
Under review as a conference paper at ICLR 2020

BIOLOGICALLY INSPIRED SLEEP ALGORITHM FOR IN-
CREASED GENERALIZATION AND ADVERSARIAL RO-
BUSTNESS IN DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Current artificial neural networks (ANNs) can perform and excel at a variety of
tasks ranging from image classification to spam detection through training on large
datasets of labeled data. While the trained network usually performs well on sim-
ilar testing data, certain inputs that differ even slightly from the training data may
trigger unpredictable behavior. Due to this limitation, it is possible to generate
inputs with very small designed perturbations that can result in misclassification.
These adversarial attacks present a security risk to deployed ANNs and indicate a
divergence between how ANNs and humans perform classification. Humans are
robust at behaving in the presence of noise and are capable of correctly classifying
objects that are occluded, blurred, or otherwise distorted. It has been hypothesized
that sleep promotes generalization and improves robustness against noise in ani-
mals and humans. In this work, we utilize a biologically inspired sleep phase
in ANNs and demonstrate the benefit of sleep on defending against adversarial
attacks as well as increasing ANN classification robustness. We compare the
sleep algorithm’s performance on various robustness tasks with two previously
proposed adversarial defenses, defensive distillation and fine-tuning. We report
an increase in robustness after sleep to adversarial attacks as well as to general
image distortions for three datasets: MNIST, CUB200, and a toy dataset. Overall,
these results demonstrate the potential for biologically inspired solutions to solve
existing problems in ANNs and guide the development of more robust, human-like
ANNs.

1 INTRODUCTION

Although artificial neural networks (ANNs) have recently begun to rival human performance on var-
ious tasks, ranging from complex games (Silver et al. (2016)) to image classification (Krizhevsky
et al. (2012)), they have been shown to underperform when the testing data differs in specific ways
even by a small amount from the training data (Geirhos et al. (2018)). This lack of generalization
presents two issues when ANNs are utilized in the real world. First, ANNs are often trained on cu-
rated datasets of images designed to best capture the image content, whereas in real-world scenarios,
they may be tested on disturbed or noisy inputs, not observed during training. Second, ANNs are
susceptible to adversarial attacks, or the deliberate creation of inputs designed to fool ANNs that
may be imperceptibly different from correctly classified inputs (Szegedy et al. (2013)). These two
issues limit the applicability of ANNs in the real world and present potential security risks when
deployed.

There have been two main approaches for investigating ANN robustness: adversarial machine learn-
ing and training data manipulation (Ford et al. (2019)). Adversarial machine learning aims to de-
velop novel attack methods which perturb the input minimally while changing the ANN’s classifica-
tion (Moosavi-Dezfooli et al. (2016); Carlini & Wagner (2017); Goodfellow et al. (2014); Athalye
et al. (2017); Nguyen et al. (2015)) as well as to design defense mechanisms which prevent these
attacks from affecting ANN behavior (Papernot et al. (2016b); Goodfellow et al. (2014); Huang et al.
(2015), see Yuan et al. (2019) for review). Training data manipulation research typically examines
the impact of changing the input distribution during testing and observing the effect on ANN per-
formance. Geirhos et al. (2018) showed that ANNs trained on images with one type of distortion do

1

Under review as a conference paper at ICLR 2020

not perform as well when tested on other types of distortions, even if images with both distortions
appear identical to the human eye. Likewise, ANNs trained on unperturbed images exhibit reduced
performance when images in the test set are distorted, for example, through horizontal translations,
blurring, or the addition of compression artifacts (Dodge & Karam (2016); Vasiljevic et al. (2016);
Zhou et al. (2017)). Although it has been proposed that adversarial and manipulation robustness
can be increased through various mechanisms during the training phase, such as fine-tuning, recent
research has shown that these methods are mostly ineffective or their effectiveness is inconclusive
(Geirhos et al. (2018); Uesato et al. (2018); Athalye et al. (2018)).

It has been hypothesized that in the mammalian brain sleep helps to create generalized represen-
tations of the input learned during the awake state (Stickgold & Walker (2013)). Sleep has been
identified as being critical for memory consolidation - a process of converting recent memories into
long-tern storage (Rasch & Born (2013)). During sleep, there is reactivation of neurons involved
in previously learned activity (Stickgold (2005)) and this reactivation is likely to invoke the same
spatio-temporal pattern as the pattern observed during training in the awake state (Wilson & Mc-
Naughton, 1994). Sleep reactivation, or replay, serves to strengthen synapses involved in a learned
task through spike-timing dependent plasticity rules (STDP). Sleep, through STDP, can increase a
subject’s ability to form logical connections between memories and to generalize knowledge learned
during the awake state (Payne et al. (2009)). In one study, subjects learned to find an exit to a maze
in a virtual 3D environment starting at various positions. Subjects who were allowed to sleep ex-
hibited a more complex understanding of the overall shape of the maze (Wamsley et al. (2010)).
Using a biophysical model of cortical network, Gonzalez et al. (2019) and Wei et al. (2018) showed
that sleep promotes reactivation and helps to create distinct representations for unique memories
by devoting synapses to specific memory traces. This body of neuroscience work suggests that a
sleep-like phase may be applied to ANNs to enable the networks to extract the gist of the training
data and to rely less on the input statistics, which may be peculiar to the specifics of the training data
and not the underlying distribution. Our hypothesis is that sleep could aid in reducing a neural net-
work’s susceptibility to adversarial attacks and to increase generalization performance by reducing
the impact that imperceptible pixel changes can have on the task output.

In this new work, we propose a sleep-inspired algorithm to defend against adversarial attacks as
well as to increase ANN robustness to noise. We utilize the notion of sleep from biology and apply
an off-line unsupervised ”sleep” phase to modify the parameters of a fully connected ANN. We
demonstrate a number of performance improvements over existing defense algorithms, such as fine-
tuning or adversarial retraining and defensive distillation, on both adversarial and noise robustness.
The contributions are summarized below:

• We report positive results for four types of adversarial attacks tested on three different
datasets (MNIST, CUB200, and a toy dataset) where following sleep the attack produces
adversarial examples that are more distinct than the original input than before sleep.

• We illustrate that the sleep algorithm creates a more robust network whereby performance
on noisy and blurred inputs is higher compared to a control or defensively distilled network
and is more robust to the other distortions compared to ANNs that are fine-tuned on a single
distortion.

• We analyze the impact of the sleep algorithm on task representation and demonstrate that
the algorithm creates decision boundaries that more closely resemble the true classes, ef-
fectively extracting the gist of the data.

