
Under review as a conference paper at ICLR 2020

TRAINING INTERPRETABLE CONVOLUTIONAL NEU-
RAL NETWORKS TOWARDS CLASS-SPECIFIC FILTERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Convolutional neural networks (CNNs) have often been treated as “black-box”
and successfully used in a range of tasks. However, CNNs still suffer from the
problem of filter ambiguity – an intricate many-to-many mapping relationship be-
tween filters and features, which undermines the models’ interpretability. To in-
terpret CNNs, most existing works attempt to interpret a pre-trained model, while
neglecting to reduce the filter ambiguity hidden behind. To this end, we propose a
simple but effective strategy for training interpretable CNNs. Specifically, we pro-
pose a novel Label Sensitive Gate (LSG) structure to enable the model to learn dis-
entangled filters in a supervised manner, in which redundant channels experience a
periodical shutdown as flowing through a learnable gate varying with input labels.
To reduce redundant filters during training, LSG is constrained with a sparsity
regularization. In this way, such training strategy imposes each filter’s attention to
just one or few classes, namely class-specific. Extensive experiments demonstrate
the fabulous performance of our method in generating sparse and highly label-
related representation of the input. Moreover, comparing to the standard training
strategy, our model displays less redundancy and stronger interpretability.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) demonstrate extraordinary performance in various visual
tasks (Krizhevsky et al., 2012; He et al., 2016; Girshick, 2015; He et al., 2017a). However, the strong
expressive power of CNNs is still far from interpretable, which significantly limits its applications
that require humans’ trust or interaction, e.g. self-driving and medical image analysis (Caruana
et al., 2015; Bojarski et al., 2017). In this paper, we argue that filter ambiguity is one of the most
critical reasons that hampers the interpretability of CNNs. As a matter of fact, previous studies has
shown that 1) filters in CNNs generally extract features of a mixture of various semantic concepts,
including objects, parts, scenes, textures, materials and colors (Zhang et al., 2018b; Bau et al., 2017);
and that 2) there is also redundant overlap between features extracted by different filters (Prakash
et al., 2019). The intricate many-to-many mapping relationship between filters and features is so-
called filter ambiguity.

Obviously, filter ambiguity contradicts our original intention of an interpretable CNN, because it
hinders humans from interpreting the concepts of a filter (Zhang et al., 2018b), which has been
shown as an essential role in the visualization and analysis of networks (Olah et al., 2018) in human-
machine collaborative systems (Zhang et al., 2017a;c). Moreover, the unnecessary overlap between
features extracted by different filters leads to under-utilization of a model’s expressiveness (Prakash
et al., 2019) Therefore, it is of critical importance to obtain better feature with better interpretability
and less redundancy, alleviating filter ambiguity in CNNs.

However, it is non-trivial to achieve such a goal barricaded by substantial challenges. First, most
interpretability-related research simply focuses on post-hoc interpretation of filters (Szegedy et al.,
2013; Bau et al., 2017), which manages to interpret the main semantic concepts captured by a filter
but fails to alleviate the filter ambiguity prevalent in pretrained models. Second, many existing works
such as VAEs’ variants (Higgins et al., 2017; Burgess et al., 2018; Kim & Mnih, 2018; Chen et al.,
2018; Kumar et al., 2017) and InfoGAN (Chen et al., 2016) try to disentangle data representation
and obtain better interpretability in an unsupervised way. However, it is proved that unsupervised

1

Under review as a conference paper at ICLR 2020

learning on disentangled features without inductive bias is impossible (Locatello et al., 2018), which
challenges the works above.

Considering the aforementioned challenges, we shed light on filter disambiguation during training
(instead of post-hoc) in a supervised manner without extra labels. To this end, we propose a novel
training strategy that coerces each filter into extracting features from only one or few classes for
classification tasks, namely disentangling filters towards class-specific. Specifically, we design a
Label Sensitive Gate (LSG) structure on the top of convolutional filters, which limits each filter’s
activation only to its specific input label(s). In our training process, we periodically insert LSG into
the CNN and jointly minimize the classification cross-entropy and the sparsity of LSG, so as to keep
the model’s performance on classification and meanwhile encourage class-specific filters.

Experiments show that our training method makes data representation sparse and highly correlated
with the labeled class, which not only illustrates the alleviation of filter ambiguity but also enhances
the interpretability of the network. The advantages of our method are concretely substantiated by
sparser correlation between filters, sparser filter-class correlation, better explanation for misclassifi-
cation and more precise localization of labeled objects.

Contributions. The contributions of this work can be summarized as: (1) we propose a novel
training strategy for CNNs which forces each filter to extract features mainly from only one or a few
classes; (2) moreover, we propose a metric to evaluate filter ambiguity, which can also be used as a
regularization in our training to encourage class-specific filters; (3) finally, our training enables filters
to output sparse and label-related representation, which helps alleviate filter redundancy, improve
interpretability of the model.

2 RELATED WORKS

Existing works related to our work include post-hoc filter interpretation, learning disentangled rep-
resentation and model pruning.

