
Under review as a conference paper at ICLR 2020

ACTOR-CRITIC APPROACH FOR TEMPORAL PREDIC-
TIVE CLUSTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to the wider availability of modern electronic health records (EHR), patient
care data is often being stored in the form of time-series. Clustering such time-
series data is crucial for patient phenotyping, anticipating patients’ prognoses by
identifying “similar” patients, and designing treatment guidelines that are tailored
to homogeneous patient subgroups. In this paper, we develop a deep learning ap-
proach for clustering time-series data, where each cluster comprises patients who
share similar future outcomes of interest (e.g., adverse events, the onset of comor-
bidities, etc.). The clustering is carried out by using our novel loss functions that
encourage each cluster to have homogeneous future outcomes. We adopt actor-
critic models to allow “back-propagation” through the sampling process that is
required for assigning clusters to time-series inputs. Experiments on two real-
world datasets show that our model achieves superior clustering performance over
state-of-the-art benchmarks and identifies meaningful clusters that can be trans-
lated into actionable information for clinical decision-making.

1 INTRODUCTION

Chronic diseases – such as cystic fibrosis, dementia, and diabetes – are heterogeneous in nature,
with widely differing outcomes even in narrow patient subgroups. Disease progression manifests
through a broad spectrum of clinical factors, collected as a sequence of measurements over time in
electronic health records (EHR), which give a rise to the discovery of complex progression patterns
among patients (Samal et al., 2011). For example, cystic fibrosis evolves over a long timespan, al-
lowing for the development of related comorbidities and bacterial infections, and creating distinct
behaviors/responses to therapeutic interventions, which in turn make the survival and quality of life
substantially different (Ramos et al., 2017). Identifying patient subgroups with similar progression
patterns can be advantageous for understanding such heterogeneous underlying diseases. This al-
lows clinicians to anticipate patients’ prognoses by comparing “similar” patients for the purpose of
designing treatment guidelines that are tailored to homogeneous patient subgroups (Zhang et al.,
2019).

Temporal clustering has recently been used as a data-driven framework to partition patients with
time-series observations into a set of clusters (i.e., subgroups of patients). Recent research has
typically focused on either finding fixed-length and low-dimensional representations (Zhang et al.,
2019; Rusanov et al., 2016) or on modifying the similarity measure (Giannoula et al., 2018; Luong
and Chandola, 2017) both in an attempt to apply conventional clustering algorithms (e.g., K-means
(Lloyd, 1982)) to time-series observations. However, clusters identified from these approaches these
approaches are purely unsupervised – they do not account for each patient’s observed outcome (e.g.,
adverse events, the onset of comorbidities, etc.) – which leads to heterogeneous clusters if the clin-
ical presentation of the disease differs even for similar patients. Thus, a common prognosis in each
cluster remains unknown which can mystify the understanding of the underlying disease progression
(Boudier et al., 2019). For instance, patients who appear to have similar time-series observations
may develop different sets of comorbidities in the future which, in turn, require different treatment
guidelines to reduce such risks (Wami et al., 2013). To overcome this limitation, we focus on pre-
dictive clustering (Blockeel et al., 2017) which combines prediction with clustering. Therefore, the
cluster assignments are optimized such that patients in a cluster share similar future outcomes to
provide a prognostic value.

1

Under review as a conference paper at ICLR 2020

In this paper, we propose an actor-critic approach for temporal predictive clustering, which we call
AC-TPC.1 Our model consists of three neural networks – an encoder, a selector, and a predictor –
and a set of centroid candidates. In particular, the encoder maps an input time-series into a latent
encoding; the selector utilizes the encoding and assigns a cluster to which the time-series belongs
to via a sampling process; and the predictor estimates the future outcome distribution conditioned
on either the encoding or the centroid of the selected cluster. The following three contributions
render our model able to identify the predictive clusters. First, to encourage each cluster to have
homogeneous future outcomes, we define a clustering objective based on the Kullback-Leibler (KL)
divergence between the predictor’s output given the input time series, and the predictor’s output
given estimated cluster assignments. Second, we transform solving the non-trivial combinatorial
problem of identifying cluster into iteratively solving two sub-problems: optimization of the cluster
assignments and optimization of the cluster centroids. Finally, we allow “back-propagation” through
the sampling process by adopting the training of actor-critic models (Konda and Tsitsiklis, 2000).

Throughout the experiments, we show significant performance improvements over the state-of-the-
art clustering methods on two real-world medical datasets. Then, to demonstrate the practical sig-
nificance of our model, we consider a more realistic scenario where the future outcomes of interest
are high-dimensional – such as, development of multiple comorbidities in the next year – and inter-
preting all possible combinations is intractable. Our experiments show that the proposed model can
identify meaningful clusters that can be translated into actionable information for clinical decision-
making.

2 PROBLEM FORMULATION

Let X ∈ X and Y ∈ Y be random variables for an input feature and an output label (i.e., one or
a combination of future outcome(s) of interest) with a joint distribution pXY (and marginal distri-
butions are pX and pY , respectively) where X is the feature space and Y is the label space. Here,
we focus our description on C-class classification tasks, i.e., Y = {1, · · · , C}.2 We are given a
time-series dataset D = {(xnt , ynt)T

n

t=1}Nn=1 comprising sequences of realizations (i.e., observations)
of the pair (X, Y) for N patients. Here, (xnt , y

n
t)T

n

t=1 is a sequence of Tn observation pairs that cor-
respond to patient n and t ∈ T n , {1, · · · , Tn} denotes the time stamp at which the observations
are made.From this point forward, we omit the dependency on n when it is clear in the context and
denote x1:t = (x1, · · · ,xt) for ease of notation.

Our aim is to identify a set of K predictive clusters, C = {C(1), · · · , C(K)}, for time-series data.
Each cluster consists of homogeneous data samples, that can be represented by its centroid, based
on a certain similarity measure. There are two main distinctions from the conventional notion of
clustering. First, we treat subsequences of each times-series as data samples and focus on parti-
tioning {{xn1:t}T

n

t=1}Nn=1 into C. Hence, we define a cluster as C(k) = {xn1:t|t ∈ T n, snt = k} for
k ∈ K , {1, · · · ,K} where snt ∈ K is the cluster assignment for a given xn1:t. This is to flexibly
update a patient’s cluster assignment (in real-time) to which a patient belongs as new observations
are being accrued over time. Second, we define the similarity measure with respect to the label
distribution and associate it with clusters to provide a prognostic value. More specifically, we want
the distribution of output labels for subsequences in each cluster to be homogeneous so that it can
be well-represented by the centroid of that cluster. Let S be a random variable for the cluster as-
signment – that depends on a given subsequence x1:t – and Y |S = k be a random variable for the
output given cluster k. Then, such property of predictive clustering can be achieved by minimizing
the following Kullback-Leibler (KL) divergence:

KL
(
Yt|X1:t = x1:t

∥∥Yt|St = k
)

for x1:t ∈ C(k) (1)

where KL
(
Yt|X1:t = x1:t

∥∥Yt|St = k
)

=
∫
y∈Y p(y|x1:t)

(
log p(y|x1:t) − log p(y|st)

)
dy. Here,

p(y|x1:t) and p(y|st) are the label distributions conditioned on a subsequence x1:t and a cluster
assignment st, respectively. Note that (1) achieves its minimum when the two distributions are
equivalent.

1Source code available at https://github.com/ICLR2020-ACTPC/ACTPC_submission.git
2In this paper, we focus our description on C-class classification task, i.e., Y = {1, · · · , C}; in Appendix

A, we discuss simple modifications of our model for regression and M -dimensional binary classification tasks,
i.e., Y = R and Y = {0, 1}M , respectively.

2

Under review as a conference paper at ICLR 2020

Figure 1: A block diagram of AC-TPC. The red line denotes the procedure of estimating p(y|St =
st) which includes a sampling process and the blue line denotes that of estimating p(y|X1:t = x1:t).

Finally, we establish our goal as identifying a set of predictive clusters C that optimizes the following
objective:

minimize
C

∑
k∈K

∑
x1:t∈C(k)

KL
(
Yt|X1:t = x1:t

∥∥Yt|St = k
)
. (2)

Unfortunately, the optimization problem in (2) is highly non-trivial. We need to estimate the objec-
tive function in (2) while solving a non-convex combinatorial problem of finding the optimal cluster
assignments and cluster centroids.