2 ADVERSARIAL ATTACKS AND DISTORTIONS

Adversarial attacks aim to create minimal perturbations that, while imperceptible to the human eye,
fool ANNs. These attacks range from white-box to black-box attacks, based on how much infor-
mation they assume the attacker to possess about the network. White-box attacks assume that the
attacker has access to the network architecture, training data and weights. These attacks can range
from absolute information, such as gradient-based attacks which compute the gradient of the loss
with respect to the input (Brendel et al. (2017)), to score-based attacks which only utilize predicted
scores of the model. Black-box attacks, which assume no knowledge about the network, solely rely
on the decision made in order to craft adversarial examples. Attacks can be targeted such that the at-
tacker aims to create an adversarial example that the network predicts as a certain class or untargeted
where the attacker’s goal is simply to cause any kind of misclassification (Biggio & Roli (2018)).

2

Under review as a conference paper at ICLR 2020

In this work we consider four adversarial attacks ranging from white-box to black-box attacks. We
assume that the attacker solely wants to cause a misclassification, with no respect to the output
class. We present a brief description of each of the four attacks below (see Appendix for examples
of images created by these attacks).

Fast Gradient Sign Method (FGSM). FGSM (Goodfellow et al. (2014)) computes the sign of the
gradient of the loss function (J) with respect to the original input x using the weights θ of the
network and the target labels y.

x′ = x− ηsign(∇xJ(θ, x, y)).

This represents the direction to change each pixel in the original input in order to decrease the loss
function. Based on the value of η, the corresponding perturbation to the original image can range
from small to large. Thus, in this work we use the average of the smallest value of η needed to create
an adversarial example x′ (misclassified input) for each input in the testing set.

DeepFool. DeepFool (Moosavi-Dezfooli et al. (2016)) is an iterative method which approximates
the nearest decision boundary to the input at time t and moves the input xt in that direction to
compute xt+1. This process is repeated until a misclassification is produced or the runtime of the
simulation is exceeded. For this attack, we measure the L2-norm between the original input x and the
adversarial input x′. Thus, successful defenses should result in a high L2-norm for this algorithm.

Jacobian-based Saliency Map (JSMA). JSMA (Papernot et al. (2016a)) aims to craft adversarial
examples that minimize the L0-norm of x− x′ by reducing the number of pixels that are altered. In
summary, the algorithm computes the gradient, as done in FGSM but for all possible classes. These
gradient values represent how changing each pixel contributes to the overall loss function, with
large values indicating a significant effect on the loss. These values are used to create a saliency
map, where each pixel’s impact on the loss is modelled. The algorithm utilizes this saliency map
to alter individual pixels, repeating the gradient and saliency map computation until an adversarial
example is created. For this type of attack, we utilize the L2-norm to determine defense success.

Boundary Attack. The Boundary Attack (Brendel et al. (2017)) is a black-box attack which relies
solely on the decision of the ANN to craft an adversarial example. Given an input x, a random input
x′0 is chosen such that f(x) 6= f(x′0), where f(x) is the label produced by the ANN. In our work,
x′0 is chosen from a uniform distribution. The attack starts by moving x′0 toward x until it reaches
the point where f(x) = f(x′0), or the decision boundary in between f(x) and f(x′0). From here,
the attack consists of two steps: an orthogonal perturbation and a forward perturbation. During the
orthogonal perturbation, random points along the hypersphere around f(x′t) are sampled. Those that
are adversarial and closer to x than before are added to the queue for forward perturbation. During
the forward perturbation, a small step is taken from x′t to x as long as f(x) 6= f(x′t). This process
is repeated until a convergence criterion is met. For this attack, we utilize the L2-norm to define
defense success.

Distortions. Although not specifically designed to attack an ANN, distortions similarly corrupt
ANN performance. In this work we consider two simple distortion techniques: blurring and Gaus-
sian noise. For images, we perform 2-D Gaussian filtering with a blur kernel of varying standard
deviation in order to blur the images. For all inputs, we add Gaussian noise with mean 0 and stan-
dard deviation σ. These distortions are tested with the proposed sleep algorithm as well as using the
adversarial defenses discussed below.

3 ADVERSARIAL DEFENSES

We compare our sleep algorithm with two existing adversarial defenses: defensive distillation and
fine-tuning, or adversarial retraining. Defensive distillation (Papernot et al. (2016b)) utilizes two
training sessions in order to create a distilled network. First, an initial network is trained on (X,Y),
where X is the training data, and Y is the one-hot encoded training labels. The activation function
of this network is changed such that the softmax function of the output layer is computed using a
temperature term T as follows:

F (x) =
e

zi(X)

T∑N−1
l=0 e

zl(X)

T

.

3

Under review as a conference paper at ICLR 2020

A higher value for T forces the ANN to produce probability values with large values for each class,
whereas lower values for T support a similar representation as the one-hot encoded labels. After
the first network is trained, the output of the network (probability values) is used to train a distilled
network with the same softmax-temperature function. Previous work has shown this to be successful
at preventing some types of attacks (Papernot et al. (2016b)). However, others have shown that it
is not successful at defending against modified versions of those attacks or novel attacks in general
(Carlini & Wagner (2016; 2017)). In our work, we use T = 50 to compare with the sleep algorithm.

Adversarial retraining aims to fine-tune the network on adversarial examples with the correct labels
as a form of regularization. Previous work has shown that adversarial retraining can mitigate the
effectiveness of some adversarial attacks. Goodfellow et al. (2014) showed that adversarial retrain-
ing can reduce the error rate on MNIST, demonstrating greater ANN robustness after fine-tuning.
Likewise, Moosavi-Dezfooli et al. (2016) showed that fine-tuning on DeepFool attacks can reduce
the effectiveness of their attacks. However, they observed that fine-tuning on FGSM attacks has
negative results, actually increasing the strength of the attack. This suggests that fine-tuning may
overfit the network to certain attacks, while failing to extrapolate to other attacks, similar to results
shown for generalization in ANNs (Geirhos et al. (2018)). For the adversarial retraining procedure
presented here, we train the network on the original input and then fine-tune the network on various
adversarial attacks with a reduced learning rate.