Post-hoc Interpretation for Filters is widely studied, which aims to interpret the patterns captured
by filters in pretrained CNNs. Plenty of works visualize the pattern of a neuron as an image, which
is the gradient (Zeiler & Fergus, 2014; Mahendran & Vedaldi, 2015; Simonyan et al., 2013) or accu-
mulated gradient (Mordvintsev et al., 2015; Olah et al., 2018) of a certain score about the activation
of the neuron. Bau et al. (2017) determine the main visual patterns extracted by a convolutional
filter by treating it as a pattern detector. Some other works transfer the representation in CNN into
an explanatory graph (Zhang et al., 2017b; 2018a) or a decision tree (Zhang et al., 2019), which aim
to figure out the visual patterns of filters and the relationship between co-activated patterns. Post-
hoc filter interpretation helps to understand the main patterns of a filter but makes no change to the
existing filter ambiguity of the pretrained models, while our work aims to train interpretable models.

Learning Disentangled Representation refers to learning data representation that encodes differ-
ent semantic information into different dimensions. As a principle, it proves impossible to learn
disentangled representation without inductive bias (Locatello et al., 2018). Unsupervised methods
such as variants of VAEs (Kingma & Welling, 2014) and InfoGAN (Chen et al., 2016) rely on regu-
larization. VAEs (Kingma & Welling, 2014) are modified into many variants (Higgins et al., 2017;
Burgess et al., 2018; Kim & Mnih, 2018; Chen et al., 2018; Kumar et al., 2017), while their dis-
entangling performance is sensitive to hyperparameters and random seeds. InfoGAN (Chen et al.,
2016) learns disentangled hidden representations by maximizing the mutual information between
input and generated images. Some other unsupervised methods rely on special network architec-
tures including interpretable CNNs (Zhang et al., 2018b) and CapsNet (Sabour et al., 2017). As for
supervised methods, Thomas et al. (2018) propose to disentangle with interaction with the environ-
ment; Bouchacourt et al. (2018) apply weak supervision from grouping information, while our work
applies weak supervision from classification labels.

Model Pruning reduces structure redundancy and therefore is widely used for both model effi-
ciency and better generalization, while our work uses it to alleviate filter ambiguity and improve
interpretability. Many existing methods prune pretrained CNNs for better efficiency without signif-
icant deterioration in performance, including channel-wise pruning (He et al., 2017b; Molchanov
et al., 2016; Liu et al., 2017) and filter-wise pruning (Luo et al., 2017). The methods mentioned im-
ply that CNNs trained by standard training strategy tend to have redundant filters. Further research

2

Under review as a conference paper at ICLR 2020

exploits redundant filters to improve generalization and suppress over-fitting by temporally pruning
during training: Dense-Sparse-Dense (Han et al., 2016) encourages sparse weights by regulariza-
tion and then recovers dense weights by removing the regularization; RePr (Prakash et al., 2019)
repeatedly prunes and reinitializes redundant filters to reduce filter overlap.

3 METHOD

Learning disentangled filters in CNNs alleviates filter ambiguity and meanwhile narrows the gap
between human’s perception and CNN’s representations. In this section, we first present an ideal
case of class-specific filters, which is a direction for our training, and then we elaborate on our
method about how to train an interpretable network.

channels from normal filters

shared

channels from ideally class-specific filters

ship dog cat plane

when input belongs to ‘dog’

ship dog cat plane

Figure 1: The intuition of disentangling filters to class-specific. In a normal CNN, each filter
extracts a mixture of features from different classes (Zhang et al., 2018b), which is a symptom
of filter ambiguity. In contrast, when filters are ideally class-specific, each filter extracts features
mainly from only one class. Given the labeled class of an input, the filters irrelevant to the class
have weak activation, and hence classification performance changes little when they are shut down.

3.1 CLASS-SPECIFIC FILTERS

For CNNs in classification tasks, it is demonstrated that the filters in the last convolutional layer
extract high-level features related to certain classes more or less (Zeiler & Fergus, 2014). We sup-
pose the most ideal case, as shown in Figure 1, is that each filter extracts features mainly from only
one class, i.e. each filter is mainly relevant to one class. We call such filters ideally class-specific.
Obviously, given the labeled class of an input, the classification performance changes little if we
shut down the channels from the filters irrelevant to the class. This is the direction for our training
method elaborated later.

To have a rigorous definition of “ideally class-specific”, for a CNN, we use a matrixG ∈ {0, 1}C×K
to measure the relevance between filters and classes, where K is the number of filters, C is the
number of classes, and each element Gkc represents the relevance between the k-th filter and c-th
class, as shown in Figure 2. The k-th filter extracts features mainly in the c-th class when and only
when Gkc = 1. Given the label y ∈ {1, 2, ..., C} of an input, we can index a row Gy ∈ {0, 1}K from
the matrixG, which can be used as a gate multiplied to the feature maps to shut down those irrelevant
channels. We call filters in a CNN as ideally class-specific filters, when the network’s prediction ỹG
approaches that of original network ỹ after the feature maps from the last convolutional layer are
multiplied by the gate Gy .