3 ACTOR-CRITIC APPROACH FOR TEMPORAL PREDICTIVE CLUSTERING

To effectively estimate the objective function in (2), we introduce three networks – an encoder, a
selector, and a predictor – and an embedding dictionary as illustrated in Figure 1. These components
together provide the cluster assignment and the corresponding centroid based on a given sequence of
observations and enable us to estimate the probability density p(y|st). More specifically, we define
each component as follows:

• The encoder, fθ :
∏t
i=1 X → Z , is a RNN (parameterized by θ) that maps a (sub)sequence of

a time-series x1:t to a latent representation (i.e., encoding) zt ∈ Z where Z is the latent space.

• The selector, hψ : Z → ∆K−1, is a fully-connected network (parameterized by ψ) that pro-
vides a probabilistic mapping to a categorical distribution from which the cluster assignment
st ∈ K is being sampled.

• The predictor, gφ : Z → ∆C−1, is a fully-connected network (parameterized by φ) that esti-
mates the label distribution given the encoding of a time-series or the centroid of a cluster.

• The embedding dictionary, E = {e(1), · · · , e(K)} where e(k) ∈ Z for k ∈ K, is a set of
cluster centroids lying in the latent space which represents the corresponding cluster.

Here, ∆D−1 = {q ∈ [0, 1]K : q1 + · · ·+ qD = 1} is a (D− 1)-simplex that denotes the probability
distribution for a D-dimensional categorical (class) variable.

At each time stamp t, the encoder maps an input (sub)sequence x1:t into a latent encoding zt ,
fθ(x1:t). Then, based on the encoding zt, the cluster assignment st is drawn from a categorical dis-
tribution that is defined by the selector output, i.e., st ∼ Cat(πt) where πt = [πt(1), · · · , πt(K)] ,
hψ(zt). Once the assignment st is chosen, we allocate the latent encoding zt to an embedding e(st)
in the embedding dictionary E . Since the allocated embedding e(st) corresponds to the centroid of
the cluster to which x1:t belongs, we can, finally, estimate the density p(y|st) in (2) as the output of
the predictor given the embedding e(st), i.e., ȳt , gφ(e(st)).

3.1 LOSS FUNCTIONS

In this subsection, we define loss functions to achieve our objective in (2); the details of how we
train our model will be discussed in the following subsection.

3

Under review as a conference paper at ICLR 2020

Predictive Clustering Loss: Since finding the cluster assignment of a given sequence is a prob-
abilistic problem due to the sampling process, the objective function in (2) must be defined as an
expectation over the cluster assignment. Thus, we can estimate solving the objective problem in (2)
as minimizing the following loss function:

L1(θ, ψ, φ, E) = Ex,y∼pXY

[
T∑
t=1

Est∼Cat(πt)

[
`1(yt, ȳt)

]]
(3)

where `1(yt, ȳt) = −
∑C
c=1 y

c
t log ȳct . Here, we slightly abuse the notation and denote y =

[y1 · · · yC] as the one-hot encoding of y, and yc and ȳc indicates the c-th component of y and ȳ, re-
spectively. It is worth highlighting that minimizing `1 is equivalent to minimizing the KL divergence
in (2) since the former term of the KL divergence is independent of our optimization procedure.

One critical question that may arise is how to avoid trivial solutions in this unsupervised setting
of identifying the cluster assignments and the centroids (Yang et al., 2017). For example, all the
embeddings in E may collapse into a single point or the selector simply assigns equal probability
to all the clusters regardless of the input sequence. In both cases, our model will fail to correctly
estimate p(y|st) and, thus, end up finding a trivial solution. To address this issue, we introduce
two auxiliary loss functions that are tailored to address this concern. It is worth highlighting that
these loss functions are not subject to the sampling process and their gradients can be simply back-
propagated.

Sample-Wise Entropy of Cluster Assignment: To motivate sparse cluster assignment such that
the selector ultimately selects one dominant cluster for each sequence, we introduce sample-wise
entropy of cluster assignment which is given as

L2(θ, ψ) = Ex∼pX

[
−

T∑
t=1

∑
k∈K

πt(k) log πt(k)

]
(4)

where πt = [πt(1) · · ·πt(K)] = hψ(fθ(x1:t)). The sample-wise entropy achieves its minimum
when πt becomes an one-hot vector.

Embedding Separation Loss: To prevent the embeddings in E from collapsing into a single point,
we define a loss function that encourages the embeddings to represent different label distributions,
i.e., gφ(e(k)) for k ∈ K, from each other:

L3(E) = −
∑
k 6=k′

`1(gφ(e(k)), gφ(e(k′))) (5)

where `1 is reused to quantify the distance between label distributions conditioned on each cluster.
We minimize (5) when updating the embedding vectors e(1), · · · , e(K).

3.2 OPTIMIZATION

The optimization problem in (2) is a non-convex combinatorial problem because it comprises not
only minimizing the KL divergence but also finding the optimal cluster assignments and centroids.
Hence, we propose an optimization procedure that iteratively solves two subproblems: i) optimizing
the three networks – the encoder, selector, and predictor – while fixing the embedding dictionary
and ii) optimizing the embedding dictionary while fixing the three networks. Pseudo-code of AC-
TPC can be found in Appendix F.

3.2.1 OPTIMIZING THE THREE NETWORKS – fθ , hψ , AND gφ

As discussed in the previous subsection, finding the predictive clusters incorporates the sampling
process which is non-differentiable. Thus, to allow for “back-propagation”, we use the training
procedure of actor-critic models (Konda and Tsitsiklis, 2000). More specifically, we view the com-
bination of the encoder (fθ) and the selector (hψ) as the “actor” parameterized by ωA = [θ, ψ],
and the predictor (gφ) as the “critic”. These two networks are trained iteratively. The critic takes
as input the output of the actor and determines the corresponding loss. This, in turn, enables the
actor to change its output distribution to minimize such loss. Thus, it is important for the critic to

4

Under review as a conference paper at ICLR 2020

perform well on the updated output of the actor while it is important for the actor to perform well on
the updated loss estimation. As such, the parameters for the actor and the critic need to be updated
iteratively.

Given the embedding dictionary E fixed (we omit the dependency on E), we train the actor, i.e., the
encoder and the selector, by minimizing a combination of the predictive clustering loss L1 and the
entropy of cluster assignments L2, which is given by

LA(θ, ψ, φ) = L1(θ, ψ, φ) + αL2(θ, ψ) (6)

where α ≥ 0 is a coefficient chosen to balance between the two losses. To derive the gradient of this
loss with respect ωA = [θ, ψ], we utilize the ideas from actor-critic models (Konda and Tsitsiklis,
2000) as follows; please refer to Appendix B for the detailed derivation:

∇ωA
LA(θ, ψ, φ) = Ex,y∼pXY

[
∇ωA

(
T∑
t=1

Est∼Cat(πt)

[
`1(yt, ȳt)

])]
+ α∇ωA

L2(θ, ψ)

= Ex,y∼pXY

[
T∑
t=1

Est∼Cat(πt)

[
`1(yt, ȳt)∇ωA

log πt(st)
]]

+ α∇ωA
L2(θ, ψ).

(7)

Note that since no sampling process is considered in L2(θ, ψ), we can simply derive∇ωA
L2(θ, ψ).

Iteratively with training the actor, we train the critic, i.e., the predictor, by minimizing the predictive
clustering loss L1 as the following:

LC(φ) = L1(θ, ψ, φ) (8)

whose gradient with respect to φ can be givens as ∇φLC(φ) = ∇φL1(θ, ψ, φ). Note that since the
critic is independent of the sampling process, the gradient can be simply back-propagated.

3.2.2 OPTIMIZING THE CLUSTER CENTROIDS

Now, once the parameters for the three networks (θ, ψ, φ) are fixed (we omit the dependency on θ,
ψ, and φ), we updated the embeddings in E by minimizing a combination of the predictive clustering
loss L1 and the embedding separation loss L3, which is given by

LE(E) = L1(E) + βL3(E) (9)

where β ≥ 0 is a coefficient chosen to balance between the two losses.

3.2.3 INITIALIZING AC-TPC VIA PRE-TRAINING

Since we transform the non-trivial combinatorial optimization problem in (2) into iteratively solving
two sub-problems, initialization is crucial to achieve better optimization as has been shown in (Yang
et al., 2017), which addressed a similar concern.