4 SLEEP ALGORITHM

The basic intuition behind the sleep algorithm is that a period of offline activity, whereby network
weights are modified according to an unsupervised learning algorithm, allows the parameters of
the network to become more reflective of the underlying statistics of the task at hand, while not
overfitting the statistics of the training data. The pseudocode is presented in Algorithm 1. In short,
an ANN is trained using stochastic gradient descent and the usual backpropagation algorithm (exact
parameters used for each of the datasets are shown in Table 1). After training, the network structure
is converted into a spiking neural network (SNN). After building the SNN, we run a sleep phase
which modifies the network connectivity based on spike-timing dependent plasticity (STDP). After
the sleep phase, the SNN network is converted back into the ANN and testing is performed.

4.1 SPIKING NEURAL NETWORKS

While most ANNs are modelled after highly simplified brain dynamics, SNNs seek to more closely
model temporal brain dynamics. In short, SNNs are composed of spiking neurons and model the
information transformation and the dependence on exact timing of spikes that occurs in biological
networks (Ghosh-Dastidar & Adeli (2009)). Neurons can range from simple integrate-and-fire type
neurons which sum their inputs and produce an output (spike) if this exceeds some firing threshold to
more complicated Hodgkin-Huxley type neurons which model sodium-, potassium-, and chloride-
channel kinetics (Abbott & Kepler (1990)). Recent work has shown that a near loss-less conversion
between ANNs and SNNs can be achieved by propagating activity through a spiking neural network
for a given input and counting the number of times that each output neuron fires (Diehl et al. (2015)).

To convert an ANN to SNN (Lines 1-3 of pseudocode), we assume the ANN utilizes ReLU neurons
with no bias. This assumption is made so that the output neuron’s activation can be treated as a
firing rate, either zero or positive, and that the thresholds of all neurons in a given layer are of the
same scale. The weights from the ANN are directly mapped to the SNN. Each unit in the SNN is
modelled as an integrate-and-fire type neuron, computing the following equation:

τm
dv

dt
= −v(t) +

N∑
i=1

wi ∗ s(i).

Here, τm represents the decay constant of the membrane potential, v is the voltage at a given time,
wi is the weight connecting from neuron i, and s(i) is the spiking activity of neuron i, either 1 or 0.

4.2 SLEEP

The key advantage of using a SNN is that biologically inspired training rules can be applied while the
network is driven by noisy input. Empirical data suggest that the brain uses spike-timing dependent

4

Under review as a conference paper at ICLR 2020

Algorithm 1 Sleep:
1: procedure CONVERTANNTOSNN(nn)
2: Map the weights from (nn) with ReLU units to network of integrate-fire units (snn)
3: Apply weight normalization and return scale for each layer ([24]) return snn, scales
4: procedure CONVERTSNNTOANN(nn)
5: Directly map the weights from integrate-fire network (nn) to ReLU network (ann) return
ann

6: procedure SLEEP(nn, I, scales) . I is input
7: Initialize v (voltage) = 0 vectors for all neurons
8: for t← 1 to Ts do . Ts - duration of sleep
9: S(1)← Convert input I to Poisson-distributed spike train

10: for l← 2 to n do . n - number of layers
11: v(l, t)← v(l, t− 1) + (scales(l − 1)W(l, l− 1)S(l − 1)) . W(l,l-1) - weights
12: S(l)← v(l, t) > threshold(l) . Propagate spikes

13: W(l, l− 1)←
{
W(l, l− 1) + inc if S(l) = 1&S(l − 1) = 1

W(l, l− 1)− dec if S(l) = 1&S(l − 1) = 0
. STDP

14: procedure MAIN
15: Initialize neural network (ann) with ReLU neurons and bias = 0.
16: Train ann using backpropagation.
17: snn, scales = ConvertANNtoSNN(ann)
18: snn = Sleep(snn, Training data X , scales)
19: ann = ConvertSNNtoANN(snn)

plasticity (STDP) (Song et al., 2000), where weight updates depend on the relative timing of pre- and
post-synaptic spikes. It has been shown that STDP results in balanced activity, where all neurons fire
in equal proportions (Song et al. (2000)). Here we utilize a simplified version of STDP, resembling
the classic Hebbian plasticity rule: if a pre-synaptic spike induces a post-synaptic spike, then the
weight between these neurons is increased. If a post-synaptic spike occurs, but the pre-synaptic
neuron does not spike, then the corresponding weight is decreased (in this case postsynaptic spiking
may occur because of spiking in other neurons connecting to that post-synaptic neuron).

The sleep training phase we propose here can be described as following. First, inputs to each neuron
of the input layer must be presented as spike-trains in order to propagate activity from the input layer
to the hidden layers of the network. We convert inputs (real-valued pixel intensities or features) to
spike trains by defining a maximum firing rate fmax with units spikes

sec and computing a Poisson-
distributed spike train, such that inputs with higher values (i.e. brighter pixels) will have higher
rate than inputs with lower values, with no spike rates exceeding fmax. Next, activity is propagated
through the network as spikes and the STDP rule is applied to update weights. To simulate sleep,
with periods of up-states where activity is elevated and memory traces are thought to be replayed
(resembling biological activity during deep sleep), weights are scaled by a parameter to induce high
firing rates in later layers. Other important parameters include the threshold for each layer and the
length of sleep. The parameters used for each dataset are presented in Table 2.

4.3 EXPERIMENTS AND DATASETS

Here, we describe the general experimental setup as well as the datasets tested. First, we trained a
control ANN using the training set for each of the main datasets used in this study. Next, we created
a defensively distilled network using T = 50 for the temperature parameter to create the second test
network. Then, we fine-tuned the control ANN on a specific attack or distortion method to create the
third test network. Finally, we converted the control ANN to an SNN and applied the sleep algorithm
as described above to create the fourth test network. We created adversarial examples for each of
these four networks using the attacks we described above (fine-tuned networks are tested on the
attacks they were fine-tuned on). Then, we analyze how successful each attack is to fool each of the
four networks using the metrics defined above. For generalization (blur and noise), we performed
the same setup as above creating four different networks. We then tested each network on varying
levels of distortion. We tested networks fine-tuned on blurred and noisy images to measure how

5

Under review as a conference paper at ICLR 2020

performance generalizes across distortion methods. We averaged performance across a minimum of
three networks for each attack and distortion.