3.2 PROBLEM FORMULATION

In order to train a CNN towards disentangling filters to class-specific and meanwhile keep the origi-
nal classification performance, as opposed to the standard training scheme that entangles filters, we
introduce a Label-Sensitive Gate (LSG) path in addition to the standard path of forward propaga-
tion. In such a LSG path, some channels are shut down by multiplication with a learnable gate. This
path’s classification performance is regarded as a regularization for disentanglement training.

As shown in Figure 2, let us denote θ as the network parameters. The network forward propagates
in two paths: 1) the standard (STD) path predicting ỹθ, and 2) the LSG path with gate matrix G
predicting ỹGθ where the learnable gate Gy for the input labeled with y is multiplied to the feature
map before the linear layer.

Initially, the elements in the gate matrix G for a CNN are unknown. Intuitively, we can search for
them by exploring the binary space and find one solution that yields the best classification perfor-
mance through LSG path, i.e., to solve Φ0(θ) = minG:Gkis one-hot CE(y||ỹGθ), where the constraint

3

Under review as a conference paper at ICLR 2020

a learnable label-sensitive
gate (LSG) matrix

cl
as

se
s

channels
…

0 0 0 ⋯ 0 0 0�

(input , label)

prediction

convolutional layers

linear layer

input

prediction

LSG Path Standard Path

convolutional layers

linear layer

label
0 0 0 0 ⋯ 1 0 0 1
0 0 0 1 ⋯ 0 1 0 0
0 1 0 0 ⋯ 0 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 0 1 0 ⋯ 0 0 0 0

…

…

Figure 2: The framework of Label-Sensitive Gate (LSG) training. During LSG training, we al-
ternately train a CNN through both the LSG path and the standard (STD) path. In the STD path,
network parameters are optimized to minimize the cross-entropy. In the LSG path, feature maps
after the last convolutional layer pass through the learnable gate which is a row vector in the LSG
matrix indexed by the label of the input. Network parameters and LSG matrix are optimized to
minimize the cross-entropy in conjunction with a sparsity regularization for the LSG matrix. When
testing, we just run the STD path.

on Gk applies to ∀k ∈ {1, 2, ...,K} and Φ0 evaluates the performance of the CNN with filters dis-
entangled. Therefore, it is natural to add Φ0 into training loss as a regularization that forces filters
to be class-specific. Thus, we get the following formulation of the original problem to train a CNN
towards ideally class-specific filters as

min
θ
L0(θ) = CE(y||ỹθ) + λΦ0(θ). (1)

However, the problem is difficult to solve in practice. On the on hand, the assumption that each filter
is ideally disentangled to extract only one class hardly holds, since it is usual for several classes to
share one high-level feature in CNNs; on the other hand, binary vectors in a non-continuous space
are difficult to optimize with gradient descent.

To address these two issues, we relax the constraints from two perspectives. First, we relax the
one-hot vectorGk to sparse vector by L1 regularization ‖G‖1 where at least one element equals to 1
(
∥∥Gk∥∥∞ = 1). Since ||Gk||∞ = 1 ensures ‖G‖1 to be larger than K, we actually apply

∣∣ ‖G‖1− s∣∣
as the sparsity regularization term in order to make the norm of gate matrix close to a constant target
norm s ≥ K. Second, we relax the binary vectorGk ∈ {0, 1}C to a continuous vectorGk ∈ [0, 1]C .
Therefore Φ0 now becomes

Φ(θ) = min
G
{CE(y||ỹGθ) + a

∣∣ ‖G‖1 − s∣∣} s.t.
∥∥Gk∥∥∞ = 1 and Gkc ∈ [0, 1], (2)

where a is a coefficient to balance classification and sparsity. Φ can be regarded as a metric of filter
ambiguity, which means a CNN with higher class-specificity of filters will have a lower Φ (contrary
to common sense, here we expect Φ to be as small as possible).

Replacing Φ0 in Equation 1 with Φ, we get an intermediate problem minθ(CE(y||ỹθ) + λΦ(θ)). It
is mathematically equivalent if we move minG within Φ to the left most (see Appendix A for proof).
Thus, we formulate a relaxed problem as

min
θ,G

L(θ,G) = CE(y||ỹθ) + λ(CE(y||ỹGθ) + a
∣∣ ‖G‖1 − s∣∣), (3)

s.t.
∥∥Gk∥∥∞ = 1 and Gkc ∈ [0, 1].

The relaxed problem is easier to solve by jointly optimizing θ and G with gradient descent, com-
pared to either the discrete optimization in the original problem, or the nested optimization in the
intermediate problem. Solving the relaxed problem, we can obtain a CNN for classification with
class-specific filters, where G precisely describes the correlation between filters and classes.

3.3 OPTIMIZATION

To solve the optimization problem formulated in Equation 3 with gradient descent, we alternately
optimize G and θ to improve the classification performance of the model while ensuring the con-

4

Under review as a conference paper at ICLR 2020

straints of sparsity on G, as is shown in Algorithm 1 1. In this scheme, we run the LSG path
to update both G and θ in some epochs of a period, and run the STD path to update θ in the other
epochs. WhenG is updated with gradient,Gk will be normalized by

∥∥Gk∥∥∞ to ensure
∥∥Gk∥∥∞ = 1,

and then clipped into range [0, 1].