First, we pre-train the encoder and the predictor by minimizing the following loss function based on
the predicted label distribution given the latent encodings of input sequences, i.e., ŷt , gφ(zt) =
gφ(fθ(x1:t)):

LI(θ, φ) = Ex,y∼pXY

[
−

T∑
t=1

`1(yt, ŷt)

]
. (10)

Minimizing (10) encourages the latent encoding to be enriched with information for accurately pre-
dicting the label distribution. Then, we perform K-means (other clustering method can be also
applied) based on the learned representations to initialize the embeddings E and the cluster assign-
ments {{snt }T

n

t=1}Nn=1. Finally, we pre-train the selector hψ by minimizing the cross entropy treating
the initialized cluster assignments as the true clusters.

4 RELATED WORK

Temporal clustering, also known as time-series clustering, is a process of unsupervised partitioning
of the time-series data into clusters in such a way that homogeneous time-series are grouped together

5

Under review as a conference paper at ICLR 2020

based on a certain similarity measure. Temporal clustering is challenging because i) the data is often
high-dimensional – it consists of sequences not only with high-dimensional features but also with
many time points – and ii) defining a proper similarity measure for time-series is not straightforward
since it is often highly sensitive to distortions (Ratanamahatana et al., 2005). To address these chal-
lenges, there have been various attempts to find a good representation with reduced dimensionality
or to define a proper similarity measure for times-series (Aghabozorgi et al., 2015).

Recently, Baytas et al. (2017) and Madiraju et al. (2018) proposed temporal clustering methods
that utilize low-dimensional representations learned by RNNs. These works are motivated by the
success of applying deep neural networks to find “clustering friendly” latent representations for
clustering static data (Xie et al., 2017; Yang et al., 2017). In particular, Baytas et al. (2017) utilized
a modified LSTM auto-encoder to find the latent representations that are effective to summarize the
input time-series and conductedK-means on top of the learned representations as an ad-hoc process.
Similarly, Madiraju et al. (2018) proposed a bidirectional-LSTM auto-encoder that jointly optimizes
the reconstruction loss for dimensionality reduction and the clustering objective. However, these
methods do not associate a target property with clusters and, thus, provide little prognostic value in
understanding the underlying disease progression.

Our work is most closely related to SOM-VAE (Fortuin et al., 2019). This method jointly optimizes
a static variational auto-encoder (VAE), that finds latent representations of input features, and a self-
organizing map (SOM), that allows for mapping the latent representations into a more interpretable
discrete representations, i.e., the embeddings. However, there are three key differences between our
work and SOM-VAE. First, SOM-VAE aims at minimizing the reconstruction loss that is specified
as the mean squared error between the original input and the reconstructed input based on the cor-
responding embedding. Thus, similar to the aforementioned methods, SOM-VAE neither associates
future outcomes of interest with clusters. In contrast, we focus on minimizing the KL divergence
between the outcome distribution given the original input sequence and that given the correspond-
ing embedding to build association between future outcomes of interest and clusters. Second, to
overcome non-differentiability caused by the sampling process (that is, mapping the latent represen-
tation to the embeddings), Fortuin et al. (2019) applies the gradient copying technique proposed by
(van den Oord et al., 2017), while we utilize the training of actor-critic model (Konda and Tsitsiklis,
2000). Finally, while we flexibly model time-series using LSTM, SOM-VAE handles time-series
by integrating a Markov model in the latent representations. This can be a strict assumption espe-
cially in clinical settings where a patient’s medical history is informative for predicting his/her future
clinical outcomes (Ranganath et al., 2016).

5 EXPERIMENTS

In this section, we provide a set of experiments using two real-world time-series datasets. We itera-
tively update the three networks – the encoder, selector, and predictor – and the embedding dictio-
nary as described in Section 3.2. For the network architecture, we constructed the encoder utilizing a
single-layer LSTM (Hochreiter and Schmidhuber, 1997) with 50 nodes and constructed the selector
and predictor utilizing two-layer fully-connected network with 50 nodes in each layer, respectively.
The parameters (θ, ψ, φ) are initialized by Xavier initialization (Glorot and Bengio, 2010) and opti-
mized via Adam optimizer (Kingma and Ba, 2014) with learning rate of 0.001 and keep probability
0.7. We chose the balancing coefficients α, β ∈ {0.1, 1.0, 3.0} utilizing grid search among the pos-
sible values; the effect of different loss functions are further investigated in the experiments. Here,
all the results are reported using 5 random 64/16/20 train/validation/test splits.

5.1 REAL-WORLD DATASETS

We conducted experiments to investigate the performance of AC-TPC on two real-world medical
datasets; detailed statistics of each dataset can be found in Appendix C:

• UK Cystic Fibrosis registry (UKCF)3: This dataset records annual follow-ups for 5,171 adult
patients (aged 18 years or older) enrolled in the UK CF registry over the period from 2008 and
2015, with a total of 25,012 hospital visits. Each patient is associated with 89 variables (i.e.,
11 static and 78 time-varying features), including information on demographics and genetic

3https://www.cysticfibrosis.org.uk/the-work-we-do/uk-cf-registry

6

Under review as a conference paper at ICLR 2020

mutations, bacterial infections, lung function scores, therapeutic managements, and diagnosis
on comorbidities. We set the development of different comorbidities in the next year as the label
of interest at each time stamp.

• Alzheimer’s Disease Neuroimaging Initiative (ADNI)4: This dataset consists of 1,346 patients
in the Alzheimer’s disease study with a total of 11,651 hospital visits, which tracks the disease
progression via follow-up observations at 6 months interval. Each patient is associated with 21
variables (i.e., 5 static and 16 time-varying features), including information on demographics,
biomarkers on brain functions, and cognitive test results. We set predictions on the three diag-
nostic groups – normal brain functioning, mild cognitive impairment, and Alzheimer’s disease –
as the label of interest at each time stamp.

5.2 BENCHMARKS

We compare AC-TPC with clustering methods ranging from conventional approaches based on K-
means to the state-of-the-art approaches based on deep neural networks. All the benchmarks com-
pared in the experiments are tailored to incorporate time-series data as described below; please refer
to Appendix D for more details:

• Dynamic time warping followed by K-means5: Dynamic time warping (DTW) is utilized to
quantify pairwise distance between two variable-length sequences and, then,K-means is applied
(denoted as KM-DTW).

• K-means with deep neural networks: To handle variable-length time-series data, we utilize
our encoder and predictor that are trained based on (10) for dimensionality reduction; this is
to provide fixed-length and low-dimensional representations for time-series. Then, we apply
K-means on the latent encodings z (denoted as KM-E2P (Z)) and on the predicted label distri-
butions ŷ (denoted as KM-E2P (Y)), respectively.

• Extensions of DCN6 (Yang et al., 2017): Since the DCN is designed for static data, we replace
their static auto-encoder with a sequence-to-sequence network to incorporate time-series data
(denoted as DCN-S2S).7 In addition, to associated with the label distribution, we compare a
DCN whose static auto-encoder is replaced with our encoder and predictor (denoted as DCN-
E2P) to focus on dimensionality reduction while still preserving information for predicting the
label.

• SOM-VAE8 (Fortuin et al., 2019): Although this method is oriented towards visualizing input
data via SOM, we compare SOM-VAE since it naturally clusters time-series data (denoted as
SOM-VAE). In addition, we compare with a variation of SOM-VAE by replacing the decoder
with our predictor in order to find embeddings that capture information for predicting the label
(denoted as SOM-VAE-P). For both cases, we set the dimension of SOM to K.

Note that the label information is not provided for training KM-DTW, DCN-S2S, and SOM-VAE.
We summarized major components of these benchmarks – in comparison with our model – in Table
6 in Appendix D.

5.3 PERFORMANCE METRICS

We applied the following three standard metrics for evaluating clustering performances: purity
score, normalized mutual information (NMI) (Vinh et al., 2010), and adjusted Rand index (ARI)
(Hubert and Arabie, 1985). More specifically, the purity score assesses how homogeneous each
cluster is (ranges from 0 to 1 with 1 being a cluster consists of a single class), the NMI is an infor-
mation theoretic measure of how much information is shared between the clusters and the labels that
is adjusted for the number of clusters (ranges from 0 to 1 with 1 being a perfect clustering), and ARI

4https://adni.loni.usc.edu
5https://github.com/rtavenar/tslearn
6https://github.com/boyangumn/DCN
7This extension is a representative of recently proposed deep learning approaches for clustering of both

static data (Xie et al., 2017; Yang et al., 2017) and time-series data (Baytas et al., 2017; Madiraju et al., 2018)
since these methods are built upon the same concept – that is, applying deep networks for dimensionality
reduction to conduct conventional clustering methods, e.g., K-means.