We used three datasets to compare performance: Patches (a toy dataset created simply for analysis),
MNIST (LeCun et al. (1998)), and CUB-200 (Welinder et al. (2010)). Patches consists of four
binary images arranged in a 10x10 square. Each image has its own label (1-4), and consists of 25
bright pixels (value set to 1) and 75 dark pixels. The overlap of bright pixels among the four images
(see Appendix] Appendix) is chosen such that the task is not trivial. The MNIST dataset consists
of 70,000 28x28 greyscale images of handwritten digits, with 60,000 in the training set and 10,000
in the testing set. CUB-200 is a high resolution dataset of images of birds with 200 bird species,
with very few (30) images per class. For this dataset, we used previously extracted ResNet-50
embeddings, where ResNet-50 was pre-trained on ImageNet (He et al. (2016)). For CUB-200, we
do not report results for blurring, since we are using extracted features, not images.

5 RESULTS

We evaluate the sleep algorithm in two settings: (1) Adversarial attacks designed to fool neural
networks and (2) generalization distortions designed to reflect imperfect viewing conditions or other
types of noise. For adversarial attacks (other than FGSM), we utilize the following metric to evaluate
the success of each defense. Let x′i be the adversarial example created for input xi. The total score
SA for an attack is the median squared L2-distance for all samples, where N is the dimension of the
space:

SA = median(
1

N
‖x′i − xi‖

2
2).

For FGSM, we define the following metric which computes the median minimum noise level η
needed to produce a misclassification across all samples:

SFGSM = median(min(ηi)) s.t. f(xi + ηi ∗ x′i) 6= f(x).

For MNIST and CUB-200, we evaluate the attacks on all examples in the testing set. Examples
that the networks get wrong before the attack was implemented are discarded from the analysis (in
these cases ‖x′i − x‖

2
k = 0 and ηi = 0 for all attacks). For FGSM and distortions, we also include

plots of accuracy as a function of noise level. For DeepFool and JSMA, we report adversarial attack
accuracy (number of examples where f(x) = y and f(x′) 6= f(x), where y is the correct label,
over number of examples tested). Note that these algorithms would always produce an adversarial
example if allowed to run forever. However, due to computational limitations, we included a run-
time limitation on the number of iterations for these algorithms (see Appendix). Thus, a lower attack
accuracy indicates that the attack would need more iterations to run to reach 100% accuracy. This is
a similar measure as distance since more iterations would result in more distinct adversaries for all
attacks implemented and the updates at each iteration have the same magnitude for each defense.

5.1 ADVERSARIAL ATTACKS

Patches Control Defensive Distillation Fine-tuning Sleep

FGSM 0.0175 0.05 0.1425 0.2025
DeepFool 0.0440(95.00%) 0.0360 (90.00%) 0.0201 (100.0%) 0.0124 (100.0%)
JSMA 0.0049 (80.00%) 0.0135 (70.00%) 0.0450 (100.0%) 0.0541 (100.0%)
Boundary Attack 0.2971 0.3124 0.1772 0.3515

MNIST Control Defensive Distillation Fine-tuning Sleep

FGSM 0.0900 0.0900 0.1000 0.2200
DeepFool 0.0042 (96.46%) 0.0043 (96.42%) 0.0074 (97.40%) 0.0484 (86.38%)
JSMA 0.0090 (99.29%) 0.0086 (99.41%) 0.0133 (98.77%) 0.0059 (72.97%)
Boundary Attack 0.0525 0.0525 0.0544 0.0488

6

Under review as a conference paper at ICLR 2020

MNISTA B CPatches

0 0.1 0.2 0.3 0.4
Eta

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

Control
Defensive Distillation
Finetuning
Sleep

0 0.1 0.2 0.3 0.4
Eta

20

30

40

50

60

70

80

90

100

110

Ac
cu

ra
cy

Control
Defensive Distillation
Finetuning
Sleep

0 0.1 0.2 0.3 0.4
Eta

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

Control
Defensive Distillation
Finetuning
Sleep

CUB-200

Figure 1: FGSM adversarial attack accuracy as a function of noise added (Eta) for the three datasets
tested: A) Patches B) MNIST C) CUB-200.

CUB-200 Control Defensive Distillation Fine-tuning Sleep

FGSM 0.0550 0.0500 0.0650 0.0600
DeepFool 0.0027 (82.23%) 0.0019 (84.16%) 0.0044 (83.02%) 0.0025 (83.12%)
JSMA 0.0477 (95.56%) 0.0347 (95.88%) 0.0530 (95.38%) 0.0439 (95.15%)
Boundary Attack 0.9751 0.9034 0.9976 0.9967

Here we report the scores for all different attacks and for the all datasets. For the FGSM attack,
the sleep algorithm increases the median minimum noise needed for misclassification for all three
datasets compared to the control network (also see Figure 1). For MNIST dataset, the amount of
noise needed to fool the network after the sleep algorithm was almost double of that needed for
either the fine-tuning or defensive distillation approaches. For the Patches dataset, both defensive
distillation and fine-tuning increase the robustness of the network. However, on CUB-200, only
fine-tuning and sleep were able to defend, albeit marginally, against the FGSM attack. Looking
at the accuracy of the network as a function of noise added (η, Figure 1), we observe that in the
Patches and CUB-200 dataset, sleep has beneficial results in moving the accuracy function above
the other defense methods. For MNIST, the baseline accuracy on the original test set decreases
slightly compared to the other methods (80% after sleep). However, the performance remains high
longer than for the other defense methods on images that were correctly classified. We observe
that performance continued to drop after a sufficiently large amount of noise was added. This is
biologically plausible as adding more noise to an image should result in misclassifications, as the
images degrade. In sum, these results indicate that sleep phase can successfully mitigate FGSM,
more so than a control network.

For DeepFool, sleep has a significant effect on the defense score on the MNIST dataset, both re-
ducing the attack success rate and increasing the distance between the adversarial example and the
original input by an order of magnitude. For Patches and CUB-200 this effect is less pronounced,
with fine-tuning or the control network performing better. We hypothesize that sleep was ineffective
in preventing the DeepFool attack in tasks with very few exemplars per class (Patches) or a large
number of classes (CUB-200). In CUB-200, there is a large number of classes so the distance be-
tween the input and the nearest decision boundary is smaller (this is supported by the fact that JSMA,
an L0 attack, does worse than DeepFool for CUB-200 and vice versa for MNIST, control networks).
In this case, sleep is unable to move the decision boundary of one class without impinging on the
decision space of another class. In MNIST, where the decision space for one class is presumably
larger, sleep can alter decision boundaries in a way that has a minimal effect on other classes.