After solving the relaxed problem, we can further tighten the constraint on LSG to G ∈ {0, 1}C×K
for stronger sparsity ofG. In this work, we tighten into a simple and special case, where some filters
are related to only one class (i.e. Gk is one-hot) for class-specific features, and the other filters are
related to all classes (i.e. Gk is all-one) for class-sharing features. Specifically, if Gk has only one
elementGkc ≥ h (threshold h ∈ (0, 1])Gk will be set to one-hot, otherwiseGk will be set to all-one.

Algorithm 1 LSG Training
1: for E in epochs do
2: for N in batches do
3: if E%3 == 1 then
4: ỹGθ ← prediction through the LSG path with G
5: Cost← λ(CE(y||ỹGθ) + a

∣∣∥∥G∥∥
1
− s
∣∣)

6: G is updated using the gradient decent as G← G− ε∂Cost∂G ;
7: Each column of Gk is normalized as Gk ← Gk

‖Gk‖∞
;

8: G← clip(G, 0, 1)
9: else

10: ỹθ ← prediction through the STD path
11: Cost← CE(y||ỹθ)
12: end if
13: θ ← θ − ε∂Cost∂θ
14: end for
15: end for

4 EXPERIMENT

We evaluate our method on CIFAR-10 classification task. We report the last validation accuracy
following common practice. In the following parts, we denote our training method Label-Sensitive
Gate as LSG, the standard training as STD, and CNNs trained with them as LSG CNNs and STD
CNNs, respectively.

The default settings include: batch size is 256; the optimizer is SGD with momentum of 0.9
(Sutskever et al., 2013); the initial learning rate is 0.1; the CNN model is ResNet20 (He et al.,
2016); and the total training epochs is 150. For fair comparison, all the code is implemented on the
Pytorch framework and tested on GTX 1080Ti GPUs.

4.1 IMPLEMENTATION OF LSG TRAINING

To begin with, we conduct experiments to demonstrate the effectiveness of our LSG training in
learning a sparse gate matrix and yielding a low Φ that evaluates class-specificity of filters.

Quantitative Evaluation To compare the performance on classification and filter disentangle-
ment of the STD CNN and the LSG CNN, we calculate their test accuracy, cross entropy, L1 Norm
‖G‖1 and Φ as mentioned in Section 3.2. As shown in Table 1, LSG CNN’s even slightly outper-
forms STD CNN in test accuracy, and cross entropy of both is comparable, while LSG CNN has
much lower L1 Norm and Φ. The L1 Norm and the Φ indicate LSG learns class-specific filters that
hence reduce filter ambiguity. These metrics quantitatively demonstrate LSG’s capability of learning
a sparse gate matrix and disentangling filters without any sacrifice on classification accuracy.

1Another choice is a naive scheme: in all epochs we predict through both paths to directly calculate L(θ,G)
defined in equation 3 and update θ and G with gradients of it. We choose the alternating scheme because in our
preliminary exploration it shows better training stability and converging speed.

5

Under review as a conference paper at ICLR 2020

Table 1: Metrics of the STD CNN and the LSG CNN.

Training Accuracy Cross Entropy L1 Norm Φ

STD 0.9046 6.8657 0.4757 0.8234
LSG (Ours) 0.9062 6.9762 0.1742 0.2203

Visualization of Label-Sensitive Gate Matrix To illustrate the relevance between classes and the
learned filters described in the gate matrix, we visualize gate matrices in Figue 3. Subfigure (a)
indicates that the LSG training yields a sparse LSG matrix where each filter is only related to one or
few classes. Subfigure (b) comes from a LSG training without the sparsity regularization to the gate
matrix (L1 norm), from which we observe filter ambiguity where a filter would extract ambiguous
features from multiple classes. Accordingly, LSG training effectively learn sparse gate matrix, and
this characteristic originates from our sparsity regularization – the L1 norm on the gate matrix.

(a) Gate Matrix of LSG CNN using L1 Regularization

Filter ID

Class
ID

(b) Gate Matrix of STD CNN w/o L1 Regularization
1.0

0.0

Filter ID

0
2
4
6
8

0 10 20 30 40 50 600 10 20 30 40 50 60

Figure 3: Visualization of the gate matrices from LSG training w/o the sparsity regularization on the
gate matrix. The x-axis is the filter id from 1 to 64, the y-axis is the class id in CIFAR10 from 0 to
9, and the color represents how much a filter is related to a class.

LSG CNN Mask 1 Class’s Filters LSG CNN Mask 1 and 6 Class’s FiltersSTD CNN Mask 1 and 6 Class’s FiltersSTD CNN Mask 1 Class’s Filters

(a1) (a2) (b1) (b2)
Ours

-

0.8

0.6

0.4

0.2

0.0

plane
car

bird
cat

dear
dog
frog

horse
ship

truck

pl
an

e
ca

r
bi

rd

ca
t

de
ar

do

g
fr

og

ho
rs

e
sh

ip

tru
ck

pl
an

e
ca

r
bi

rd

ca
t

de
ar

do

g
fr

og

ho
rs

e
sh

ip

tru
ck

pl
an

e
ca

r
bi

rd

ca
t

de
ar

do

g
fr

og

ho
rs

e
sh

ip

tru
ck

pl
an

e
ca

r
bi

rd

ca
t

de
ar

do

g
fr

og

ho
rs

e
sh

ip

tru
ck

Figure 4: Classification confusion matrix for STD / LSG models when masking filters highly related
to the first class (a1, b1), and the first and sixth classes (a2, b2).