8https://github.com/ratschlab/SOM-VAE

7

Under review as a conference paper at ICLR 2020

Table 1: Performance Comparison on the UKCF and ADNI datasets.

Methods UKCF ADNI
Purity NMI ARI Purity NMI ARI

KM-DTW 0.573±0.01∗ 0.010±0.01∗ 0.014±0.01∗ 0.566±0.02∗ 0.019±0.02∗ 0.006±0.02∗

KM-E2P (Z) 0.719±0.01∗ 0.211±0.01∗ 0.107±0.01∗ 0.736±0.03† 0.249±0.02 0.230±0.03†
KM-E2P (Y) 0.751±0.01∗ 0.325±0.01∗ 0.440±0.02∗ 0.776±0.05 0.264±0.07 0.317±0.11

DCN-S2S 0.607±0.06∗ 0.059±0.08∗ 0.063±0.09∗ 0.567±0.02∗ 0.005±0.00∗ 0.000±0.01∗

DCN-E2P 0.751±0.02∗ 0.275±0.02∗ 0.184±0.01∗ 0.749±0.06 0.261±0.05 0.215±0.06†
SOM-VAE 0.573±0.01∗ 0.006±0.00∗ 0.006±0.01∗ 0.566±0.02∗ 0.040±0.06∗ 0.011±0.02∗

SOM-VAE-P 0.638±0.04∗ 0.201±0.05∗ 0.283±0.17† 0.586±0.06∗ 0.085±0.08∗ 0.038±0.06∗
Proposed 0.807±0.01 0.463±0.01 0.602±0.01 0.786±0.03 0.285±0.04 0.330±0.06
∗ indicates p-value < 0.01, † indicates p-value < 0.05

(a) The averaged purity score. (b) The averaged NMI. (c) The averaged ARI.

Figure 2: The purity score, NMI, and ARI (mean and 95% confidence interval) for the UKCF dataset
(C = 8) with various K.

is a corrected-for-chance version of the Rand index which is a measure of the percentage of correct
cluster assignments (ranges from -1 to 1 with 1 being a perfect clustering and 0 being a random
clustering). In a nutshell, all the three performance metrics are commonly used but all have its pros
and cons; for instance, the purity score easily converges to 1 when there are as many clusters as data
samples and does not work for imbalanced data. Thus, using them together suffices to demonstrate
the effectiveness of the clustering methods.

5.4 CLUSTERING PERFORMANCE

To evaluate the clustering performance, we start with a simple scenario where the true class is
available and the number of classes is tractable. In particular, we set C = 23 = 8 based on the
development of three common comorbidities of cystic fibrosis – diabetes, ABPA, and intestinal
obstruction – in the next year for the UKCF dataet and C = 3 based on the mutually exclusive
three diagnostic groups for the ADNI dataset. We compare AC-TPC against the aforementioned
benchmarks with respect to the purity score, NMI, and ARI in Table 1.

As shown in Table 1, AC-TPC achieved performance gain over all the tested benchmarks – where
most of the improvements were statistically significant with p-value < 0.01 or p-value < 0.05 –
for both datasets. Importantly, clustering methods – i.e., KM-DTW, DCN-S2S, and SOM-VAE –
that do not associate with the future outcomes of interest performed poorly and are thus proven to
provide little prognostic value. Here, the ARI near 0 indicates that the clustering has no difference
with random assignment. This implies that sequences that are similar in their latent representations
tailored for reconstruction or that are similar with respect to the shape-based measurement using
DTW can have very different future outcomes of interest.

In Figure 2, we further investigate the purity score, NMI, and ARI by varying the number of clusters
K from 4 to 16 on the UKCF dataset in the same setting with that stated above (i.e., C = 8).
Here, the three methods – i.e., KM-DTW, DCN-S2S, and SOM-VAE – are excluded for better
visualization. As we can see in Figure 2, our model rarely encounters performance loss on both
NMI and ARI while the benchmarks (except for SOM-VAE-P) showed significant decrease in the
performance as K increased (higher than C). This is because the number of clusters identified by
AC-TPC (i.e., the number of activated clusters where we define cluster k is activated if |C(k)| > 0)
was the same with C most of the times, while the DCN-based methods identified exactly K clusters

8

Under review as a conference paper at ICLR 2020

(due to the K-means). Since the NMI and ARI are adjusted for the number of clusters, a smaller
number of identified clusters yields, if everything else is equal, a higher performance. In contrast,
while our model achieved the same purity score for K ≥ 8, the benchmarks showed improved
performance as K increased since the purity score does not penalize having many clusters. This is
an important property of AC-TPC that we do not need to know a priori what the number of clusters
is which is a common practical challenge of applying the conventional clustering methods (e.g.,
K-means).

In addition, when compared with SOM-VAE-P, the improvements of our model over SOM-VAE-
P come from two possible sources: i) SOM-VAE-P mainly focuses on visualizing the input with
SOM which makes both the encoder and embeddings less flexible – this is why it performed better
with higher K – and ii) the Markov property can be a too strict assumption for time-series data
especially in clinical settings where a patient’s medical history is informative for predicting his/her
future clinical outcomes (Ranganath et al., 2016). The same conclusions are reached for SOM-VAE.

5.5 CONTRIBUTIONS OF THE AUXILIARY LOSS FUNCTIONS

As described in Section 3.1, we introduced two auxiliary loss functions – the sample-wise entropy
of cluster assignment (4) and the embedding separation loss (5) – to avoid trivial solutions that
may arise in identifying the predictive clusters. To analyze the contribution of each auxiliary loss
function, we report the average number of activated clusters, clustering performance, and discrim-
inative performance on the UKCF dataset with 3 comorbidities as described in Section 5.4. Here,
we use both area under receiver operator characteristic curve (AUROC) and area under precision-
recall curve (AUPRC) to evaluate the prognostic value (i.e., discriminative power) of predicting
each comorbidity. Throughout the experiment, we set K = 16 – which is larger than C – to find the
contribution of these loss functions to the number of activated clusters.

Table 2: Performance comparison with varying the balancing coefficients α, β for the UKCF dataset.

Coefficients Clustering Performance Prognostic Value
α β Activated No. Purity NMI ARI AUROC AUPRC

0.0 0.0 16 0.573±0.01 0.006±0.00 0.000±0.00 0.500±0.00 0.169±0.00
0.0 1.0 16 0.573±0.01 0.006±0.00 0.000±0.00 0.500±0.00 0.169±0.00
3.0 0.0 8 0.795±0.01 0.431±0.01 0.569±0.01 0.840±0.01 0.583±0.02
3.0 1.0 8.4 0.808±0.01 0.468±0.01 0.606±0.01 0.852±0.00 0.608±0.01

As we can see in Table 2, both auxiliary loss functions make important contributions in improving
the quality of predictive clustering. More specifically, the sample-wise entropy encourages the selec-
tor to choose one dominant cluster. Thus, as we can see results with α = 0, without the sample-wise
entropy, our selector assigns an equal probability to all 16 clusters which results in a trivial solution.
In addition, we observed that, by augmenting the embedding separation loss, AC-TPC identifies a
smaller number of clusters owing to the well-separated embeddings.

5.6 TARGETING MULTIPLE FUTURE OUTCOMES – A PRACTICAL SCENARIO

In this experiment, we focus on a more practical scenario where the future outcome of interest is
high-dimensional and the number of classes based on all the possible combinations of future out-
comes becomes intractable. For example, suppose that we are interested in the development of
M comorbidities in the next year whose possible combinations grow exponentially C = 2M . In-
terpreting such a large number of patient subgroups is a daunting task which may complicate the
understanding of underlying disease progression. Since different comorbidities may share common
driving factors (Ronan et al., 2017), we hope our model to be able to identify much smaller underly-
ing (latent) clusters that govern the development of comorbidities. To incorporate M comorbidities
(i.e., M binary labels), we redefine the output space as Y = {0, 1}M and modify the predictor and
loss functions, accordingly, as described in Appendix A.

Throughout this experiment, we aim at identifying subgroups of patients that are associated with the
next-year development of 22 different comorbidities in the UKCF dataset. In Table 3, we reported
12 identified clusters – on average, the number of activated clusters was 13.6 – and the top three

9

Under review as a conference paper at ICLR 2020

Table 3: The top-3 frequent comorbidities developed in the next year for the 12 identified clusters.
The values in parentheses indicate the corresponding frequency.

