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ABSTRACT

Solving long-horizon sequential decision making tasks in environments with
sparse rewards is a longstanding problem in reinforcement learning (RL) research.
Hierarchical Reinforcement Learning (HRL) has held the promise to enhance the
capabilities of RL agents via operation on different levels of temporal abstraction.
Despite the success of recent works in dealing with inherent nonstationarity and
sample complexity, it remains difficult to generalize to unseen environments and
to transfer different layers of the policy to other agents. In this paper, we propose
a novel HRL architecture, Hierarchical Decompositional Reinforcement Learning
(HiDe), which allows decomposition of the hierarchical layers into independent
subtasks, yet allows for joint training of all layers in end-to-end manner. The
main insight is to combine a control policy on a lower level with an image-based
planning policy on a higher level. We evaluate our method on various complex
continuous control tasks for navigation, demonstrating that generalization across
environments and transfer of higher level policies can be achieved. See videos
https://sites.google.com/view/hide-rl.

1 INTRODUCTION

Reinforcement learning (RL) has been succesfully applied to sequential-decision making tasks, such
as learning how to play video games in Atari (Mnih et al., 2013), mastering the game of Go (Silver
et al., 2017) or continuous control in robotics (Lillicrap et al., 2015; Levine et al., 2015; Schulman
et al., 2017). However, despite the success of RL agents in learning control policies for myopic
tasks, such as reaching a nearby target, they lack the ability to effectively reason over extended hori-
zons. In this paper, we consider continuous control tasks that require planning over long horizons
in navigation environments with sparse rewards. The task becomes particularly challenging with
sparse and delayed rewards since an agent needs to infer which actions caused the reward in a do-
main where most samples give no signal at all. Common techniques to mitigate the issue of sparse
rewards include learning from demonstrations (Schaal, 1999; Peng et al., 2018) or using enhanced
exploration strategies (Bellemare et al., 2016; Pathak et al., 2017; Andrychowicz et al., 2017).

Hierarchical Reinforcement Learning (HRL) has been proposed in part to solve such tasks. Typi-
cally, a sequential decision making task is split into several simpler subtasks of different temporal
and functional abstraction levels (Sutton et al., 1999; Andre & Russell, 2002). Although the hierar-
chies would ideally be learned in parallel, most methods resort to curriculum learning (Frans et al.,
2017; Florensa et al., 2017; Bacon et al., 2016; Vezhnevets et al., 2017). Recent goal-conditioned hi-
erarchical architectures have successfully trained policies jointly via off-policy learning (Levy et al.,
2019; Nachum et al., 2018; 2019). However, these methods often do not generalize to unseen envi-
ronments as we show in Section 5.1. We argue that this is due to a lack of true separation of planning
and low-level control across the hierarchy. In this paper, we consider two main problems, namely
functional decomposition of HRL architectures in navigation-based domains and generalization of
RL agents to unseen environments (figure 1).

To address these issues, we propose a novel multi-level HRL architecture that enables both func-
tional decomposition and temporal abstraction. We introduce a 3-level hierarchy that decouples the
major roles in a complex navigation task, namely planning and low-level control. The benefit of
a modular design is twofold. First, layers have access to only task-relevant information for a pre-
defined task, which significantly improves the generalization ability of the overall policy. Hence,
this enables policies learned on a single task to solve randomly configured environments. Second,
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Figure 1: Navigation environments. The red sphere indicates the goal an agent needs to reach, with
the starting point at the opposite end of the maze. The agent is trained on environment a). To test
generalization, we use the environments with b) reversed starting and goal positions, c) mirrored
maze with reversed starting and goal positions and d) randomly generated mazes.

the planning and control layers are modular and thus allow for composition of cross-agent architec-
tures. We empirically show that the planning layer of the hierarchy can be transferred successfully to
new agents. During training we provide global environment information only to the planning layer,
whereas the full internal state of the agent is only accessible by the control layer. The actions of the
top and middle layers are in the form of displacement in space. Similarly, the goals of the middle
and lowest layers are relative to the current position. This prevents the policies from overfitting to
the global position in an environment and hence ensures generalization to new environments.