Sleep successfully increases the network’s robustness to the JSMA atttacks for all three datasets,
reducing the attack success rate in the case of CUB-200 and MNIST and increasing the distance
needed to create an adversary for Patches. Defensive distillation and fine-tuning also reduce JSMA’s
effectiveness. However, for these two defenses, on MNIST and CUB-200 datasets, the networks
were capable of finding an adversary for a higher percentage of the testing set. Thus, the effect of
changing a small number of important pixels is mitigated after running sleep algorithm.

7

Under review as a conference paper at ICLR 2020

MNIST CUB-200A B

0 1 2 3 4
Noise std

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

Noise generalization

Control
Defensive Distillation
Finetuning
Sleep

Figure 2: Generalization accuracy for noise and blur of five different networks tested (Control,
Defensively distilled, Fine-tuned-blur, Fine-tuned-noise, and Sleep) for the following three datasets:
A) MNIST B) CUB-200.

For the Boundary Attack, we found that no defense mechanism helps compared to the control in
decreasing the attack’s effectiveness on the MNIST dataset. However, for CUB-200 and Patches,
the sleep algorithm results in a higher defense score than that for the control network. This lends
support to the idea that sleep favorably alters decision boundaries so that it becomes harder to find an
adversarial example that is close to the original image after the sleep phase. This also suggests that
sleep is not simply obfuscating gradients, which has been a common criticism of several adversarial
defenses (Athalye et al. (2018)), which are tested on white-box attacks. In fact, given the long
run-time for convergence of this algorithm, if we define a threshold for adversarial attack success
(L2-norm > 1), then sleep successfully defends against this attack on the MNIST dataset (see Table
3).

Why does sleep phase help? It has been shown that sleep tends to promote an increase in stronger
weights while pruning weaker weights, thus increasing the width of the weights’ distribution (Gon-
zalez et al., 2019). This results in the consolidation of strong memories at the cost of diminishing
weak memories. From this point of view, a memory is a subspace or abstraction in the decision space
corresponding to a given class. Sleep may result in enlarging the subspace the network allocates to a
stronger category while shrinking weaker ones (Figure 8A). The process of strengthening the strong
memory also results in making it robust and noise invariant, as seen in Figure 8B where the first 8
categories (numbers 0-7) are strengthened and become more invariant to the FGSM attack, while the
last two digits are essentially forgotten and the network cannot confidently predict exemplars from
these classes (Figure 8C). If the noise is less targeted, as in the case of random noise or blurring,
sleep does not need to alter the decision space as much to produce better generalization and can
maintain a high baseline accuracy, as we demonstrate in the next section.

5.2 GENERALIZATION

Figure 2 shows the network performance for noisy and blurry distortions of data for MNIST (A)
as well as noisy distortions for the CUB-200 feature embeddings (B, see Figure 5 for results on
Patches). Overall, fine-tuning on an image distortion results in the best performance for that specific
distortion. However, as was noted (Geirhos et al. (2018)), fine-tuning on a specific distortion does
not extend to other types of distortions. In our analysis, fine-tuning the network on blurred MNIST
images results in high performance (> 80%) on blurred images. However, for noisy images, this
performance was only marginally above the control network. The sleep algorithm increased perfor-
mance for both distortion methods, since this approach is not tailored to any one representation of
the training set.

Finally we tested how sleep increases robustness on blur and noise distortions. In biological systems,
sleep increases generalization through replay of memories learned during awake which leads to
changes in synaptic weights. These changes entail both an increase in synaptic weights associated
with a specific task and pruning of synapses involved in other tasks (Gonzalez et al., 2019; Tononi
& Cirelli, 2006). Figures 14 and 15 show that correlations among like digits in the hidden layers

8

Under review as a conference paper at ICLR 2020

of the network are greater after applying sleep than before for noisy and blurred images. Likewise,
pairs of different digits usually become decorrelated after sleep, suggesting synaptic pruning. We
also show that both normalized spiking activity and activations of digit-specific neurons are higher
after sleep than before (Figures 16 and 17, see Appendix for details). These results suggest that the
sleep algorithm increases robustness through biologically plausible learning mechanisms involving
replay of relevant activity during sleep phase.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we show that a biologically inspired sleep algorithm can increase an ANN’s robust-
ness to both adversarial attacks and general image distortions. The algorithm augments the normal
(e.g., back-propagation based) training phase of an ANN with an unsupervised learning phase in the
equivalent SNN modelled after how the biological brain learns using Hebbian type plasticity rules.
We hypothesize that the unsupervised sleep phase creates more natural feature representations which
in turn lead to more natural decision boundaries, thus increasing the robustness of the network. Al-
though this robustness may come at a cost of overall accuracy, it has been shown that robustness may
have multiple important benefits, such as more salient feature representations as well as invariance
to input modifications (Tsipras et al. (2018)). We also show that the trade-off between robustness
and accuracy does not always occur, particularly for image distortions such as noise or blur. Future
work includes converting the sleep algorithm into a regularization technique to be applied in more
standardized machine learning frameworks as well as understanding the theoretical basis for the
beneficial role of spike based plasticity rules in increasing network robustness.

REFERENCES

LF Abbott and Thomas B Kepler. Model neurons: from hodgkin-huxley to hopfield. In Statistical
mechanics of neural networks, pp. 5–18. Springer, 1990.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
examples. arXiv preprint arXiv:1707.07397, 2017.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420,
2018.

Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial machine
learning. Pattern Recognition, 84:317–331, 2018.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable
attacks against black-box machine learning models. arXiv preprint arXiv:1712.04248, 2017.

Nicholas Carlini and David Wagner. Defensive distillation is not robust to adversarial examples.
arXiv preprint arXiv:1607.04311, 2016.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE, 2017.

Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer.
Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing.
In 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2015.

Samuel Dodge and Lina Karam. Understanding how image quality affects deep neural networks.
In 2016 eighth international conference on quality of multimedia experience (QoMEX), pp. 1–6.
IEEE, 2016.

Nic Ford, Justin Gilmer, Nicolas Carlini, and Dogus Cubuk. Adversarial examples are a natural
consequence of test error in noise. arXiv preprint arXiv:1901.10513, 2019.

Robert Geirhos, Carlos RM Temme, Jonas Rauber, Heiko H Schütt, Matthias Bethge, and Felix A
Wichmann. Generalisation in humans and deep neural networks. In Advances in Neural Informa-
tion Processing Systems, pp. 7538–7550, 2018.

9

Under review as a conference paper at ICLR 2020

Samanwoy Ghosh-Dastidar and Hojjat Adeli. Spiking neural networks. International journal of
neural systems, 19(04):295–308, 2009.