Clusters Top-3 Frequent Comorbidities
0 Diabetes (0.85) Liver Enzymes (0.21) Arthropathy (0.14)
1 Liver Enzymes (0.09) Arthropathy (0.08) Depression (0.07)
2 ABPA (0.77) Osteopenia (0.21) Intestinal Obstruction (0.11)
3 Asthma (0.89) Liver Disease (0.87) Diabetes (0.29)
4 Osteoporosis (0.76) Diabetes (0.43) Arthropathy (0.20)
5 Asthma (0.88) Diabetes (0.81) Osteopenia (0.28)
6 Liver Disease (0.85) Asthma (0.03) ABPA (0.09)
7 ABPA (0.83) Diabetes (0.78) Osteopenia (0.25)
8 Diabetes (0.94) Liver Disease (0.83) Liver Enzymes (0.43)
9 Asthma (0.89) Osteopenia (0.26) ABPA (0.19)
10 Osteopenia (0.82) Diabetes (0.81) Arthropathy (0.23)
11 Osteopenia (0.77) Liver Enzymes (0.18) Arthropathy (0.12)

Figure 3: Clusters with high-risk of developing diabetes. We reported the cluster-specific frequen-
cies of developing comorbidities – liver disease, asthma, ABPA, and osteopenia that are co-occurred
with diabetes – in the next year.

frequent comorbidities developed in the next year since the latest observation and their correspond-
ing frequencies; please refer to Appendix E for a full list. Here, the frequency is calculated in a
cluster-specific fashion based on the true label. As we can see in Table 3, the identified clusters
displayed very different label distributions; that is, the combination of comorbidities as well as their
frequencies were very different across the clusters. For example, patients in Cluster 1 experienced
low-risk of developing any comorbities in the next year while 85% of patients in Cluster 0 were
diagnosed with diabetes in the next year.

In Figure 3, we further investigated subgroups of patients – Cluster 0, 5, 7, 8, and 10 – who had
high risk of developing diabetes in the next year. Although all these clusters displayed high risk
of diabetes, the frequencies of other co-occurring comorbidities was significantly different across
the clusters. In one notable example, around 89% of the patients in Cluster 5 were diagnosed with
asthma in the next year while it was less than 3% of the patients in the other clusters. Interestingly,
“leukotriene” – a medicine commonly used to manage asthma – and “FEV1% predicted” – a measure
of lung function – were the two most different input features between patients in Cluster 5 and those
in the other clusters. We observed similar findings in Cluster 7 with ABPA, Cluster 8 with liver
disease, and Cluster 10 with osteopenia.

Therefore, by grouping patients who are likely to develop a similar set of comorbidities, our method
identified clusters that can be translated into actionable information for clinical decision-making.

6 CONCLUSION

In this paper, we introduced AC-TPC, a novel deep learning approach for predictive clustering of
time-series data. We carefully defined novel loss functions to encourage each cluster to have homo-
geneous future outcomes (e.g., adverse events, the onset of comorbidities, etc.) and designed opti-
mization procedures to address challenges and to avoid trivial solutions in identifying these cluster
assignments and centroids. Throughout the experiments on two real-world datasets, we showed that
our model achieves superior clustering performance over state-of-the-art and identifies meaningful
clusters that can be translated into actionable information for clinical decision-making.

10

Under review as a conference paper at ICLR 2020

REFERENCES

L. Samal, A. Wright, B. Wong, J. Linder, and D. Bates. Leveraging electronic health records to
support chronic disease management: the need for temporal data views. Informatics in Primary
Care, 19(2):65–74, 2011.

K. J. Ramos, B. S. Quon, S. L. Heltshe, N. Mayer-Hamblett, E. D. Lease, M. L. Aitken, N. S. Weiss,
and C. H. Goss. Heterogeneity in survival in adult patients with cystic fibrosis with FEV1 < 30%
of predicted in the united states. Chest, 151(6):1320–1328, June 2017.

Xi Zhang, Jingyuan Chou, Jian Liang, Cao Xiao, Yize Zhao, Harini Sarva, Claire Henchcliffe, and
Fei Wang. Data-driven subtyping of parkinson’s disease using longitudinal clinical records: A
cohort study. Scientific Reports, 9(797):1–12, January 2019.

A. Rusanov, P. V. Prado, and C. Weng. Unsupervised time-series clustering over lab data for au-
tomatic identification of uncontrolled diabetes. In Proceedings of the 4th IEEE International
Conference on Healthcare Informatics (ICHI), 2016.

A. Giannoula, A. Gutierrez-Sacristán, Á. Bravo, F. Sanz, and L. I. Furlong. Identifying temporal
patterns in patient disease trajectories using dynamic ping: A population-based study. Scientific
Reports, 8(4216):1–14, March 2018.

D. T. A. Luong and V. Chandola. A k-means approach to clustering disease progressions. In Pro-
ceedings of the 5th IEEE International Conference on Healthcare Informatics (ICHI), 2017.

S. Lloyd. Least squares quantization in pcm. IEEE Transaction on Information Theory, 28(2):
129–137, March 1982.

A. Boudier, S. Chanoine, S. Accordini, J. M. Anto, X. Basaga na, J. Bousquet, P. Demoly, J. Garcia-
Aymerich, F. Gormand, J. Heinrich, C. Janson, N. Künzli, R. Matran, C. Pison, C. Raherison,
J. Sunyer, R. Varraso, D. Jarvis, B. Leynaert, I. Pin, and V. Siroux. Data-driven adult asthma
phenotypes based on clinical characteristics are associated with asthma outcomes twenty years
later. Allegy, 74(5):953–963, May 2019.

W. M. Wami, F. Buntinx, S. Bartholomeeusen, G. Goderis, C. Mathieu, and M. Aerts. Influence
of chronic comorbidity and medication on the efficacy of treatment in patients with diabetes in
general practice. The British Journal of General Practice, 63(609):267–273, March 2013.

H. Blockeel, S. Dzeroski, J. Struyf, and B. Zenko. Predictive Clustering. Springer New York, 2017.

V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. In Proceedings of the 13th Conference on
Neural Information Processing Systems (NIPS 2000), 2000.

B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong. Towards k-means-friendly spaces: Simultaneous
deep learning and clustering. In Proceedings of the 34th International Conference on Machine
Learning (ICML 2017), 2017.

C. A. Ratanamahatana, E. Keogh, A. J. Bagnall, and S. Lonardi. A novel bit level time series
representation with implications for similarity search and clustering. In Proceedings of the 9th
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2005), 2005.

S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah. Time-series clustering – a decade review.
Information Systems, 53:16–38, May 2015.

I. M. Baytas, C. Xiao, X. Zhang, F. Wang, A. K. Jain, and J. Zhou. Patient subtyping via time-aware
lstm networks. In Proceedings of the 23rd ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD 2017), 2017.

N. S. Madiraju, S. M. Sadat, D. Fisher, and H. Karimabadi. Deep temporal clustering: Fully unsu-
pervised learning of time-domain features. arXiv preprint arXiv:1802.01059, 2018.

J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep embedding for clustering analysis. In
Proceedings of the 33rd International Conference on Machine Learning (ICML 2016), 2017.

11

Under review as a conference paper at ICLR 2020

V. Fortuin, M. Hüser, F. Locatello, H. Strathmann, and G. Rätsch. SOM-VAE: Interpretable discrete
representation learning on time series. In Proceedings of the 7th International Conference on
Learning Representations (ICLR 2019), 2019.

A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural discrete representation learning. In Pro-
ceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), 2017.

R. Ranganath, A. Perotte, N. Elhadad, and D. Blei. Deep survival analysis. In Proceedings of the
1st Machine Learning for Healthcare Conference (MLHC 2016), 2016.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AIS-
TATS 2010), 2010.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings comparison: Vari-
ants, properties, normalization and correction for chance. Journal of Machine Learning Research,
11(1):2837–2854, October 2010.

L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2(1):193–218, December
1985.

N. J. Ronan, J. Elborn, and B. J. Plant. Current and emerging comorbidities in cystic fibrosis. Presse
Med., 46(6):125–138, June 2017.