In our framework (see figure 2), the planner (i.e., the highest level policy π2) learns to find a trajec-
tory leading the agent to the goal. Specifically, we learn a value map of the environment by means of
a value propagation network (Nardelli et al., 2019). To prevent the policy from issuing too ambitious
subgoals, an attention network estimates the range of the lower level policy π0 (i.e., the agent). This
attention mask also ensures that the planning considers the agent performance. The action of π2 is
the position which maximizes the masked value map, which serves as goal input to the policy π1.
The middle layer implements an interface between the upper planner and lower control layer, which
refines the coarser subgoals into shorter and reachable targets for the agent. The middle layer is
crucial in functionally decoupling the abstract task of planning (π2) from agent specific continuous
control. The lowest layer learns a control policy π0 to steer the agent to intermediate goals. While
the policies are functionally decoupled, they are trained together and must learn to cooperate.

In this work, we focus on solving long-horizon tasks with sparse rewards in complex continuous
navigation domains. We first show in a maze environment that generalization causes challenges for
state-of-the-art approaches. We then demonstrate that training with the same environment configura-
tion (i.e., fixed start and goal positions) can generalize to randomly configured environments. Lastly,
we show the benefits of functional decomposition via transfer of individual layers between different
agents. In particular, we train our method with a simple 2DoF ball agent in a maze environment to
learn the planning layer which is later used to steer a more complex agent. The results indicate that
the proposed decomposition of policy layers is effective and can generalize to unseen environments.
In summary our main contributions include:

• A novel multi-layer HRL architecture that allows functional decomposition and temporal
abstraction for navigation tasks.

• This architecture enables generalization beyond training conditions and environments.
• Functional decomposition that allows transfer of individual layers across different agents.

2 RELATED WORK

Learning hierarchical policies has seen lasting interest (Sutton et al., 1999; Schmidhuber, 1991;
Dietterich, 1999; Parr & Russell, 1998; McGovern & Barto, 2001; Dayan & Hinton, 2000), but many
approaches are limited to discrete domains, induce priors or require knowledge of the environment.

More recent works (Bacon et al., 2016; Vezhnevets et al., 2017; Nachum et al., 2018; Levy et al.,
2019) have demonstrated HRL architectures in continuous domains. Vezhnevets et al. (2017) in-
troduce FeUdal Networks (FUN), which was inspired by feudal reinforcement learning (Dayan &
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Figure 2: Our 3-layer HRL architecture. The planning layer π2 receives a birds eye view of the
environment and the agent’s position sxy and sets an intermediate target position g2. The interface
layer π2 splits this subgoal into reachable targets g1. A goal-conditioned control policy π0 learns
the required motor skills to reach the target g1 given the agent’s joint information sjoints.

Hinton, 2000). In FUN, a hierarchic decomposition is achieved via a learned state representation
in latent space. While being able to operate in continuous state space, the approach is limited to
discrete action spaces. Nachum et al. (2018) present HIRO, an off-policy HRL method with two
levels of hierarchy. The non-stationary signal of the upper policy is mitigated via off-policy correc-
tions, while the lower control policy benefits from densely shaped rewards. (Nachum et al., 2019)
extends HIRO by learning a representation space from environment images, replacing the state and
subgoal space with neural representations. Levy et al. (2019) introduce Hierarchical Actor-Critic
(HAC), an approach that can jointly learn multiple policies in parallel. The policies are trained in
sparse reward environments via different hindsight techniques. Both HAC and HIRO consist of a
set of nested policies where the goal of a policy is provided by the top layer. In this setting the
goal and state space of the lower policy is identical to the action space of the upper policy. This
necessitates sharing of the state space across layers. This shared state space in turn makes global
information available to all layers, and thus makes the above approaches prone to overfitting to the
training environment. Overcoming this limitation, we introduce a modular design to decouple the
functionality of individual layers. This allows us to define different state, action and goal spaces for
each layer. Global information about the environment is only available to the planning layer, while
lower levels only receive information that is specific to the respective layer.

In model-based reinforcement learning much attention has been given to learning of a dynamics
model of the environment and subsequent planning (Sutton, 1990; Sutton et al., 2012; Wang et al.,
2019). Eysenbach et al. (2019) propose a planning method that performs a graph search over the
replay buffer. However, they require to spawn the agent at different locations in the environment and
let it learn a distance function in order to build the search graph. Unlike model-based RL, we do not
learn state transitions explicitly. Instead, we learn a spatial value map from collected rewards.

