7.774E-5 (1.4E-6)

LSTM-1
30 validation 1.682E-4 (3.3E-8) 1.692E-4 (3.9E-7) 1.681E-4 (3.3E-7)
30 test 7.780E-5 (6.0E-7) 7.661E-5 (3.1E-7) 7.761E-5 (4.9E-7)

Here we still introduce two models: AE3 and AE4. In AE3, flexible activations are added to replace the
3th and 6th ReLu in Eq. 14, while in AE4, flexible activations are added to replace the 4th and 5th ReLu.
The experimental results are shown in Figure 8 and Table 10.

Table 10: Comparison of auto-encoder models (5-layer) with and without flexible activation functions

Model Params Data ReLu PReLu Flexible

AE3 223,974
validation 3.481E-2 (3.1E-4) 3.427E-2 (4.0E-4) 3.351E-2 (3.2E-4)

test 3.471E-2 (3.3E-4) 3.408E-2 (4.2E-4) 3.337E-2 (3.3E-4)

AE4 223,974
validation 3.799E-2 (7.0E-4) 3.496E-2 (3.9E-5) 3.521 (2.6E-4)

test 3.744E-2 (7.0E-4) 3.436E-2 (3.9E-5) 3.460E-2 (2.5E-4)
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Figure 7: Comparison between the average learning curves (with error bars) of LSTM models with
and without regularized flexible activation functions on Multi stock indices return data in forecasting
multi-variate return. (a) layer size [4, 16], window size 10; (b) layer size [4, 16], window size 30
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Figure 8: Comparison between the average learning curves (with error bars) of auto-encoder models
with and without regularized flexible activation functions on MNIST dataset (5-Layer).
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