Oscar C Gonzalez, Yury Sokolov, Giri Krishnan, and Maxim Bazhenov. Can sleep protect memories
from catastrophic forgetting? BioRxiv, pp. 569038, 2019.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvari. Learning with a strong adver-
sary. arXiv preprint arXiv:1511.03034, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Penelope A Lewis and Simon J Durrant. Overlapping memory replay during sleep builds cognitive
schemata. Trends in cognitive sciences, 15(8):343–351, 2011.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2574–2582, 2016.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confi-
dence predictions for unrecognizable images. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 427–436, 2015.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial settings. In 2016 IEEE European Sympo-
sium on Security and Privacy (EuroS&P), pp. 372–387. IEEE, 2016a.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a
defense to adversarial perturbations against deep neural networks. In 2016 IEEE Symposium on
Security and Privacy (SP), pp. 582–597. IEEE, 2016b.

Jessica D Payne, Daniel L Schacter, Ruth E Propper, Li-Wen Huang, Erin J Wamsley, Matthew A
Tucker, Matthew P Walker, and Robert Stickgold. The role of sleep in false memory formation.
Neurobiology of learning and memory, 92(3):327–334, 2009.

Björn Rasch and Jan Born. About sleep’s role in memory. Physiological reviews, 93(2):681–766,
2013.

Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A python toolbox to benchmark the
robustness of machine learning models. arXiv preprint arXiv:1707.04131, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

Sen Song, Kenneth D Miller, and Larry F Abbott. Competitive hebbian learning through spike-
timing-dependent synaptic plasticity. Nature neuroscience, 3(9):919, 2000.

Robert Stickgold. Sleep-dependent memory consolidation. Nature, 437(7063):1272, 2005.

Robert Stickgold and Matthew P Walker. Sleep-dependent memory triage: evolving generalization
through selective processing. Nature neuroscience, 16(2):139, 2013.

10

Under review as a conference paper at ICLR 2020

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Giulio Tononi and Chiara Cirelli. Sleep function and synaptic homeostasis. Sleep medicine reviews,
10(1):49–62, 2006.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. arXiv preprint arXiv:1805.12152, 2018.

Jonathan Uesato, Brendan O’Donoghue, Aaron van den Oord, and Pushmeet Kohli. Adversarial risk
and the dangers of evaluating against weak attacks. arXiv preprint arXiv:1802.05666, 2018.

Igor Vasiljevic, Ayan Chakrabarti, and Gregory Shakhnarovich. Examining the impact of blur on
recognition by convolutional networks. arXiv preprint arXiv:1611.05760, 2016.

Erin J Wamsley, Matthew A Tucker, Jessica D Payne, and Robert Stickgold. A brief nap is beneficial
for human route-learning: The role of navigation experience and eeg spectral power. Learning &
Memory, 17(7):332–336, 2010.

Yina Wei, Giri P Krishnan, Maxim Komarov, and Maxim Bazhenov. Differential roles of sleep
spindles and sleep slow oscillations in memory consolidation. PLoS computational biology, 14
(7):e1006322, 2018.

Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie, and
Pietro Perona. Caltech-ucsd birds 200. 2010.

Matthew A Wilson and Bruce L McNaughton. Reactivation of hippocampal ensemble memories
during sleep. Science, 265(5172):676–679, 1994.

Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial examples: Attacks and defenses for
deep learning. IEEE transactions on neural networks and learning systems, 2019.

Yiren Zhou, Sibo Song, and Ngai-Man Cheung. On classification of distorted images with deep
convolutional neural networks. In 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 1213–1217. IEEE, 2017.

7 APPENDIX

7.1 TRAINING PARAMETERS

Here, we define the neural network parameters used for each of the three datasets as well as the
sleep, defensive distillation, and fine-tuning parameters used. Table 1 shows the neural network
training parameters used to train each of the control networks discussed in the paper. All neural
networks were trained with ReLU neurons. Table 2 shows the parameters used during sleep on each
of the three datasets. Note that these parameters (for MNIST and CUB-200) were chosen by running
a genetic algorithm to maximimize performance on the FGSM attack (performance was determined
based on the training set so as not to overfit to the test set). For the other three attacks, parameters
that maximized FGSM performance were used. Also, for noise and blur generalization, different
parameters were chosen (not shown here).

Patches MNIST CUB200
Architecture [100, 4] [784, 1200, 1200, 10] [2048, 350, 300, 200]
Learning Rate 0.1 0.1 0.1
Momentum 0.5 0.5 0.5
Dropout 0 0.2 0.25
Epochs 1 2 100

Table 1: Parameters used to train the control network for each of the three datasets. Architecture
refers to number of units per layer. For example, the MNIST network possessed 1 input layer, 2
hidden layers with 1200 units, and an output unit with 10 units.

11

Under review as a conference paper at ICLR 2020

Patches MNIST CUB200
Input Rate 16 Hz 40 Hz 79 Hz
Sleep Duration 3000 27105 11751
Thresholds 1.0450, 0.7150, 0.3850 36.18, 23.36, 36.38 2.69, 4.61, 2.63
Synaptic AMPA current 4.25 2.19 4.15
Increase factor 0.0035 0.063 0.0016
Decrease factor 0.0002 0.069 0.000209

Table 2: Parameters used during sleep. Input rate = Fmax, the maximum firing rate of input neurons,
Sleep duration = length of sleep (number of images presented during sleep, Thresholds = neuronal
firing thresholds for each layer of neurons, Synaptic AMPA current = factor to scale the weights by
during sleep, Increase and Decrease factor = amount weights are modified on a STDP event.

For the defensively distilled networks tested in the paper, we first train an initial network using a
temperature of 50. Then, we use the training set to compute soft labels and finetune the initial
network on these soft labels for the same number of epochs and with the same learning rate.

For the fine-tuned networks, we take the control networks trained with the parameters shown in
Table 1. The learning rate is reduced to 0.05 and the network is fine-tuned on a mixture of either
adversarial attacks, blur or noise and the original images/features. For CUB-200, we perform fine-
tuning for 10 epochs.

7.2 PATCHES ANALYSIS

The Patches dataset represents an easily interpretable example where we can understand what hap-
pens to the weights after sleep. Figure 3 shows an example of the dataset. Here, we have 4 images
each belonging to 4 different classes. 25 pixels are whitened in each image and the remaining 75
pixels are dark. There is a 15 pixel overlap, so that weights connecting from input to output layer
must take this into account in order to separate the images. Figure 4 illustrate the blur and noise
distortions tested for this dataset and Figure 5 shows the results for the blur and noise distortions.