Recently, differentiable planning modules that can be trained via model-free reinforcement learning
have been proposed (Tamar et al., 2016; Oh et al., 2017; Nardelli et al., 2019; Srinivas et al., 2018).
Tamar et al. (2016) establish a connection between convolutional neural networks and Value Itera-
tion (Bertsekas, 2000). They propose Value Iteration Networks (VIN), an approach where model-
free RL policies are additionally conditioned on a fully differrentiable planning module. MVProp
(Nardelli et al., 2019) extends this work by making it more parameter-efficient and generalizable.
The planning layer in our approach is based on MVProp, however contrary to prior work we do not
rely on a fixed neighborhood mask to sequentially provide actions in its vicinity in order to reach a
goal. Instead we propose to learn an attention mask which is used to generate intermediate goals for
the underlying layers. Gupta et al. (2017) learn a map of indoor spaces and planning on it using a
multi-scale VIN. In their setting, the policy is learned from expert actions using supervised learning.
Moreover, the robot operates on discrete set of high level macro actions.

3 BACKGROUND

3.1 GOAL-CONDITIONED REINFORCEMENT LEARNING

We model a Markov Decision Process (MDP) augmented with a set of goals G. We define the MDP
as a tupleM = {S,A,G,R, T , ρ0, γ}, where S and A are set of states and actions, respectively,
Rt = r(st, at, gt) a reward function, γ a discount factor ∈ [0, 1], T = p(st+1|st, at) the transition
dynamics of the environment and ρ0 = p(s1) the initial state distribution, with st ∈ S and at ∈ A.
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Each episode is initialized with a goal g ∈ G and an initial state is sampled from ρ0. We aim to find
a policy π : S × G → A, which maximizes the expected return.

We train our policies by using an actor-critic framework where the goal augmented action-value
function is defined as:

Q(s, g, a) = Eat∼π,st+1∼T

[
T∑
i=t

γi−tr(st, gt, at)|st = s, gt = g, at = a

]
(1)

The Q-function (critic) and the policy π (actor) are approximated by using neural networks with
parameters θQ and θπ . The objective for θQ minimizes the loss:

L(θQ) = EM
[(
Q(st, gt, at; θ

Q)− yt
)2]

,where

yt = r(st, gt, at) + γQ(st+1, gt+1, at+1; θQ) .
(2)

The policy parameters θπ are trained to maximize the Q-value:

L(θπ) = Eπ
[
Q(st, gt, at; θ

Q)|st, gt, at = π(st, gt; θ
π)
]

(3)

To address the issue of sparse rewards, we utilize Hindsight Experience Replay (HER) (Andrychow-
icz et al., 2017), a technique to improve sample-efficiency in training goal-conditioned environ-
ments. The insight is that the desired goals of transitions stored in the replay buffer can be rela-
beled as states that were achieved in hindsight. Such data augmentation allows learning from failed
episodes, which may generalize enough to solve the intended goal.

3.2 HINDSIGHT TECHNIQUES

In HAC, Levy et al. (2019) apply two hindsight techniques to address the challenges introduced
by the non-stationary nature of hierarchical policies and the environments with sparse rewards. In
order to train a policy πi, optimal behavior of the lower-level policy is simulated by hindsight action
transitions. More specifically, the action ai is replaced with a state si−1 that is actually achieved by
the lower-level policy πi−1. Identically to HER, hindsight goal transitions replace the subgoal gi−1
with an achieved state si−1, which consequently assigns a reward to the lower-level policy πi−1 for
achieving the virtual subgoal. Additionally, a third technique called subgoal testing is proposed.
The incentive of subgoal testing is to help a higher-level policy understand the current capability of
a lower-level policy and to learn Q-values for subgoal actions that are out of reach. We find both
techniques effective and apply them to our model during training.

