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ABSTRACT

We investigated the changes in visual representations learnt by CNNs when using
different linguistic labels (e.g., trained with basic-level labels only, superordinate-
level only, or both at the same time) and how they compare to human behav-
ior when asked to select which of three images is most different. We compared
CNNs with identical architecture and input, differing only in what labels were
used to supervise the training. The results showed that in the absence of labels,
the models learn very little categorical structure that is often assumed to be in
the input. Models trained with superordinate labels (vehicle, tool, etc.) are most
helpful in allowing the models to match human categorization, implying that hu-
man representations used in odd-one-out tasks are highly modulated by semantic
information not obviously present in the visual input.

1 INTRODUCTION

When compare to the performance of many classification models in computer vision, human clas-
sification is considerably more flexible and efficient. In fact, humans can learn new categories with
just a few examples (i.g., zero-shot or few-shot learning) and this category knowledge can be trans-
ferred to new exemplars (Ashby & Maddox, 2005; Ashby & Ell, 2001). However, this job is not
easy at all for most classification models because they are usually biased towards learning basic or
subordinate-level features which are hardly generalized to new higher-level categories. Understand-
ing human category learning and obtaining human-like visual representation is therefore important
task for both behavioral and computer vision.

What can be so different about category learning between humans and machines? One possible
difference is language. Human learning goes beyond the one-to-one correspondence of perceptual
stimulus and cue; Human uses language and the semantic information it conveys, and by doing so
they could actively seek and identify the relationship between various objects in the world (Hays,
2000; Levinson, 1997; Lupyan & Lewis, 2017). In computer vision, of course, especially under the
Zero-shot and Few-shot learning task, many attempts have been made to learn complex semantic
relationships between objects using relational information (Sung et al., 2018; Annadani & Biswas,
2018), attribute labels (Lampert et al., 2013; Akata et al., 2015; Chen et al., 2018), and word vectors
(Frome et al., 2013) to increase the generalizability of the model’s performance.

However, few studies have systematically studied how different patterns of labels influence what
models exposed to the same visual inputs learn (but see Peterson et al., 2018) In this study, we
trained the equivalently designed CNNs with different types of labels and explored how the visual
representations learnt by these models are distributed – how comprehensive and separable each cat-
egory cluster is. We also collected human similarity judgements in the Odd-one-out task where the
person had to select which of three images is most different. With this dataset and using categori-
cal representations extracted from our trained models, we could predict human similarity decisions
fairly well with the highest accuracy of 74% and understand which labeling schemes produce the
most human-like representation.
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2 MODEL TRAINING

The goal of this study is to examine how linguistic label changes the learnt visual representation in
Convolutional neural network(CNN). In order to achieve this, we trained the equivalently designed
CNNs for classification, but each time with the different linguistic labels as groundtruth. In addition,
we trained Convolutional autoencoder (Conv AE), which also encodes the images using the the same
Convolutional structure as the other models do but instead of being supervised to predict the class
of image, the aim of this model is to generate the same output image at the input. This Conv AE
represents in a sense the model not trained with any linguistic label at all, compared to the other
models given some types of linguistic labels. The description of each model and labels used for
training are provided below.

• Convolutional Autoencoder (CAE): Autoencoder with Convolutional encoder and de-
coder trained to output the same image as input

• Basic CNN (Basic): CNN model trained with one-hot encoding of basic-level categories,
n=30

• Superordinate CNN (Super): CNN model trained with one-hot encoding of
superordinate-level categories, n=10

• Combined basic and superordinate CNN (Combined): CNN model trained with two-hot
encoding of both basic and superordinate-level categories, n=40(10+30)

• Basic-Superordinate CNN (Basic-Super): CNN model trained with one-hot encoding of
basic-level categories first (n=30), and then finetuned with one-hot encoding of superordi-
nate categories (n=10)

• Word vector CNN (Wordvec): CNN model trained with basic-level word vectors ex-
tracted from Fasttext word embedding model (Bojanowski et al., 2017), dimension=300