4.2 CLASS-SPECIFIC FILTERS

To substantiate that LSG training learns class-specific filters and reveal how it works, we explore the
LSG CNN with filters masked for certain class(es) from which we observe the similarity between
feature vectors and gates.

Masking Filters for Certain Class Although the sparse gate matrix implies filters are class-
specific, to further verify the LSG training learns class-specific filters, we remove the filters highly
related to certain class(es) referencing the gate matrix (i.e. Gkc greater than a threshold), and then
visualize the classification confusion matrices. As shown in Figure 4, when filters highly related to
“plane” are removed, to our surprise, the LSG CNN fails to recognize the first class ”plane”; nev-
ertheless, the STD CNN still manages to recognize ”plane”. Analogously, when masking the filters
highly related to the first and sixth classes, we observe similar phenomenon. This demonstrates that
in the LSG CNN, the features from a certain class are almost extracted by the specific filters highly
related to the class, while other filters extract little feature from the class. Therefore the filters are
trained to be class-specific under the encouragement of the sparse gate matrix.

Similarity Between Features and Gates This experiment explains how the LSG matrix encour-
ages class-specific filters by analyzing the similarity between feature from each class and each row
in the LSG matrix. In our models there is a global average pooling (GAP) layer after the last convo-
lutional layer, which yields a feature vector denoted as a. We use inner production to measure the
similarity Scy between the feature vectors ay of images in the class y and the c-th row Gc in the LSG
matrix (see Appendix B for details). We calculate Scy over all true positive (TP) and false negative
(FN) images respectively and obtain similarity matrices STP , SFN ∈ RC×C , as shown in Figure 5.

6

Under review as a conference paper at ICLR 2020

From the figure, we observe two phenomena and provide the following analysis. 1) TP similarity
matrix is diagonally dominant significantly, which reveals how LSG works in disentangling filters
to class-specific: LSG forces filters to yield feature vectors whose direction approaches that of the
gate vector for its related class. 2) FN similarity matrix is far from diagonally dominant. Besides,
two classes with shared features, such as car & truck and ship & plane, have high similarity in the
FN similarity matrix, which enlightens us that hard samples with ambiguous feature across classes
tends to be misclassified in LSG models. Thus, the mechanism of misclassification in the LSG CNN
is probably the features across classes extracted by the shared filters .

car
truck
ship

plane
bird
deer

horse
frog
dog
cat

0.13

0.12

0.11

0.10

0.09

0.08

0.07

ca
r

tru
ck

sh

ip

pl
an

e
bi

rd

de
er

ho

rs
e

fr
og

do

g
ca

t

(b) False Positive
car

truck
ship

plane
bird
deer

horse
frog
dog
cat

A
ct

iv
at

io
n

of
 F

ea
tu

re
 M

ap 0.16

0.14

0.12

0.10

0.08
ca

r
tru

ck

sh
ip

pl

an
e

bi
rd

de

er

ho
rs

e
fr

og

do
g

ca
t

(a) True Positive

Figure 5: The similarity between feature vectors from a class (y-axis) and a row in the LSG matrix
(x-axis), averaged over all TP/FN samples. We reorder classes in CIFAR10 for better visualization.

4.3 INTERPRETABILITY IN LOCALIZATION

To delve deeper into how LSG brings better model accuracy and interpretability by disentangled
features, we provide a case study on its performance in localization. Specifically, we use class acti-
vation maps (CAM) (Zhou et al., 2016) to localize the area contributing to the prediction from STD
CNN and LSG CNN, as shown in Figure 6. We observe that the CAM of STD CNN often activate
extra or other semantic areas unrelated to the labeled class. However, LSG training successfully
helps the CNN find a more precise area of the labeled objects in an image. Such a phenomenon in-
dicates that LSG training improves the performance in localization. We believe that this is because
class-specific filters yield more label-related representations, which encourages the model to better
focus on the semantics of the labeled class while muting the interference from other classes.

Car TrunkPlane

LSG CNN
Predicted
(Ours)

CatCatCat Dog

STD CNN
Predicted

True
Labels

Bird

Figure 6: Visualizing the localization in STD CNN and LSG CNN with CAM (Zhou et al., 2016).

4.4 TIGHTER CONSTRAINT FOR GATES

To further explore the characteristic of LSG training under tighter constraint, we study channel
correlation of the models trained with tighter constraint.

Constraint Tightening Before tightening the constraint on gate matrix G ∈ {0, 1}C×K accord-
ing to Section 3.3, we first conduct a statistic analysis on 20 different LSG models to figure out
how many filters each class monopolizes. The result indicates that in CIFAR10, each class tends
to monopolize 10% total filters (6 for ResNet20’s last convolutional layer), and 10% from all filters
are shared by classes. Inspired by this phenomenon, we tighten the constraint accordingly by man-
ually setting a fixed LSG matrix. In the fixed LSG matrix, for each row Gc there are 6 ones from
6 columns of one-hot Gk, and 4 extra columns Gk are all-one (see Appendix C for illustration).
This provides a setup where each class monopolizes 6 filters and 4 extra filters are shared by all
classes. Models trained with this constraint naturally inherits all features of previous LSG models,
and moreover, has better disentangled filters.