3.3 VALUE PROPAGATION NETWORKS

Tamar et al. (2016) propose differentiable value iteration networks (VIN) for path planning and
navigation problems. Nardelli et al. (2019) propose value propagation networks (MVProp) with
better sample efficiency and generalization behavior. MVProp creates reward- and propagation maps
covering the environment. The reward map highlights the goal location and the propagation map
determines the propagation factor of values through a particular location. The reward map is an
image r̄i,j of the same size as the environment image I , where r̄i,j = 0 if the pixel (i, j) overlaps
with the goal position and −1 otherwise. The value map V is calculated by unrolling max-pooling
operations in a neighborhood N for k steps as follows:

v
(0)
i,j = r̄i,j

v
(k)
i,j = max

(
v
(k−1)
i,j , max

(i′,j′)∈N(i,j)
(r̄i,j + pi,j(v

(k−1)
i′,j′ − r̄i,j)

) (4)

The action (i.e., the target position) is selected to be the pixels (i′, j′) maximizing the value in a
predefined 3x3 neighborhood N(i0, j0) of the agent’s current position (i0, j0):

π(s, (i0, j0)) = argmax
i′,j′∈N(i0,j0)

v
(k)
i′,j′ (5)

Note that the window N(i0, j0) is determined by the discrete, pixel-wise actions.
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Figure 3: Planner layer π2(sxy, G, I). Given the top-view environment image I and goal G on the
map, the maximum value propagation network (MVProp) calculates a value map V . By using the
agent’s current position sxy , we estimate an attention mask M restricting the global value map V to
a local and reachable subgoal map V̄ . The policy π2 selects the coordinates with maximum value
and assigns the lower policy π1 with a sugboal that is relative to the agent’s current position.

4 HIERARCHICAL DECOMPOSITIONAL REINFORCEMENT LEARNING

We introduce a novel hierarchical architecture, HiDe, allowing for an explicit functional decompo-
sition across layers. Similar to HAC (Levy et al., 2019), our method achieves temporal abstractions
via nested policies. Moreover, our architecture enables functional decomposition explicitly. This is
achieved by nesting i) an abstract planning layer, followed ii) by a local planer to iii) guide a control
component. Crucially, only the top layer receives global information and is responsible for planning
a trajectory towards a goal. The lowest layer learns a control policy for agent locomotion. The mid-
dle layer converts the planning layer’s input into subgoals for the control layer. Achieving functional
decoupling across layers crucially depends on reducing the state in each layer to the information that
is relevant to its specific task. This design significantly improves generalization (see Section 5).

4.1 PLANNING LAYER

The highest layer of a hierarchical architecture is expected to learn high-level actions over a longer
horizon, which define a coarse trajectory in navigation-based tasks. In the related work (Levy et al.,
2019; Nachum et al., 2018; 2019), the planning layer, learning an implicit value function, shares
the same architecture as lower layers. Since the task is learned for a specific environment, limits to
generalization are inherent to this design choice. In contrast, we introduce a planning specific layer
consisting of several components to learn the map and to find a feasible path to the goal.

The planning layer is illustrated in figure 3. We utilize a value propagation network (MVProp)
(Nardelli et al., 2019) to learn an explicit value map which projects the collected rewards onto the
environment image. Given a top-down image of the environment, a convolutional network deter-
mines the per pixel flow probability pi,j . For example, the probability value of a pixel corresponding
to a wall should be 0 and that for free passages 1 respectively.

Nardelli et al. (2019) use a predefined 3 × 3 neighborhood of the agent’s current position and pass
the location of the maximum value in this neighbourhood as goal position to the agent (equation 5).
We augment a MVProp network with an attention model which learns to define the neighborhood
dynamically and adaptively. Given the value map V and the agent’s current position sxy , we estimate
how far the agent can go, modeled by a 2D Gaussian. More specifically, we predict a full covariance
matrix Σ with the agent’s global position sxy as mean. We later build a 2D mask M of the same
size as the environment image I by using the likelihood function:

mi,j = N ((i, j)|sxy,Σ) (6)

Intuitively, the mask defines the density for the agent’s success rate. Our planner policy selects an
action (i.e., subgoal) that maximizes the masked value map as follows:

V̄ = M · V
π2(sxy, G, I) = argmax

i,j
v̄i,j

g2 = π2(sxy)− sxy ,

(7)
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Figure 4: A visual comparison of
(left) our dynamic attention window
with a (right) fixed neighborhood.
The green dot corresponds to the se-
lected subgoal in this case. Notice
how our window is shaped so that
it avoids the wall and induces a fur-
ther subgoal.

where v̄i,j corresponds to the value at pixel (i, j) on the masked value map V̄ . Note that the subgoal
selected by the planning layer g2 is relative to the agent’s current position sxy , which improves
generalization performance of our model.