Across the different labeling conditions, the architecture of CNNs remained exactly the same, except
for the output layer and its activation function. The general pipeline used for CNNs is described in
the Figure 1. Our CNN models consist of five blocks of two Convolutional layers followed by Max
pooling and Batch normalization layers. Through all Convolutional and Max pooling operations,
the zero padding was employed to produce the output feature maps with the same size of the input.
The output of Convolutional layer, the ”bottleneck” feature which later was extracted and analyzed
for studying model’s visual representation (dim=1568), was then fed into one fully connected dense
layer. Rectified linear units (ReLU) was used as activation function after each convolution. The
output activation function differs depending on which linguistic labels are used: softmax function
for Basic, Super, and Basic-Super CNN, sigmoid function for combined Combined CNN, and linear
function for Wordvec CNN. For CAE, the same Convolutional architecture was employed for en-
coder and decoder part, with the hidden layer in the model (dim=1568) serving as bottleneck feature
for analysis. For output function in CAE, linear function was used.

All models are trained and validated on the images of 30 categories from IMAGENET 2012
dataset (Deng et al., 2009), and tested on the images of the same 30 categories from THINGS
dataset (Hebart et al., 2019). These 30 basic-level categories can be grouped into 10 higher-level
categories – superordinate-level, including ’mammal’, ’bird’, ’inset’, ’fruit’, ’vegetable’, ’vehicle’,
’container’, ’kitchen appliance’, ’musical instrument’, and ’tool’. A full list of 30 categories with
their superordinate-level categories are provided in the Appendix. All input images were converted
from RGB to BGR and then zero-centered each channel with respect to the ImageNet dataset. Differ-
ent loss function was used for training each model: Categorical Crossentropy loss for Basic, Super,
and Basic-Super CNN, Binary Crossentropy loss for Combined CNN, and Mean Squared Error loss
for both Wordvec CNN and CAE model. All models were trained using a version of optimization
algorithm Adam (Kingma & Ba, 2014), using the mini-batch size of 64. During training, early
stopping was implemented and the model with the lowest validation loss was used for the following
analysis.

3 BEHAVIORAL DATA

To compare visual representation of our trained models with that of human, we also collected human
similarity judgements in Odd-one-out task, as done in Zheng et al. (2019). In Odd-one-out task, the
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Figure 1: General pipeline for CNNs used for the study. Rectified linear units (ReLU) was used
as activation function after each convolution. For final classification, we used softmax function for
basic and superordinate category classification, sigmoid function for combined basic and superordi-
nate category classification, and linear function for word vector prediction. The other architecture
remained the same across tasks

participant was presented three images, triplet, and was asked to choose which image is the most
different from the other two. The triplet consisted of three exemplar images from 30 categories used
for our model training. Almost all exemplar images used for the data collection came from Zheng
et al. (2019), but for ’crate’, ’hammer’, ’harmonica’, and ’screwdriver’ images were replaced with
new one to increase image quality and category representativeness. There are 4060 possible triplets
in total that can be generated from all 30 categories, but we collected human data on a subset of them
to reduce time and cost of data collection. This subset includes 1) all ten triplets where three im-
ages came from the same superordinate category e.g., ’orangutan’, ’lion’, ’gazelle’ 2) all 435 triplets
where two images came from the same superordinate category e.g., ’orangutan’, ’lion’, ’minivan’,
and 3) 1375 triplets where all images came from different categories e.g., ’orangutan’, ’minivan’,
’lemon’, making 1820 unique triplets in total. 51 Amazon Mechanical Turk(AMT) workers partic-
ipated in this task, each making responses on ∼200 triplets. After removing the responses with RT
below 500ms, we collected 9697 similarity judgements data with each triplet viewed by 5.6 workers
on average (min =4 , max=51).