Channel Correlation Analysis To further verify and explain that LSG yields highly label-related
representation, we analyze the correlation between filters in STD and LSG models. We train an
AlexNet (Krizhevsky et al., 2012) and a ResNet20 with the fixed LSG matrix or with STD, and

7

Under review as a conference paper at ICLR 2020

then calculate the correlation between filters in each models. The correlation between two filters is
defined as the inner product of their weights, visualized as matrices in Figure 7. In subfigures (a), (c)
for STD models, the filters are randomly correlated with each other. On the contrary, subfigures (b),
(d) for LSG models, the matrices are approximately block-diagonal, which means the correlation
between the filters is limited into several filter groups corresponding to classes. This implies that
filters for the same class are highly correlated for the co-occurrence of the extracted features, while
filters for different classes are almost uncorrelated for the lack of co-occurrence.

Therefore we believe features from a specific class tend to activate filters for this class, rather than
shared filters or filters for other classes. To prove this, for each element ai,j in the correlation matrix,
we define the i-th filter and j-th filter are correlated if ai,j > s where s is a varying threshold. We
count the ratio of elements in the correlation matrix satisfying the constrain and plot the results in
subfigure (e). It shows that LSG significantly reduces the redundant weak (e.g. threshold= 0.3) cor-
relation between most filter pairs, which are mostly from different classes. Thus the representation
for an image tends to exactly correspond to its label, namely highly label-related representation.

(a) (b) (c) (d) (e)

0 40 80 120 160 200 240
Filter ID

0 40 80 120 160 200 240
Filter ID

0

100

200

Fi
lt

er
ID

0

100

200

Fi
lt

er
ID

STD AlexNet LSG AlexNet (Ours)

0 10 20 30 40 50 60
Filter ID

0

20

60

Fi
lt

er
ID

40

LSG ResNet20 (Ours)STD ResNet20

0 10 20 30 40 50 60
Filter ID

0

20

60
Fi

lt
er

ID

40

1.0

0.8

0.6

0.4

0.2

0.0 0.0 0.1 0.2 0.3 0.5 0.6
threshold

ra
ti

o
of

(e
le

m
en

t>
th

re
sh

ol
d) 1.0

0.8

0.6

0.4

0.2

0.0

the ratio of (element>threshold) in left 4 matrices

STD AlexNet
LSG AlexNet (Ours)

LSG ResNet20 (Ours)
STD RestNet20

Figure 7: The correlation matrix of filters in AlexNet and ResNet20 trained with STD/LSG. (e)
shows the ratio of each matrix’ elements larger than a varying threshold.

Further Evidence of Label-Related Representation To confirm the representation is highly
label-related in an intuitive way, we analyze the correlation between the filters highly activated
by each class. First we pick out each class c’s dominant m filters, denoted as group Ac (class c
has highest average activation on them; m = 25 for AlexNet; m = 6 for RestNet20). We define
Inter-Class filter correlation as the average correlation between filters in different classes’ group:
CIC = 1

C(C−1)m2

∑
c

∑
c6=c′

∑
k∈Ac

∑
k′∈Ac′

Ck,k′ , where Ck,k′ is the row k column k′ of the fil-
ter correlation matrix in Figure 7. The results in Table 2 show that inter-class filter correlation in
LSG is about half as much as that in STD, both on AlexNet and ResNet20. This demonstrates that
different classes tend to activate uncorrelated filters in LSG CNNs. As a result, the representations
for different classes have less overlap. Thus we finally confirm representation from LSG CNN is
highly label-related.

Table 2: Inter-Class Filter Correlation (CIC)

Model STD AlexNet LSG AlexNet (Ours) STD ResNet20 LSG ResNet20 (Ours)

CIC 0.1224 0.0684 0.1648 0.1022

Besides all experiments above, see Appendix D, E for more explorations of LSG models, including
feature clustering and adversarial samples.

5 CONCLUSION

In this work, we propose a simply yet effective structure – Label Sensitive Gate Matrix to disentangle
the filters in CNNs. With reasonable assumptions about the behaviors of filters, we derive regular-
ization terms to constrain the form of the gate matrix. As a result, the sparsity of the gate matrix
encourages class-specific filters, and therefore yields sparse and highly label-related representations,
which endows model with better interpretability. We believe LSG is a promising architecture to dis-
entangle filters in CNNs. Referring to LSG’s successful utility and feasibility in classification prob-
lem, we expect that LSG also have the potential to interpret other tasks like detection, segmentation
etc, and networks more than CNNs, which is the direction of our future work.

8

Under review as a conference paper at ICLR 2020

REFERENCES

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 6541–6549, 2017.

Mariusz Bojarski, Philip Yeres, Anna Choromanska, Krzysztof Choromanski, Bernhard Firner,
Lawrence Jackel, and Urs Muller. Explaining how a deep neural network trained with end-to-
end learning steers a car. arXiv preprint arXiv:1704.07911, 2017.