The benefits of having an attention model are twofold. First, the planning layer considers the agent
dynamics in assigning subgoals which may lead to fine- or coarse-grained subgoals depending on
the underlying agent’s performance. Second, the Gaussian window allows us to define a dynamic
set of actions for the planner policy π2, which is essential to find a trajectory of subgoals on the
map. While the action space includes all pixels of the value map V , it is limited to the subset of
only reachable pixels by the Gaussian mask M . Qualitatively we find this leads to better obstacle
avoidance behaviour such as the corners and walls shown in figure 4.

Since our planner layer operates in a discrete action space (i.e., pixels), the resolution of the projected
maze image defines the minimum amount of displacement for the agent, affecting maneuverability.
This could be tackled by using a soft-argmax (Chapelle & Wu, 2010) to select the subgoal pixel,
allowing to choose real-valued actions and providing in-variance to image resolution. In our exper-
iments we see no difference in terms of the final performance. However, since the former setting
allows for the use of DQN (Mnih et al., 2013) instead of DDPG (Silver et al., 2014), we prefer the
discrete action space for simplicity and faster convergence.

Both the MVProp (equation 4) and Gaussian likelihood (equation 6) operations are differentiable.
Hence, MVProp and the attention model parameters are trained by minimizing the standard mean
squared Bellman error objective as defined in equation 2.

4.2 INTERFACE LAYER

The middle layer in our hierarchy interfaces the high-level planning with low-level control by intro-
ducing an additional level of temporal abstraction. The planner’s longer-term goals are further split
into a number of shorter-term targets. Such refinement policy provides the lower-level control layer
with reachable targets, which in return yields easier rewards and hence accelerated learning.

The interface layer policy is the only layer that is not directly interacting with the environment.
More specifically, the policy π1 only receives the subgoal g2 from the upper layer π2 and chooses
an action (i.e. subgoal g1) for the lower-level locomotion layer π0. Note that all the goal, state and
action spaces of the policy π1 are in 2D space. Contrary to Levy et al. (2019), we use subgoals that
are relative to the agent’s position sxy . This helps to learn symmetrical gaits and helps to generalize.

4.3 CONTROL LAYER

The lowest layer learns a goal-conditioned control policy. Due to our explicit functional decomposi-
tion, it is the only layer with access to the agent’s internal state sjoints including joint positions and
velocities. Whereas the higher layers only have access to the agent’s position. In a navigation task,
the agent has to learn locomotion to reach the goal position. Similar to HAC, we use hindsight goal
transition techniques so that the control policy receives rewards even in failure cases.

All policies in our hierarchy are jointly-trained. We use the DDPG algorithm (Lillicrap et al., 2015)
with the goal-augmented actor-critic framework (equation 2-3) for the control and interface layers,
and DQN (Mnih et al., 2013) for the planning layer (see section 4.1).
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Figure 5: Success rates in forward maze wrt the
number of environment steps. All algorithms
eventually learn the task. HIRO converges the
fastest because it benefits from dense rewards.

Experiment 1 Forward Backward Flipped

HAC 82± 16 0± 0 0± 0
HIRO 99± 1 0± 0 0± 0

RelHAC 66± 27 4± 8 0± 0
HiDe-R 89± 3 61± 14 90± 3

HiDe 85± 6 55± 20 69± 40

Table 1: Success rates of achieving a goal with an
Ant agent in a simple maze environment. All al-
gorithms except for HiDe have been trained with
randomly sampled goal positions.

5 EXPERIMENTS

We evaluate our method on a series of simulated continuous control tasks in navigation-based en-
vironments1. All environments are simulated in the MuJoCo physics engine (Todorov et al., 2012).
Experiments and implementation details are provided in the Appendix B. First, in section 5.1, we
compare to various baseline methods in the maze introduced by Nachum et al. (2018). In section 5.2,
we move to a new maze with more complex design in order to show our model’s generalization
capabilities. Finally in section 5.3, we demonstrate that our approach indeed leads to functional
decomposition by composing new agents via combining the planning layer of one agent with the
locomotion layer of another. We introduce the following task configurations:
Maze Forward: the training environment in all experiments. The task is to reach a goal from a fixed
pre-determined start position.
Maze Backward: the training maze layout with swapped start and goal positions.
Maze Flipped: a mirrored version of the training environment.
Maze Random: a randomly generated layout with random start and goal positions.