4 EXPERIMENTS

4.1 EVALUATING MODEL PERFORMANCE

Although our goal is not to beat the state of art vision model in classification, we evaluated classi-
fication accuracy so as to confirm the validity of learnt visual representations of our trained models
i.e., to check if models successfully gained categorical knowledge to the extent that it could show
the actual effects of different labels on learning. For evaluating classification accuracy, we reported
results on several metrics: 1) top@k – the percentage of accurate classification on test images where
the true class needs to be in the top K prediction for it to be counted as accurate, 2) average pre-
cision and 3) average recall over all categories. All metrics are computed over on the test dataset
(THINGS; Hebart et al., 2019). Since Wordvec CNN is predicting word vector, not class, its classi-
fication performance was approximated by calculating cosine similarity between predicted and true
word vectors and choosing the corresponding class from top@k similarities. The classification re-
sults from CAE was not reported, because it aims to generate the input-like images, not to predict
the class of image. A few examples of image generated from CAE are attached in the Appendix. As
can be seen in Table 1, all trained models performed classification fairly well (all models top@5 acc
>.82), although there’s still room from improvement in classification for Wordvec CNN.
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Table 1: Classification accuracy results from trained models. Exact match accuracy is the same as
top@2 accuracy from Combined CNN and the same as top@1 accuaracy for the other models. Pre-
cision and recall reported here were sample-wise averaged for Combined CNN and micro-averaged
for the other models.

Model type # class Accuracy Average
Precision

Average
Recallexact match top@3 top@5

Basic CNN 30 0.90 0.98 0.99 0.90 0.90
Super CNN 10 0.95 0.99 0.99 0.94 0.94
Combined CNN 40 0.91 0.95 0.97 0.91 0.91
Basic-Super CNN 10 0.95 0.99 0.99 0.95 0.95
Wordvec CNN 30 0.52 0.74 0.82 0.52 0.52

4.2 EXPLORING VISUAL REPRESENTATIONS

To explore how the model’s visual representations change as different linguistic labeling schemes are
deployed, we extracted and analyzed on the bottleneck features from each model i.e., the final output
of Convolutional layer with the feature vector dimension equal to 1568 (see Figure 1). For analysis,
we first measured representational similarity of all images in the training dataset (IMAGENET 2012;
Deng et al., 2009) between/within category. These representational distributions were visualized
using t-SNE (Maaten & Hinton, 2008) which are attached in Appendix. We also analyzed the
similarity between categorical representations by plotting similarity matrix. To create categorical
representations, we simply averaged the obtained bottleneck features from all training images per
category, creating in a sense ”prototypical” representation for each class.

Representational similarity between/within category

To investigate how distinct semantic labeling tighten or loosen the cluster of visual representations
of models, we computed the cosine distance of all images between/within category and its ratio.
As shown in Table 2, the ratio of between to within category distance is higher in overall when
computed using basic-level taxonomy, compared to superordinate-level. This result implies that the
cluster of visual representations in basic-level category is more dense and tightened in general, which
resonates with previous psychological findings ascribing the frequent usage of basic-level taxonomy
to utility maximization behavior, i.e., basic-level category has relatively good discriminability while
remaining abstract enough to be generalized to multiple exemplars (Corter & Gluck, 1992).

If comparing the results between our trained models, the categorical representation of Wordvec CNN
was observed to be the most tightly clustered as evidenced by its highest value of between/within
ratio, with Basic-Super CNN and Super CNN achieving the next highest numbers. Interestingly,
when the model is trained with both basic and superordinate labels at the same time, its categorical
representation became more scattered and less distinguishable to each other, compared to other
models trained with linguistic labels. Lastly, CAE produced the lowest between/within ratio value,
suggesting that even if CAE had successfully learnt visual features that are enough to generate input-
like images, these visual representations are poorly discriminable in both basic and superordinate
levels.

Visualization of categorical representations:

To examine whether the hierarchical semantic structure of 30 categories (e.g., every category be-
longs to one of ten superordinate categories) are reflected in the visual representations learnt by
models, we visualized categorical representations using the cosine similarity matrix in Figure 2. For
more complete comparison, we also added the results using visual features extracted from FastText
word vectors (Bojanowski et al., 2017) and early VGG16 layer (Simonyan & Zisserman, 2014) i.e.,
the output from the first max pooling layer. A clear difference in categorical representations was
observed depending on whether the models trained with linguistic labels or not; while no hierarchi-
cal pattern was observed for both early Vgg16 and CAE features, various semantic structures were
observed in the others, e.g., dark squares recurrently emerged in different hierarchies dividing 1)
nature vs non-nature, 2) edible vs non-edible and 3) superordinate categories. Interestingly, despite
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Table 2: Between/within category distance and its ratio. Cosine distance (1-cosine angle of two
feature vectors) was used for distance metric. As the value gets larger, the visual representations of
images becomes less similar between/within category