Diane Bouchacourt, Ryota Tomioka, and Sebastian Nowozin. Multi-level variational autoencoder:
Learning disentangled representations from grouped observations. In Thirty-Second AAAI Con-
ference on Artificial Intelligence, 2018.

Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Des-
jardins, and Alexander Lerchner. Understanding disentangling in β-vae. arXiv preprint
arXiv:1804.03599, 2018.

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. Intel-
ligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1721–1730. ACM, 2015.

Tian Qi Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of disentan-
glement in variational autoencoders. In Advances in Neural Information Processing Systems, pp.
2610–2620, 2018.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in neural information processing systems, pp. 2172–2180, 2016.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision,
pp. 1440–1448, 2015.

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang, Erich Elsen, Peter Va-
jda, Manohar Paluri, John Tran, et al. Dsd: Dense-sparse-dense training for deep neural networks.
arXiv preprint arXiv:1607.04381, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017a.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1389–1397,
2017b.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. International Conference on Learning Representations, 2(5):
6, 2017.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. arXiv preprint arXiv:1802.05983,
2018.

Diederik P Kingma and Max Welling. Stochastic gradient vb and the variational auto-encoder. In
International Conference on Learning Representations, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

9

Under review as a conference paper at ICLR 2020

Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Variational inference of disentan-
gled latent concepts from unlabeled observations. arXiv preprint arXiv:1711.00848, 2017.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 2736–2744, 2017.

Francesco Locatello, Stefan Bauer, Mario Lucic, Sylvain Gelly, Bernhard Schölkopf, and Olivier
Bachem. Challenging common assumptions in the unsupervised learning of disentangled repre-
sentations. arXiv preprint arXiv:1811.12359, 2018.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pp. 5058–5066, 2017.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting
them. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
5188–5196, 2015.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going deeper
into neural networks, 2015. URL https://research.googleblog.com/2015/06/
inceptionism-going-deeper-into-neural.html.

Nina Narodytska and Shiva Prasad Kasiviswanathan. Simple black-box adversarial perturbations
for deep networks. arXiv preprint arXiv:1612.06299, 2016.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Katherine Ye, and
Alexander Mordvintsev. The building blocks of interpretability. Distill, 2018. doi: 10.23915/
distill.00010. https://distill.pub/2018/building-blocks.

Aaditya Prakash, James Storer, Dinei Florencio, and Cha Zhang. Repr: Improved training of convo-
lutional filters. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 10666–10675, 2019.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In
Advances in neural information processing systems, pp. 3856–3866, 2017.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Vi-
sualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling deep
neural networks. IEEE Transactions on Evolutionary Computation, 2019.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147, 2013.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Valentin Thomas, Emmanuel Bengio, William Fedus, Jules Pondard, Philippe Beaudoin, Hugo
Larochelle, Joelle Pineau, Doina Precup, and Yoshua Bengio. Disentangling the independently
controllable factors of variation by interacting with the world. arXiv preprint arXiv:1802.09484,
2018.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833. Springer, 2014.

Quanshi Zhang, Ruiming Cao, Ying Nian Wu, and Song-Chun Zhu. Mining object parts from cnns
via active question-answering. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 346–355, 2017a.

10

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Under review as a conference paper at ICLR 2020

Quanshi Zhang, Ruiming Cao, Ying Nian Wu, and Song-Chun Zhu. Growing interpretable part
graphs on convnets via multi-shot learning. In Thirty-First AAAI Conference on Artificial Intelli-
gence, 2017b.

Quanshi Zhang, Ruiming Cao, Shengming Zhang, Mark Redmonds, Ying Nian Wu, and Song-
Chun Zhu. Interactively transferring cnn patterns for part localization. arXiv preprint
arXiv:1708.01783, 2017c.

Quanshi Zhang, Ruiming Cao, Feng Shi, Ying Nian Wu, and Song-Chun Zhu. Interpreting cnn
knowledge via an explanatory graph. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018a.

Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolutional neural networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8827–
8836, 2018b.

Quanshi Zhang, Yu Yang, Haotian Ma, and Ying Nian Wu. Interpreting cnns via decision trees.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6261–
6270, 2019.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2921–2929, 2016.

11

Under review as a conference paper at ICLR 2020

A EQUIVALENCE PROOF

This section is a supplementary proof for the equivalence (mentioned in 3.2) between

min
θ

(CE(y||ỹθ) + λΦ(θ)),

Φ(θ) = min
G

CE(y||ỹGθ) + a |‖G‖1 − s| s.t.
∥∥Gk∥∥∞ = 1, Gkc ∈ [0, 1],

and

min
θ,G

L(θ,G) = CE(y||ỹθ) + λ(CE(y||ỹGθ) + a |‖G‖1 − s|) s.t.
∥∥Gk∥∥∞ = 1, Gkc ∈ [0, 1].