T. Warren Liao. Clustering of time series data–a survey. Pattern Recognition, 38(11):1857–1874,
November 2005.

12

Under review as a conference paper at ICLR 2020

A VARIATIONS FOR REGRESSION AND BINARY CLASSIFICATION TASKS

As the task changes, estimating the label distribution and calculating the KL divergence in (2) must
be redefined accordingly:

• For regression task, i.e., Y = R, we modify the predictor as gφ : Z → R and replace `1 by
`1(yt, ȳt) = ‖yt − ȳt‖22. Minimizing `1(yt, ȳt) is equivalent to minimizing the KL divergence
between p(yt|x1:t) and p(yt|st) when we assume these probability densities follow Gaussian
distribution with the same variance.

• For the M -dimensional binary classification task, i.e., Y = {0, 1}M , we modify the predictor as
gφ : Z → [0, 1]M and replace `1 by `1(yt, ȳt) = −

∑M
m=1 y

m
t log ȳmt + (1− ymt) log(1− ȳmt)

which is required to minimize the KL divergence. Here, ymt and ȳmt indicate the m-th element
of yt and ȳt, respectively. The basic assumption here is that the distribution of each binary label
is independent given the input sequence.

B DETAILED DERIVATION OF (7)

To derive the gradient of the predictive clustering loss in (7) with respect ωA = [θ, ψ], we utilized the
ideas from actor-critic models (Konda and Tsitsiklis, 2000). The detailed derivation of the former
term in (7) is described below (for notational simplicity, we omit the expectation on Ex,y∼pXY

):

∇ω

(
T∑
t=1

Est∼Cat(πt)

[
`1(yt, ȳt)

])
= ∇ω

(
T∑
t=1

∑
st∈K

πt(st)`1(yt, ȳt)

)

=

T∑
t=1

∑
st∈K
∇ωπt(st)`1(yt, ȳt)

=

T∑
t=1

∑
st∈K

∇ωπt(st)
πt(st)

πt(st)`1(yt, ȳt)

=

T∑
t=1

∑
st∈K

πt(st)`1(yt, ȳt)∇ω log πt(st)

=

T∑
t=1

Est∼Cat(πt)

[
`1(yt, ȳt)∇ω log πt(st)

]

(11)

C DETAILS ON THE DATASETS

C.1 UKCF DATASET

UK Cystic Fibrosis registry (UKCF)9 records annual follow-ups for 5,171 adult patients (aged 18
years or older) over the period from 2008 and 2015, with a total of 25,012 hospital visits. Each pa-
tient is associated with 89 variables (i.e., 11 static and 78 time-varying features), including informa-
tion on demographics and genetic mutations, bacterial infections, lung function scores, therapeutic
managements, and diagnosis on comorbidities. The detailed statistics are given in Table 4.

C.2 ADNI DATASET

Alzheimer’s Disease Neuroimaging Initiative (ADNI)10 study consists of 1,346 patients with a total
of 11,651 hospital visits, which tracks the disease progression via follow-up observations at 6 months
interval. Each patient is associated with 21 variables (i.e., 5 static and 16 time-varying features),
including information on demographics, biomarkers on brain functions, and cognitive test results.

9https://www.cysticfibrosis.org.uk/the-work-we-do/uk-cf-registry
10https://adni.loni.usc.edu

13

Under review as a conference paper at ICLR 2020

Table 4: Summary and description of the UKCF dataset.

STATIC COVARIATES
Type Freq. Type Freq.

Demographic Gender Bin. 0.55
Genetic Class I Mutation Bin. 0.05 Class VI Mutation Bin. 0.86

Class II Mutation Bin. 0.87 DF508 Mutation Bin. 0.87
Class III Mutation Bin. 0.89 G551D Mutation Bin. 0.06
Class IV Mutation Bin. 0.05 Homozygous Bin. 0.58
Class V Mutation Bin. 0.04 Heterozygous Bin 0.42

TIME-VARYING COVARIATES

Type Mean
(Freq.) Min / Max Type Mean

(Freq.) Min / Max

Demographic Age Cont. 30.4 18.0 / 86.0 Height Cont. 168.0 129.0 / 198.6
Weight Cont. 64.1 24.0 / 173.3 BMI Cont. 22.6 10.9 / 30.0
Smoking Status Bin. 0.1

Lung Func. Scores FEV1 Cont. 2.3 0.2 / 6.3 Best FEV1 Cont. 2.5 0.3 / 8.0
FEV1% Pred. Cont. 65.1 9.0 / 197.6 Best FEV1% Pred. Cont. 71.2 7.5 / 164.3

Hospitalization IV ABX Days Hosp. Cont. 12.3 0 / 431 Non-IV Hosp. Adm. Cont. 1.2 0 / 203
IV ABX Days Home Cont. 11.9 0 / 441

Lung Infections B. Cepacia Bin. 0.05 P. Aeruginosa Bin. 0.59
H. Influenza Bin. 0.05 K. Pneumoniae Bin. 0.00
E. Coli Bin. 0.01 ALCA Bin. 0.03
Aspergillus Bin. 0.14 NTM Bin. 0.03
Gram-Negative Bin. 0.01 Xanthomonas Bin. 0.05
S. Aureus Bin. 0.30

Comorbidities Liver Disease Bin. 0.16 Depression Bin. 0.07
Asthma Bin. 0.15 Hemoptysis Bin. 0.01
ABPA Bin. 0.12 Pancreatitus Bin. 0.01
Hypertension Bin. 0.04 Hearing Loss Bin. 0.03
Diabetes Bin. 0.28 Gall bladder Bin. 0.01
Arthropathy Bin. 0.09 Colonic structure Bin. 0.00
Bone fracture Bin. 0.01 Intest. Obstruction Bin. 0.08
Osteoporosis Bin. 0.09 GI bleed – no var. Bin. 0.00
Osteopenia Bin. 0.21 GI bleed – var. Bin. 0.00
Cancer Bin. 0.00 Liver Enzymes Bin. 0.16
Cirrhosis Bin. 0.03 Kidney Stones Bin. 0.02

Treatments Dornase Alpha Bin. 0.56 Inhaled B. BAAC Bin. 0.03
Anti-fungals Bin. 0.07 Inhaled B. LAAC Bin. 0.08
HyperSaline Bin. 0.23 Inhaled B. SAAC Bin. 0.05
HypertonicSaline Bin. 0.01 Inhaled B. LABA Bin. 0.11
Tobi Solution Bin. 0.20 Inhaled B. Dilators Bin. 0.57
Cortico Combo Bin. 0.41 Cortico Inhaled Bin. 0.15
Non-IV Ventilation Bin. 0.05 Oral B. Theoph. Bin. 0.04
Acetylcysteine Bin. 0.02 Oral B. BA Bin. 0.03
Aminoglycoside Bin. 0.03 Oral Hypo. Agents Bin. 0.01
iBuprofen Bin. 0.00 Chronic Oral ABX Bin. 0.526
Drug Dornase Bin. 0.02 Cortico Oral Bin. 0.14
HDI Buprofen Bin. 0.00 Oxygen Therapy Bin. 0.11
Tobramycin Bin. 0.03 O2 Exacerbation Bin. 0.03
Leukotriene Bin. 0.07 O2 Nocturnal Bin. 0.03
Colistin Bin. 0.03 O2 Continuous Bin. 0.03
Diabetes Insulin Bin. 0.01 O2 Pro re nata Bin. 0.01
Macrolida ABX Bin. 0.02

ABX: antibiotics

Table 5: Summary and description of the ADNI dataset.

STATIC COVARIATES

Type Mean
(Freq.)

Min/Max
(Mode) Type Mean

(Freq.)
Min/Max
(Mode)

Demographic Race Cat. 0.93 White Ethnicity Cat. 0.97 No Hisp/Latino
Education Cat. 0.23 C16 Marital Status Cat. 0.75 Married

Genetic APOE4 Cont. 0.44 0/2

TIME-VARYING COVARIATES
Type Mean Min / Max Type Mean Min / Max

Demographic Age Cont. 73.6 55/92
Biomarker Entorhinal Cont. 3.6E+3 1.0E+3 / 6.7E+3 Mid Temp Cont. 2.0E+4 8.9E+3 / 3.2E+4

Fusiform Cont. 1.8E+5 9.0E+4 / 2.9E+5 Ventricles Cont. 4.1E+4 5.7E+3 / 1.6E+5
Hippocampus Cont. 6.9E+3 2.8E+3 / 1.1E+4 Whole Brain Cont. 1.0E+6 6.5E+5 / 1.5E+6
Intracranial Cont. 1.5E+6 2.9E+2 / 2.1E+6

Cognitive ADAS-11 Cont. 8.58 0/70 ADAS-13 Cont. 13.61 0/85
CRD Sum of Boxes Cont. 1.21 0/17 Mini Mental State Cont. 27.84 2/30
RAVLT Forgetting Cont. 4.19 -12/15 RAVLT Immediate Cont. 38.25 0/75
RAVLT Learning Cont. 4.65 -5/14 RAVLT Percent Cont. 51.70 -500/100

14

Under review as a conference paper at ICLR 2020

Table 6: Comparison table of benchmarks.