Model type By superordinate category By basic category
between within between/within between within between/within

CAE 0.02 0.19 0.11 0.03 0.19 0.15
Basic CNN 0.36 0.55 0.64 0.43 0.52 0.84
Super CNN 0.33 0.47 0.71 0.36 0.46 0.80
Combined CNN 0.29 0.48 0.61 0.35 0.45 0.78
Basic-Super CNN 0.40 0.53 0.76 0.46 0.51 0.90
Wordvec CNN 0.36 0.37 0.95 0.40 0.35 1.14

Wordvec CNN in Figure 2h being trained on the same FastText word vectors described in Figure 2a,
their representations are very different. Having visual information as well as linguistic supervision,
Wordvec CNN demonstrated more semantically structured visual representations.

4.3 PREDICTING HUMAN VISUAL BEHAVIOR

Finally, we compared the visual representations learnt by our models with human representation
by evaluating how well they can predict human similarity judgements in the Odd-one-out task (See
Section 3). The response from models was generated by comparing cosine similarities between
three visual representations given a triplet of three images and selecting the most dissimilar one
from the others. For comparison, three kinds of visual representations are computed 1) IMAGENET
categorical representations, where features were averaged over ∼1000 images per category from
IMAGENET training dataset (Deng et al., 2009) THINGS categorical representations, where fea-
tures were averaged over ∼10 images per category from THINGS dataset (Hebart et al., 2019), and
3) Single Exemplar representation, where only one feature per category was generated using 30
exemplar images used for behavioral data collection. Together with the results from FastText (Bo-
janowski et al., 2017) and Vgg16 Early Layer (Simonyan & Zisserman, 2014), upper and lower
bound and baseline results were reported as below.

• Null Acc: Accuracy that could be achieved by predicting every sample as the one most
frequent class in the dataset, lower bound results, 35%.

• Bayes Acc: Accuracy that could be achieved by predicting the sample as the most frequent
class in each unique triplet set, upper bound results, 84%.

• SPoSE Acc: Accuracy that could be achieved by using the SPoSE model (Zheng et al.,
2019), a probabilistic model that is directly trained on human responses on all triplets from
1854 THINGS objects, 80%.

As shown in the Figure 3, triplet prediction accuracy of all models was highest when IMAGENET
categorical representations were used and lowest when single exemplar representations were used.
Comparing the model performance on human triplet data, our trained model performed fairly well:
highest accuracy (74%) was achieved by Super CNN. This performance is even more promising
when considering that these models were not trained on human data itself as was the SPoSE model
whose performance was around 80%. Overall, the CNNs trained with superordinate categories like
Super CNN or Basic-Super CNN achieved higher accuracy, while CAE and Vgg16 Early did not.
The results together suggest that the representations that humans use in a visual task are highly
semantic in fact, leveraging whole categorical information especially in a superordinate level.

To further investigate the influence of semantics and superordinate-level information on model per-
formance, we broke down the triplet data into six conditions: (1) by the number of superordinate
categories that a triplet belongs to (NSUPER), e.g., For a triplet of ’orangutan’, ’lion’, ’gazelle’,
NSUPER equals to 1 (’mammal’), for a triplet of ’orangutan’, ’lion’, ’lemon’, NSUPER equals to
2 (’mammal’ and ’fruit’), and for a triplet of ’orangutan’, ’lemon’, ’minivan, NSUPER equals to 3
(’mammal’,’fruit’,’vehicle), and (2) by the accuracy of FastText predictions (FastText Correct). As
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(a) FastText
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(b) Vgg16 Early
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(c) CAE
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(d) Basic CNN
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(e) Super CNN
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(f) Combined CNN
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(g) Basic-Super CNN
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Figure 2: Visualizations of cosine similarity matrix between 30 categorical representations.
When drawing similarity matrix, the categories from the same superordinate group are placed near
together with the order of ’mammal’, ’bird’, ’insect’, ’fruit’, ’vegetable’, ’vehicle’, ’container’,
’kitchen appliance’, ’musical instrument’, and ’tool’ (from left to right on x-axis and from top to
bottom on y-axix). Darker color denotes higher similarity.