In our experiments, we always train in the Maze Forward environment. We test the agents on the
above tasks with fixed starting and goal position. For more details about the environments, we refer
to Appendix A. We intend to answer the following two questions: 1) Can our method generalize to
unseen test environments? 2) Is it possible to transfer the planning layer policies between agents?

5.1 SIMPLE MAZE NAVIGATION

We compare our method to state-of-the-art approaches including HIRO (Nachum et al., 2019), HAC
(Levy et al., 2019) and a modified version of HAC called RelHAC in a simple environment (Maze
Forward), shown in figure 6. For a fair comparison, we made a number of modifications to HAC and
HIRO implementations. For HAC, we introduced target networks and used the hindsight experience
replay technique with the future strategy (Andrychowicz et al., 2017). In our experiments we ob-
served that oscillations around the goal kept HIRO agents from finishing the task, which was solved
via doubling the distance-threshold of success.

We train a modified HAC model, dubbed RelHAC, to asses our planning layer. RelHAC has the
same lowest and middle layers as HiDe but the same top layer as HAC. HiDe is trained with fixed
start and goal positions whereas the baseline models are trained by using fixed start and random goal
positions. HiDe-R represents HiDe under the same conditions as the baseline methods.

All models learned this task successfully as shown in figure 5 and table 1 (Forward column). HIRO
demonstrates slightly better convergence and final performance, which can be attributed to the fact
that HIRO is the only approach that is trained with dense rewards. RelHAC performs worse than
HAC due to the pruned state space of each layer and due to the lack of an effective planner.

Table 1 summarizes the models’ generalization ability to the unseen Maze Backward and Maze
Flipped environments (see figure 6). While both HIRO and HAC manage to solve the training

1Videos available at https://sites.google.com/view/hide-rl
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Experiment 2 Ant Ball
Forward 81± 8 96± 7
Random 90± 2 96± 1

Backward 58± 10 100± 0
Flipped 56± 10 99± 2

Table 2: Success rates in the complex
maze. We train an ant and a ball on For-
ward maze and test on unseen Random,
Backward, and Flipped environments.

Experiment 3 Ant→ Ball Ball→ Ant
Forward 100± 0 66± 14
Random 97± 1 86± 5

Backward 90± 22 53± 9
Flipped 81± 44 59± 27

Table 3: Success rates of achieving a goal
in complex maze environment with transferred
agents. We train with a different agent on For-
ward maze.

environment (Maze Forward) with success rates of 99% and 82%, they suffer from overfiting to
the training environment, indicated by the 0% success rates in the unseen test environments. Con-
trarily, our method is able to achieve 54% and 69% success rates in this generalization task. As
expected, training our model with random goal positions (i.e., HiDe-R) yields a more robust model
outperforming vanilla HiDe. In subsequent experiments, we only evaluate our method, since the
preliminary experiments have shown that the baseline methods do not generalize well.

5.2 COMPLEX MAZE NAVIGATION

In this experiment, we train an ant and a ball agent (see Appendix A.1) in the Maze Forward task
with a more complex environment layout (cf. figure 1), while we keep both the start and goal
positions intact. We then evaluate this model in 4 different tasks (see section 5).

Table 2 reports success rates of both agents in this complex task. Our model successfully transfers
its navigation skills to unseen environments. The performance for the Maze Backward and Maze
Flipped tasks is similar to the results shown in section 5.1 despite the increased difficulty. Since the
randomly generated mazes are typically easier, our model shows similar or better performance.

5.3 TRANSFER OF POLICIES

To demonstrate that the layers in our architecture indeed learn separate sub-tasks we transfer indi-
vidual layers across different agents. We take the models from section 5.2 and attach their planning
layers to another agent. For the locomotion layer we trained agents without a planning layer. Since
we still require the interface layer, we use the control and interface layers of RelHAC.

We carry out two sets of experiments. First, we transfer the ant model’s planning layer to the simpler
2 DoF ball agent. As indicated in Table 3, the performance of the ball with the ant’s planning layer
matches the results in Table 2. The ball agent’s success rate increases for random (from 96% to
100%) and forward (96% to 97%) maze tasks whereas it decreases slightly in the backward (from
100% to 90%) and flipped (from 99% to 88%) configurations.