Methods Handling
Time-Series

Clustering
Method

Similarity
Measure

Label
Provided

Label
Associated

KM-DTW DTW K-means DTW N N
KM-E2P (Z) RNN K-means Euclidean in Z Y N
KM-E2P (Y) RNN K-means Euclidean in Y Y Y (direct)

DCN-S2S RNN K-means Euclidean in Z N N
DCN-E2P RNN K-means Euclidean in Z N Y (indirect)
SOM-VAE Markov model embedding mapping reconstruction loss N N

SOM-VAE-P Markov model embedding mapping prediction loss Y Y (direct)
Proposed RNN embedding mapping KL divergence Y Y (direct)

The three diagnostic groups were normal brain functioning (0.55), mild cognitive impairment (0.43),
and Alzheimer’s disease (0.02). The detailed statistics are given in Table 5.

D DETAILS ON THE BENCHMARKS

We compared AC-TPC in the experiments with clustering methods ranging from conventional ap-
proaches based on K-means to the state-of-the-art approaches based on deep neural networks. The
details of how we implemented the benchmarks are described as the following:

• Dynamic time warping followed by K-means11: Dynamic time warping (DTW) is utilized to
quantify pairwise distance between two variable-length sequences and, then,K-means is applied
(denoted as KM-DTW).

• K-means with deep neural networks: To handle variable-length time-series data, we utilize
our encoder and predictor that are trained based on (10) for dimensionality reduction; this is
to provide fixed-length and low-dimensional representations for time-series. Then, we apply
K-means on the latent encodings z (denoted as KM-E2P (Z)) and on the predicted label distri-
butions ŷ (denoted as KM-E2P (Y)), respectively. We implemented the encoder and predictor of
KM-E2P with the same network architectures with those of our model: the encoder is a single-
layer LSTM with 50 nodes and the decoder is a two-layered fully-connected network with 50
nodes in each layer.

• Extensions of DCN12 (Yang et al., 2017): Since the DCN is designed for static data, we re-
place the encoder-decoder structure with a sequence-to-sequence network as an extension to
incorporate time-series data (denoted as DCN-S2S). For implementing DCN-S2S, we used a
single-layer LSTM with 50 nodes for both the encoder and the decoder. And, we augmented a
fully-connected layer with 50 nodes is used to decode the latent representation and reconstruct
the original sequence.
In addition, since predictive clustering is associated with the label distribution, we compared a
DCN whose encoder-decoder structure is replaced with our encoder and predictor (denoted as
DCN-E2P) to focus the dimensionality reduction – and, thus, finding latent encodings where
clustering is performed – on the information for predicting the label distribution. We imple-
mented the encoder and predictor of DCN-E2P with the same network architectures with those
of our model as described above.

• SOM-VAE13 (Fortuin et al., 2019): We compare with SOM-VAE – though, this method is ori-
ented towards visualization of input data via SOM – since it naturally clusters time-series data
assuming Markov property (denoted as SOM-VAE). We replace the original CNN architecture
of the encoder and the decoder with three-layered fully-connected network with 50 nodes in each
layer, respectively.
In addition, we compare with a variation of SOM-VAE by replacing the decoder with the predic-
tor to encourage the latent encoding to capture information for predicting the label distribution
(denoted as SOM-VAE-P). For the implementation, we replaced the decoder of SOM-VAE with

11https://github.com/rtavenar/tslearn
12https://github.com/boyangumn/DCN
13https://github.com/ratschlab/SOM-VAE

15

Under review as a conference paper at ICLR 2020

our predictor which is a two-layered fully-connected layer with 50 nodes in each layer to predict
the label distribution.
For both cases, we used the default values for balancing coefficients of SOM-VAE and the di-
mension of SOM to be equal to K.

We compared and summarized major components of the benchmarks in Table 6.

E ADDITIONAL RESULTS ON THE EXPERIMENTS

E.1 TARGETING MULTIPLE FUTURE OUTCOMES

Throughout the experiment in Section 5.6, we identified 12 subgroups of patients that are associated
with the next-year development of 22 different comorbidities in the UKCF dataset. In Table 7, we
reported 12 identified clusters and the full list of comorbidities developed in the next year since the
latest observation and the corresponding frequency. Here, the frequency is calculated in a cluster-
specific fashion based on the true label.

16

Under review as a conference paper at ICLR 2020

Table 7: The comorbidities developed in the next year for the 12 identified clusters. The values in
parentheses indicate the corresponding frequency.

Clusters Comorbidities and Frequencies

Cluster
0

Diabetes (0.85) Liver Enzymes (0.21) Arthropathy (0.14) Depression (0.10)
Hypertens (0.08) Osteopenia (0.07) Intest. Obstruction (0.07) Cirrhosis (0.04)
ABPA (0.04) Liver Disease (0.04) Osteoporosis (0.03) Hearing Loss (0.03)
Asthma (0.02) Kidney Stones (0.01) Bone fracture (0.01) Hemoptysis (0.01)
Pancreatitis (0.01) Cancer (0.00) Gall bladder (0.00) Colonic stricture (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)

Cluster
1

Liver Enzymes (0.09) Arthropathy (0.08) Depression (0.07) Intest. Obstruction (0.06)
Diabetes (0.06) Osteopenia (0.05) ABPA (0.04) Asthma (0.03)
Liver Disease (0.03) Hearing Loss (0.03) Osteoporosis (0.02) Pancreatitis (0.02)
Kidney Stones (0.02) Hypertension (0.01) Cirrhosis (0.01) Gall bladder (0.01)
Cancer (0.01) Hemoptysis (0.00) Bone fracture (0.00) Colonic stricture (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)

Cluster
2

ABPA (0.77) Osteopenia (0.21) Intest. Obstruction (0.11) Hearing Loss (0.10)
Liver Enzymes (0.07) Diabetes (0.06) Depression (0.05) Pancreatitis (0.05)
Liver Disease (0.04) Arthropathy (0.04) Asthma (0.03) Bone fracture (0.02)
Osteoporosis (0.02) Hypertension (0.01) Cancer (0.01) Cirrhosis (0.01)
Kidney Stones (0.01) Gall bladder (0.01) Hemoptysis (0.00) Colonic stricture (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)

Cluster
3

Asthma (0.89) Liver Disease (0.87) Diabetes (0.29) Osteopenia (0.28)
Liver Enzymes (0.24) ABPA (0.15) Osteoporosis (0.11) Hearing Loss (0.06)
Arthropathy (0.05) Intest. Obstruction (0.05) Depression (0.04) Hypertension (0.03)
Cirrhosis (0.02) Kidney Stones (0.02) Pancreatitis (0.02) Gall bladder (0.02)
Cancer (0.01) Bone fracture (0.00) Hemoptysis (0.00) Colonic stricture (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)

Cluster
4

Osteoporosis (0.76) Diabetes (0.43) Arthropathy (0.20) Liver Enzymes (0.18)
Osteopenia (0.15) Depression (0.13) Intest. Obstruction (0.11) ABPA (0.11)
Hearing Loss (0.09) Liver Disease (0.08) Hypertension (0.07) Cirrhosis (0.07)
Kidney Stones (0.03) Asthma (0.02) Hemoptysis (0.02) Bone fracture (0.02)
Gall bladder (0.01) Pancreatitis (0.01) Cancer (0.00) Colonic stricture (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)

Cluster
5

Asthma (0.88) Diabetes (0.81) Osteopenia (0.28) ABPA (0.24)
Liver Enzymes (0.22) Depression (0.15) Osteoporosis (0.14) Intest. Obstruction (0.12)
Hypertension (0.10) Cirrhosis (0.10) Liver Disease (0.09) Arthropathy (0.08)
Bone fracture (0.01) Hemoptysis (0.01) Pancreatitis (0.01) Hearing Loss (0.01)
Cancer (0.01) Kidney Stones (0.01) GI bleed – var. (0.01) Gall bladder (0.00)
Colonic stricture (0.00) GI bleed – no var. (0.00)