reported in the Table 3, when a triple came from all different three superordinate categories, the best
accuracy was achieved by SPoSE model. However, when the response was made on a triplet with
one unique superordinate category, the response cannot be explained by semantic similarity by Fast-
Text predictions, the performance of our supervised models was actually better, especially if using
visual representations from CAE or Super CNN. When there were two unique superordinate cate-
gories in a triplet and only one of the image came from the different category, the human responses
were best predicted by the methods using the which superordinate class each image belongs to.
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SPoSE: 0.80

Null Acc: 0.35

Bayes Acc: 0.84

FastText: 0.70

Figure 3: Comparison of triplet prediction accuracy. IMAGENET: using categorical represen-
tations averaged over IMAGENET training dataset (∼ 1000 images per category). THINGS: using
categorical representation averaged over THINGS dataset (∼10 images per category). Single Exem-
plar: using visual representation of single image used for behavioral data collection. Other baseline
accuracy are drawn in dashed lines.

Table 3: Triplet prediction accuracy. NSUPER: the number of superordinate categories that a
triplet belongs to. FastText Correct: accuracy of Fasttext predictions. Odd by Super: accuracy of
predictions by the odd superordinate category

NSUPER FastText
Correct

Odd by
Super

Vgg16
Early CAE Basic Super Combined Basic-

Super Wordvec SPoSE # data

1 False 0 0.58 0.60 0.50 0.60 0.58 0.47 0.59 0.32 222
True 0 0.33 0.56 0.60 0.59 0.70 0.75 0.71 0.80 285

2 False 0.31 0.22 0.24 0.24 0.30 0.26 0.28 0.20 0.30 496
True 0.99 0.88 0.84 0.95 0.99 0.98 0.98 0.93 0.98 3612

3 False 0 0.38 0.37 0.43 0.46 0.43 0.44 0.42 0.57 2231
True 0 0.52 0.47 0.71 0.76 0.71 0.73 0.76 0.89 2851

5 CONCLUSION

We examined the visual representations learnt by CNNs when supervised by different types of labels
and compared them with human similarity judgements. The representations learned by the models
are shaped enormously by the kinds of supervision the models get suggesting that much of the
categorical structure is not present in the visual input, but requires top-down guidance in the form
of category labels. Surprisingly, the kind of supervised input that proved most effective in matching
human performance on an triplet odd-one-out task was training with superordinate labels (vehicle,
tool, etc.). Such labels allow the networks to perform better now only when the odd-one-out comes
from a different superordinate category – this is not surprising – but also when all three images
come from different superordinate categories (e.g., when choosing between a banana, a bee, and
a screwdriver). Our ongoing work is examining exactly how the different types of labels shape
visual representations and how labeling schemes modeled on specific languages (e.g., English vs.
Mandarin) may translate to differential human and CNN classificacation performance.
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A APPENDIX

A.1 LIST OF 30 CATEGORIES

Superordinate-level 
Category

Basic-level Category Wordnet ID

Mammal Orangutan n02480495

Gazelle n02423022

Lion n02129165

Insect Ant n02219486

Bee n02206856

Grasshopper n02226429

Bird Hummingbird n01833805

Goose n01855672

Vulture n01616318

Vegetable Artichoke n07718747

Cucumber n07718472

Zucchini n07716358

Fruit Orange n07747607

Lemon n07749582

Banna n07753592

Tool Hammer n03481172

Screwdriver n04154565

Shovel n04208210

Vehicle Minivan n03770679

Trolley n04335435

Taxi n02930766

Musical Instrument Drum n03249569

Flute n03372029

Harmonica n03494278

Kitchen Appliance Refrigerator n04070727

Toaster n04442312

Coffee pot n03063689

Container Bucket n02909870

Mailbox n03710193

Crate n03127925
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A.2 CONV AUTOENCODER RESULTS
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