After the network is trained, we can analyze the weights connecting from each of the 100 input
neurons to the 4 output neurons (see Figure 6, top row). We theorize that optimally robust behav-
ior would occur when weights connecting from ON-pixels are positive, weights connecting from
overlapping pixels are near 0, and weights connecting from OFF-pixels are negative. In this case,
changing the value of overlapping pixels will have no effect on classification. Changing the value
of OFF-pixels will cause the network to predict another class, where OFF-pixels may be ON-pixels
or indicative of that class. Changing the value of ON-pixels will only have a negative impact if
the brightness of the pixel is reduced significantly. Thus, in this circumstance, the network should
behave robustly.

In the control network, we observe that weights connecting from ON-pixels (pixel-value = 1) in-
crease while weights connecting from OFF-pixels remain at 0. Weights connecting from overlap-
ping pixels remain near 0 or positive. Defensive distillation causes some weights connecting from
overlapping pixels to decrease, likely because the soft labels used in defensive distillation cause
overlapping pixel units to alter the probability values computed by the network in such a way that
does not truly reflect the impact of the overlapping pixels. In the fine-tuning networks (both on
blurred images and noisy images), we observe an increase in ON-pixel weights and an increase in
noisiness of OFF-pixel weights. Likewise, in the sleep network, OFF-pixel weights become negative
while ON-pixel weights remain the same. In these cases, robustness is increased as weights become
more similar to our hypothesized ideal weights. Essentially, the magnitude of input changes need
to change classification increase since the spread between ON-pixel weights and OFF-pixel weights
increases. We quantify the spread in weights by taking the difference between the average weight
connecting from ON-pixels and the average weight connecting from OFF-pixels. This represents
the mean input that each correct output neuron receives. This result is shown in Figure 7. Of note is
that this weight spread is increased for both the sleep and finetuning-noise network, suggesting that
these defenses bring the weights closer to their ideal values for computing robustness.

12

Under review as a conference paper at ICLR 2020

Patches – Overlap = 15

Figure 3: Patches dataset example

Bl
ur

N
oi
se

Increasing

Figure 4: Types of images tested on for generalization for the Patches dataset. Top - Images with
Gaussian noise added with increasing variannce (from 0 to 1.0 in steps of 0.2). Bottom - Gaussian
blurred images with increasing sigma (from 0 to 2.5 in steps of 0.5).

7.3 ADVERSARIAL ATTACKS

Here, we describe the general approach for implementing DeepFool, JSMA, and the Boundary At-
tack discussed in the paper. We also show examples of adversaries created for each of the defense
networks from these attacks.

DeepFool. DeepFool (Moosavi-Dezfooli et al. (2016)), as mentioned above, is an iterative algorithm
that, at each iteration, aims to move the adversarial example in the direction of the closest decision
boundary until it results in a misclassification. We based our implementation off of that in Rauber
et al. (2017). We stopped running the algorithm when either an adversarial example is found or
when 100 iterations have passed. Examples of DeepFool attacks on the MNIST dataset are shown
in Figure 9. At each iteration we compute a linear approximation of the loss function and take a step
in the direction that would be result in a misclassification. The equations used and pseudocode can
be found in the original DeepFool paper.

JSMA. JSMA is also an iterative algorithm which computes the pixel that would change the loss
function the most at each algorithm and changes this pixel, until a misclassification is produced. For
this method, we set a run-time limit of 500 iterations. We also remove a pixel from the saliency
map when it has beeen updated seven times, so the algorithm can focus on other pixels. We set the

13

Under review as a conference paper at ICLR 2020

Figure 5: Generalization accuracy for noise and blur of five different networks tested (Control,
Defensively distilled, Fine-tuned-blur, Fine-tuned-noise, and Sleep) for the Patches dataset.

Figure 6: Weights for each of the 5 networks (Control, defensively distilled, finetuning on noise,
finetuning on blur, and sleep) trained on Patches dataset. Each column shows the weights connecting
from each of the 100 input neurons (x-axis) to the corresponding output neuron.

14

Under review as a conference paper at ICLR 2020

Control Defensive Distillation Finetuning-noise Finetuning-blur Sleep
0

0.02

0.04

0.06

0.08

0.1

0.12

W
ei

gh
t s

pr
ea

d

Figure 7: Weight spread for each of the 5 networks.

A B C

Figure 8: A) Example function learned in a 3-layer neural network illustrates that sleep alters de-
cision boundaries in favor of making one class more robust while impinging on another class. B)
Average noise needed for FGSM attack for specific digits. C) Output layer scores for each digit
(rows) before and after sleep.

15

Under review as a conference paper at ICLR 2020

MNIST Control Defensive Distillation Fine-tuning Sleep

Boundary Attack 0.0073 0.0074 0.0047 0.0094

Table 3: MNIST Boundary Attack with a threshold defining a successful adversarial attack.

6 2 6 5 4 2 8 4 8 3

6 7 6 6 3 2 8 4 8 3

6 9 6 6 7 8 7 4 8 3

6 7 1 0 7 7 7 0 0 3
Sleep

Defensive
Distillation

Control

Finetune

Figure 9: DeepFool adversarial examples for each defense. The network’s prediction is shown above
each image.

change to each pixel at a constant value, 0.1. This represents how much each pixel is updated (in
the direction that results in a misclassification) at each iteration. Pseudocode can be found in the
original publication (Papernot et al. (2016a)). We show examples of adversaries created by JSMA
in Figure 10.

Boundary Attack. The Boundary Attack (Brendel et al. (2017)) starts with an adversarial example
and moves it closer to the decision boundary of the correct class. At each step of the algorithm, the
method performs orthogonal and forward perturbations to move the adversary closer to the origi-
nal image, thus reducing the distance between the adversary and the original image. We set both
a distance convergence criterion (L2-norm = 1e-7) and a run-time limitation on the attack (1000
iterations). Example attacks are shown in Figure 11. We note that sometimes the algorithm does not
successfully produce an ”imperceptible” adversarial example and instead produces a noisy output
(the starting condition is a noisy image). If we define a threshold defining a successful adversarial
attack (L2-Norm > 1), then we observe the results for MNIST in Table 3.