Cluster
6

Liver Disease (0.85) Liver Enzymes (0.37) Osteopenia (0.27) ABPA (0.09)
Arthropathy (0.07) Diabetes (0.06) Intest. Obstruction (0.06) Osteoporosis (0.05)
Depression (0.03) Asthma (0.03) Hearing Loss (0.03) Cirrhosis (0.02)
Hemoptysis (0.02) Hypertension (0.01) Kidney Stones (0.01) Pancreatitis (0.00)
Gall bladder (0.00) Bone fracture (0.00) Cancer (0.00) Colonic stricture (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)

Cluster
7

ABPA (0.83) Diabetes (0.78) Osteopenia (0.25) Osteoporosis (0.24)
Liver Enzymes (0.15) Intest. Obstruction (0.12) Liver Disease (0.09) Hypertension (0.07)
Hearing Loss (0.07) Arthropathy (0.06) Depression (0.04) Cirrhosis (0.02)
Asthma (0.01) Bone fracture (0.01) Kidney Stones (0.01) Hemoptysis (0.01)
Cancer (0.00) Pancreatitis (0.00) Gall bladder (0.00) Colonic stricture (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)

Cluster
8

Diabetes (0.94) Liver Disease (0.83) Liver Enzymes (0.43) Osteopenia (0.30)
Hearing Loss (0.11) Osteoporosis (0.10) Intest. Obstruction (0.09) Cirrhosis (0.08)
Depression (0.08) ABPA (0.07) Arthropathy (0.06) Hypertension (0.05)
Kidney Stones (0.05) Asthma (0.02) Hemoptysis (0.01) Bone fracture (0.01)
Cancer (0.00) Pancreatitis (0.00) Gall bladder (0.00) Colonic stricture (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)

Cluster
9

Asthma (0.89) Osteopenia (0.26) ABPA (0.19) Arthropathy (0.14)
Intest. Obstruction (0.11) Depression (0.08) Osteoporosis (0.08) Diabetes (0.06)
Liver Enzymes (0.06) Hemoptysis (0.03) Hypertension (0.02) Liver Disease (0.02)
Pancreatitis (0.02) Bone fracture (0.01) Cancer (0.01) Cirrhosis (0.01)
Gall bladder (0.01) Hearing Loss (0.01) Kidney Stones (0.00) Colonic stricture (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)

Cluster
10

Osteopenia (0.82) Diabetes (0.81) Arthropathy (0.23) Depression (0.19)
Liver Enzymes (0.18) Hypertension (0.16) Hearing Loss (0.10) Liver Disease (0.10)
Osteoporosis (0.10) Intest. Obstruction (0.09) ABPA (0.09) Kidney Stones (0.07)
Cirrhosis (0.05) Asthma (0.01) Cancer (0.00) GI bleed – var. (0.00)
Bone fracture (0.00) Hemoptysis (0.00) Pancreatitis (0.00) Gall bladder (0.00)
Colonic stricture (0.00) GI bleed – no var. (0.00)

Cluster
11

Osteopenia (0.77) Liver Enzymes (0.18) Arthropathy (0.12) Depression (0.09)
Hypertension (0.06) Diabetes (0.06) Hearing Loss (0.06) ABPA (0.05)
Liver Disease (0.05) Osteoporosis (0.04) Intest. Obstruction (0.04) Cirrhosis (0.02)
Asthma (0.02) Pancreatitis (0.02) Bone fracture (0.01) Cancer (0.01)
Kidney Stones (0.00) Gall bladder (0.00) Colonic stricture (0.00) Hemoptysis (0.00)
GI bleed – no var. (0.00) GI bleed – var. (0.00)

17

Under review as a conference paper at ICLR 2020

F PSEUDO-CODE OF AC-TPC

As illustrated in Section 3.2, AC-TPC is trained in an iterative fashion. We provide the pseudo-code
for optimizing our model in Algorithm 1 and that for initializing the parameters in Algorithm 2.

Algorithm 1 Pseudo-code for Optimizing AC-TPC

Input: Dataset D = {(xnt , ynt)T
n

t=1}Nn=1, number of clusters K, coefficients (α, β),
learning rate (ηA, ηC , ηE), mini-batch size nmb, and update step M

Output: AC-TPC parameters (θ, ψ, φ) and the embedding dictionary E
Initialize parameters (θ, ψ, φ) and the embedding dictionary E via Algorithm 2

repeat
Optimize the Encoder, Selector, and Predictor
for m = 1, · · · ,M do

Sample a mini-batch of nmb data samples: {(xnt , ynt)T
n

t=1}nmb

n=1 ∼ D
for n = 1, · · · , nmb do

Calculate the assignment probability: πnt = [πnt (1) · · ·πnt (K)]← hψ(fθ(xn1:t))
Draw the cluster assignment: snt ∼ Cat(πnt)
Calculate the label distributions: ȳnt ← gφ(e(snt)) and ŷnt ← gφ(fθ(xn1:t))

end for
Update the encoder fθ and selector hψ:

θ ← θ − ηA

(
1

nmb

nmb∑
n=1

T n∑
t=1

`1(ynt , ȳ
n
t)∇θ log πnt (snt)− α∇θ

K∑
k=1

πnt (k) log πnt (k)

)

ψ ← ψ − ηA

(
1

nmb

nmb∑
n=1

T n∑
t=1

`1(ynt , ȳ
n
t)∇ψ log πnt (snt)− α∇ψ

K∑
k=1

πnt (k) log πnt (k)

)
Update the predictor gφ:

φ← φ− ηC
1

nmb

nmb∑
n=1

T n∑
t=1

∇φ`1(ynt , ȳ
n
t)

end for

Optimize the Cluster Centroids
for m = 1, · · · ,M do

Sample a mini-batch of nmb data samples: {(xnt , ynt)T
n

t=1}nmb

n=1 ∼ D
for n = 1, · · · , nmb do

Calculate the assignment probability: πnt = [πnt (1) · · ·πnt (K)]← hψ(fθ(xn1:t))
Draw the cluster assignment: snt ∼ Cat(πnt)
Calculate the label distributions: ȳnt ← gφ(e(snt))

end for
for k = 1, · · · ,K do

Update the embeddings e(k):

e(k)← e(k)− ηE

(
1

nmb

nmb∑
n=1

T n∑
t=1

∇e(k)`1(ynt , ȳ
n
t)− γ

K∑
k′=1
k′ 6=k

∇e(k)`1
(
gφ(e(k)), gφ(e(k′))

))

end for
Update the embedding dictionary: E ← {e(1), . . . e(K)}

end for
until convergence

18

Under review as a conference paper at ICLR 2020

Algorithm 2 Pseudo-code for pre-training AC-TPC

Input: Dataset D = {(xnt , ynt)T
n

t=1}Nn=1, number of clusters K, learning rate η, mini-batch size nmb
Output: AC-TPC parameters (θ, ψ, φ) and the embedding dictionary E
Initialize parameters (θ, ψ, φ) via Xavier Initializer

Pre-train the Encoder and Predictor
repeat

Sample a mini-batch of nmb data samples: {(xnt , ynt)T
n

t=1}nmb

n=1 ∼ D
for n = 1, · · · , nmb do

Calculate the label distributions: ŷnt ← gφ(fθ(xn1:t))
end for

θ ← θ − η 1

nmb

nmb∑
n=1

T n∑
t=1

∇θ`1(ynt , ŷ
n
t) φ← φ− η 1

nmb

nmb∑
n=1

T n∑
t=1

∇φ`1(ynt , ŷ
n
t)

until convergence

Initialize the Cluster Centroids
Calculate the embedding dictionary E and initial cluster assignments cnt

E , {{cnt }T
n

t=1}Nn=1 ← K-means({{znt }T
n

t=1}Nn=1,K)

Pre-train the Selector
repeat

Sample a mini-batch of nmb data samples: {(xnt , ynt)T
n

t=1}nmb

n=1 ∼ D
for n = 1, · · · , nmb do

Calculate the assignment probability: πnt = [πnt (1) · · ·πnt (K)]← hψ(fθ(xn1:t))
end for
Update the selector hψ:

ψ ← ψ + η
1

nmb

nmb∑
n=1

T n∑
t=1

K∑
k=1

cnt (k) log πnt (k)

until convergence

19