Second, we attach the ball agent’s planning layer to the more complex ant agent. Our new com-
positional agent performs marginally better or worse in flipped, random and backward maze tasks.
Please note that this experiment is an example of a case where the environment is first learned with
a fast and easy-to-train agent (i.e., ball) and then utilized by a more complex agent.

6 CONCLUSION

In this paper, we introduce a novel HRL architecture that can solve complex navigation tasks in
3D-based maze environments. The architecture consists of a planning layer which learns an explicit
value map and is connected with a subgoal refinement layer and a low-level control layer. The frame-
work can be trained end-to-end. While training with a fixed starting and goal position, our method
is able to generalize to previously unseen settings and environments. Furthermore, we demonstrate
that transfer of planners between different agents can be achieved, enabling us to move a planner
trained with a simplistic agent in a complex environment to a more complex agent. In future work,
we want to consider integration of a more general planner that is not restricted to navigation-based
environments.
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A ENVIRONMENT DETAILS

We build on the Mujoco (Todorov et al., 2012) environments used in Nachum et al. (2018). All
environments use dt = 0.02. Each episode in experiment 1 is terminated after 500 steps and after
800 steps in the rest of the experiments or after the goal in reached. All rewards are sparse as
in Levy et al. (2019), i.e., 0 for reaching the goal and −1 otherwise. We consider goal reached if
|s− g|max < 1. Since HIRO sets the goals in the far distance to encourage the lower layer to move
to the goal faster, it can’t stay exactly at the target position. Moreover, they do not terminate the
episode after the goal is reached. Thus for HIRO, we consider a goal reached if |s− g|2 < 2.5.

A.1 AGENTS

Our Ant agent is equivalent to the one in Levy et al. (2019). In other words, the Ant from Rllab (Duan
et al., 2016) with gear power of 16 instead of 150 and 10 frame skip instead of 5. Our Ball agent
is the PointMass agent from DM Control Suite (Tassa et al., 2018). We made the change the joints
so that the ball rolls instead of sliding. Furthermore, we resize the motor gear and the ball itself to
match the maze size.

A.2 MAZES

All mazes are modelled by immovable blocks of size 4 × 4 × 4. Nachum et al. (2018) uses blocks
of 8 × 8 × 8. The environment shapes are clearly depicted in figure 1. For the randomly generated
maze, we sample each block with probability being empty p = 0.8,start and goal positions are also
sampled randomly at uniform. Mazes where start and goal positions are adjacent or where goal is
not reachable are discarded. For the evaluation, we generated 500 of such environments and reused
them (one per episode) for all experiments.

Figure 6: Environments used for testing in Section 5.1. The red sphere indicates the goal of the task.

B IMPLEMENTATION DETAILS

Our PyTorch (Paszke et al., 2017) implementation will be available at the project website. 2

B.1 BASELINE EXPERIMENTS

For both HIRO and HAC we used the original authors implementation34. In HIRO, we set the
goal success radius for evaluation as described above. We ran the hiro xy variant, which uses only
position coordinates for subgoal instead of all joint positions, to have a fair comparison with our
method. To improve the performance of HAC in experiment one, we modified their Hindsight Expe-
rience Replay (Andrychowicz et al., 2017) implementation so that they use FUTURE strategy. More
importantly, we also added target networks to both the actor and critic to improve the performance.

2https://sites.google.com/view/hide-rl
3HIRO:https://github.com/tensorflow/models/tree/master/research/

efficient-hrl
4HAC:https://github.com/andrew-j-levy/Hierarchical-Actor-Critc-HAC-
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B.2 NETWORK STRUCTURE

B.2.1 PLANNING LAYER

Input images for the planning layer were binnarized in the following way: each pixel corresponds
to one block (0 if it was a wall or 1 if it was a corridor). In our planning layer, we process the input
image of size 32x32 (20x20 for experiment 1) via two convolutional layers with 3× 3 kernels. Both
layers have only 1 input and output channel and are padded so that the output size is the same as
the input size. We propagate the value through the value map as in Nardelli et al. (2019) K = 35
times using a 3 × 3 max pooling layer. Finally, the value map and agent position image (a black
image with a dot at agent position) is processed by 3 convolutions with 32 output channels and 3×3
filter window interleaved by 2× 2 max pool with ReLU activation functions and zero padding. The
final result is flatten and processed by two fully connected layers with 64 neurons each producing
three outputs: σ1, σ2, ρ with softplus, softplus and tanh activation functions respectively. The final
covariance matrix Σ is given by