7.4 GENERALIZATION ANALYSIS

In this section, we analyze how sleep can aid in increasing ANN robustness. In biological networks,
sleep extracts the gist of a task through replay (Lewis & Durrant (2011)). Thus, we hypothesized
that our sleep algorithm works in the same manner. First, we tested the ability of the sleep network
to decorrelate distinct inputs. We tested this hypothesis by analyzing the effect of running sleep and
testing on our two distortion techniques (see Figure 12).

First, we computed the correlations of network activities in each of the hidden layers of the network
before and after implementing our defense methods. For each pair of digits, we computed the

16

Under review as a conference paper at ICLR 2020

6 7 6 5 4 7 7 7 0 3

6 7 4 5 5 7 8 7 0 3

6 7 4 5 0 7 8 4 0 3

2 7 4 7 5 5 0 7 6 3

Sleep

Defensive
Distillation

Control

Finetune

Figure 10: JSMA adversarial examples for each defense. The network’s prediction is shown above
each image.

6 3 4 8 2 8 8 8 8 3

6 3 4 5 2 8 8 4 8 3

6 9 4 3 4 3 7 4 4 3

6 2 1 7 7 7 7 4 7 3

Sleep

Defensive
Distillation

Control

Finetune

Figure 11: Boundary Attack adversarial examples for each defense. The network’s prediction is
shown above each image.

17

Under review as a conference paper at ICLR 2020

average correlation of layer activities in the undistorted (Figure 13), noisy (Figure 14), and blurred
(Figure 15) conditions. Each figure reports the difference in digit pairwise correlations between
the defense method and the control network for each set of inputs. For our sleep network, it is
apparent that in layer 2 and layer 3, the correlations of the same digits (the diagonal) increases
after sleep. Additionally, the correlation of distinct digits typically experiences negative change,
representing decorrelation of distinct inputs. This analysis holds for defensive distillation and both
of the fine-tuned networks. This suggests that the ANN representation of different exemplars of the
same digit becomes more similar after sleep or after any of the defense networks when compared to
the control. This is not simply due to an increased overlap of all inputs, since exemplars of different
digits become decorrelated after applying a defense method.

Next, we performed the same correlation analysis on noisy and blurred images to see how the rep-
resentation of distorted images changes after applying a distortion method. First, we note that fine-
tuning on noisy images results in stronger correlation of the same (noisy) digit but weaker correla-
tions of different (noisy) digits, as noted above. However, fine-tuning on blurred images does not
have as strong an effect. Second, sleep seems to have a beneficial effect on the correlation matri-
ces for both blurred and noisy images (comparing the right column of Figures 14 and 15). This
illustrates the beneficial role of sleep in creating distinct representations of digits, where different
neuronal ensembles encode different digits. This change in representation should result in increased
robustness since changes to the input must be larger in order to recruit neuronal ensembles that
represent other digits.

On top of decorrelating the representation of distinct memories by pruning synapses, biophysical
modelling suggests that sleep can also aid in strengthening connections thus making the response of
primary neurons involved in memory much stronger (Gonzalez et al. (2019)). To test this hypothesis
in our networks, we analyzed the firing rate and activations of digit-specific neurons before and after
sleep. Before describing the analysis, we remind the reader that SNNs can be used to performn
classification and a near loss-less conversion between ANNs and SNNs has been achieved on the
MNIST task (Diehl et al. (2015)). To perform classification, a digit is presented (as a Poisson spike
train) to the network and spikes are propagated throughout the network for a given time period
(or number of presentations of the input). Analyzing network activity in the spiking domain can
be easier than in the activation domain (ANNs) since spikes are oftentimes easier to interpret than
neuronal activations.

For this reason, we first analyze how spike rates of digit-specific neurons change before and after
sleep in the spike domain. To do this we present all images of a specified digit to the spiking network
and count the number of spikes from each neuron (holding the weights constant). We define digit-
specificity by looking at the 100 neurons with the highest firing rates in layer 2. In Figure 16, we
show that the normalized firing rate of these neurons usually increases after sleep (normalized by
dividing by the maximum firing rate observed from the SNN).

Next, we perform the same analysis in the activation domain. Again, we define digit-specific neurons
by looking at the top 100 neurons with the highest activation for a specific digit. We look at the
normalized mean activations of these neurons before and after sleep and note that for all digits
this value is higher after sleep than before sleep (Figure 17). This suggests that the neurons in
the network are responding more strongly to the presentation of the same digit, thus increasing the
robustness of the network as more noise must be added in order to counter the effect of this stronger
response. This also suggests that our algorithm works in a biologically plausible way: both by
decorrelating distinct inputs and increasing the strength of similar inputs.

18

Under review as a conference paper at ICLR 2020

Bl
ur

N
oi
se

Increasing

Figure 12: Types of images tested on for generalization for the MNIST dataset. Top - Images with
Gaussian noise added with increasing variannce (0, 0.1, 0.3, 0.5, 0.7, 0.9, left to right). Bottom -
Gaussian blurred images with increasing sigma (from 0 to 2.5 in steps of 0.5).

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

La
ye

r 2
La

ye
r 3

La
ye

r 4

SleepDefensive
Distillation

Finetune
Noise

Finetune
Blur

Figure 13: Correlation differences between defense network and control network for 4 different
defenses. Correlations are computed based on the activations in each layer for each pair of digits
(mean correlation). The difference between the correlation of the defense method (column) and the
control network is plotted. Activations are computed based on the undistorted test images.

19

Under review as a conference paper at ICLR 2020

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

La
ye

r 2
La

ye
r 3

La
ye

r 4

SleepDefensive
Distillation

Finetune
Noise

Finetune
Blur

Figure 14: same as Figure 13 but activations are computed when presented with noisy images.

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

-0.4

-0.3

-0.2

-0.1

0

0.1

La
ye

r 2
La

ye
r 3

La
ye

r 4

SleepDefensive
Distillation

Finetune
Noise

Finetune
Blur

Figure 15: same as Figure 13 but activations are computed when presented with blurred images.

20

Under review as a conference paper at ICLR 2020

Figure 16: Normalized firing rates of neurons specific to individual digits when presented with noisy
images is greater after applying sleep than before sleep.

Figure 17: Normalized activations of neurons specific to individual digits when presented with noisy
images is greater after applying sleep than before sleep.

21

	Introduction
	Adversarial Attacks and Distortions
	Adversarial Defenses
	Sleep algorithm
	Spiking Neural Networks
	Sleep
	Experiments and Datasets

	Results
	Adversarial Attacks
	Generalization

	Conclusions and Future Directions
	Appendix
	Training Parameters
	Patches Analysis
	Adversarial Attacks
	Generalization Analysis