This equivalence is true referencing the Lemma below, if we set x ∈ X in the Lemma as θ ∈ RM

, y ∈ Y as G ∈ {G ∈ [0, 1]C×K} , f(x) as CE(y||ỹθ), and g(x, y) as CE(y||ỹGθ) + a |‖G‖1 − s|.
Here, M is the number of parameters in a CNN, C is number of classes, K is the number of filters.
y is the label of an input, ỹθ is the prediction of the CNN’s prediction through the STD path, and ỹGθ
is the prediction of the CNN’s prediction through the LSG path with G.

Lemma Given sets X,Y , and functions f : X 7→ R , g : X × Y 7→ R. f . If f and g have lower
bounds, then

min
(x,y)∈X×Y

[f(x) + g(x, y)] = min
x∈X

[f(x) + min
y∈Y

g(x, y)] (4)

Proof. Given ∀x ∈ X , f(x) is a constant if we take y as the only variable, so

f(x) + min
y∈Y

g(x, y) = min
y∈Y

[f(x) + g(x, y)]

Denote F (x, y) = f(x) + g(x, y), thus to prove equation 4 we only need to prove

min
(x,y)∈X×Y

F (x, y) = min
x

min
y
F (x, y)

This is obvious, because for ∀x ∈ X, y ∈ Y ,

min
(x,y)∈X×Y

F (x, y) ≤ F (x, y),

so for ∀x ∈ X
min

(x,y)∈X×Y
F (x, y) ≤ min

y∈Y
F (x, y),

and then

min
(x,y)∈X×Y

F (x, y) ≤ min
x∈X

min
y∈X

F (x, y).

Reversely, for ∀x ∈ X, y ∈ Y , we have

min
x∈X

min
y∈Y

F (x, y) ≤ F (x, y),

so

min
x∈X

min
y∈Y

F (x, y) ≤ min
(x,y)∈X×Y

F (x, y).

12

Under review as a conference paper at ICLR 2020

B SIMILARITY BETWEEN FEATURE VECTORS AND GATES

We design a similarity between the feature vector ay of a image in class y and the c-th row Gc in the
LSG matrix. Noticing a,Gc ∈ RK , we use their inner production aTyGc as a similarity in direction.
Thus, each pair of image in class y and class c will contribute an inner production aTyGc to Scy – the
average similarity between the feature vectors for class y and the c-th gate row. Thus, we can further
define the average similarity between the feature vectors for class y and the c-th gate row,

Scy(D) = Dtestmeana
T
yGc : (x, y) ∈ D.

Here, D is a dataset to calculate the average on, and (x, y) is a pair of image and label in the dataset.
We can take D as all true positive or all false negative data, as conducted in 4.2.

C MANUALLY FIXED GATE MATRIX

In 4.4 we use a manually fixed gate matrix to train CNNs from scratch. The gate matrix is visualized
in Figure 8.

Filter ID
.

Class ID

1.0

0.0
0 10 20 30 40 50 60

0

2

4

6

8

Figure 8: Manual fixed gate matrix. Each class monopolizes 6 filters and 4 extra filters are shared
by all classes.

D CLUSTER CENTER EXPERIMENTS

Using the model with fixed LSG mentioned in 4.4, we run k-means clustering on the feature vectors
after the global average pooling in the STD CNN and the LSG CNN. The dataset we used is CIFAR-
10. We find the LSG CNN yields better clustering centers, which is almost the same as the gate
matrix we used (visualized in Figure 8), with filter groups reordered.

STD CNNLSG CNN (Ours)

0 10 20 30 40 50 60

0

5

0.5 1.0 1.5 2.0 2.5

0 10 20 30 40 50 60

2.0 4.0 6 .0 8.0 10.0

0

5

Figure 9: Cluster center experiment. The x-axis is the channel id, and the y-axis is class id. Each
row is a the mean of a cluster in the feature vectors’ space. and the color represents the value of an
element in the mean.

E ADVERSARIAL SAMPLES

In this experiments, inspired by the highly label-related representation, we further explore LSG
CNNs’ potential in robustness for adversarial attacks. Two black box attacks are conducted, includ-
ing one pixel attack (Su et al., 2019) and local search attack (Narodytska & Kasiviswanathan, 2016).
They try to fool models according to the model’s predicted probability without access to the models’

13

Under review as a conference paper at ICLR 2020

parameters and architectures. From the results shown in Table 3, we find both the attacks gain attack
success rates on STD CNN much higher than on LSG CNN. This demonstrates that LSG training
also improves robustness to CNNs. We guess the robustness is caused by the increase of within-class
distance and the decrease of between-class distance, which requires further verification. Robustness
is another valuable characteristic of the highly class-related representation from the class-specific
filters.

Table 3: Black Box Attack on STD CNN and LSG CNN

Attack Metric STD CNN LSG CNN

No Attack Accuracy 88.03% 88.85%

Single Pixel Attack Attack Success Rates 14.00% 2.00%
Local Search Attack 15.00% 2.00%

14

	Introduction
	Related Works
	Method
	Class-Specific Filters
	Problem formulation
	Optimization

	Experiment
	Implementation of LSG Training
	Class-Specific Filters
	Interpretability in Localization
	Tighter Constraint for Gates

	Conclusion
	Equivalence Proof
	Similarity Between Feature Vectors and Gates
	Manually Fixed Gate Matrix
	Cluster center experiments
	Adversarial Samples