Σ =

(
σ2
1 ρ σ1σ2

ρ σ1σ2 σ2
2 ,

)
so that the matrix is always symmetric and positive definite. For numerical reasons, we multiply by
binnarized kernel mask instead of the actual Gaussian densities. We set values higher than mean to
1 and others to zeros. In practice, we use this line:

kernel = t.where(kernel >= kernel.mean(dim=[1,2], keepdim=True),
t.ones_like(kernel), t.zeros_like(kernel))

B.2.2 MIDDLE AND LOCOMOTION LAYER

We use the same network architecture for the middle and lower layer as proposed by Levy et al.
(2019), i.e. we use 3 times fully connected layer with ReLU activation function. The locomation
layer is activated with tanh, which is then scaled to the action range.

B.2.3 TRAINING PARAMETERS

• Discount γ = 0.98 for all agents.
• Adam optimizer. Learning rate 0.001 for all actors and critics.
• Soft updates using moving average; τ = 0.05 for all controllers.
• Replay buffer size was designed to store 500 episodes, similarly as in Levy et al. (2019)
• We performed 40 updates after each epoch on each layer, after the replay buffer contained

at least 256 transitions.
• Batch size 1024.
• No gradient clipping
• Rewards 0 and -1 without any normalization.
• Subgoal testing (Levy et al., 2019) only for the middle layer.
• Observations also were not normalized.
• 2 HER transitions per transition using the FUTURE strategy (Andrychowicz et al., 2017).
• Exploration noise: 0.05, 0.01 and 0.1 for the planning, middle and locomotion layer re-

spectively.
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Experiment Forward Backward Flipped

HAC 1 96.4 00.0 00.0
HAC 2 82.0 00.0 00.0
HAC 3 85.6 00.4 00.0
HAC 4 92.8 00.0 00.0
HAC 5 55.6 00.0 00.0

HIRO 1 100 00.0 00.0
HIRO 2 99.8 00.0 00.0
HIRO 3 99.0 00.0 00.0
HIRO 4 99.6 00.0 00.0
HIRO 5 97.2 00.0 00.0

RelHAC 1 77.6 18.8 00.0
RelHAC 2 86.4 00.0 00.0
RelHAC 3 77.8 00.0 00.0
RelHAC 4 19.6 00.0 00.0
RelHAC 5 71.0 00.0 00.0

HiDe-R 1 87.6 72.2 90.6
HiDe-R 2 87.8 70.4 89.6
HiDe-R 3 86.4 38.2 89.8
HiDe-R 4 90.6 69.4 94.0
HiDe-R 5 94.4 56.2 87.0

HiDe 1 80.6 21.2 00.0
HiDe 2 94.6 71.8 96.8
HiDe 3 81.6 53.4 90.2
HiDe 4 79.4 61.4 91.2
HiDe 5 87.0 66.0 66.6

Table 4: Results for experiment 1 for individual seeds.

Ant 1 Ant 2 Ant 3 Ant 4 Ant 5 Ball 1 Ball 2 Ball 3 Ball 4 Ball 5

Forward 82.0 80 92.2 70.6 82.0 99.6 99.0 100 83.2 100
Random 85.8 88.2 89.2 91.4 92.0 97.0 94.2 97.6 97.2 96.0

Backward 61.8 61.4 56.0 42.0 60.4 100 100 100 100 100
Flipped 87.4 68.2 64.8 64.0 85.4 100 96.4 100 100 100

Table 5: Results for experiment 2 for individual seeds.

A→B 1 A→B 2 A→B 3 A→B 4 A→B 5

Forward 100 100 100 100 100
Random 96.2 96.6 96.8 97.8 96.6

Backward 90.2 99.8 99.8 99.2 100
Flipped 100 100 100 100 100

Table 6: Results for Ant to Ball transfer for individual seeds.

B→A 1 B→A 2 B→A 3 B→A 4 B→A 5

Forward 45.8 81.2 75.8 64.8 64.4
Random 81.6 85 94.4 83.4 88.0

Backward 49.4 45.4 68.6 48.0 54.6
Flipped 32.0 83.8 79.6 26.8 70.4

Table 7: Results for Ball to Ant transfer for individual seeds.
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