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ABSTRACT

Identifying anomalous samples from highly complex and unstructured data is a
crucial but challenging task in a variety of intelligent systems. In this paper, we
present a novel deep anomaly detection framework named AnoDM (standing for
Anomaly detection based on unsupervised Disentangled representation learning
and Manifold learning). The disentanglement learning is currently implemented
by β-VAE for automatically discovering interpretable factorized latent represen-
tations in a completely unsupervised manner. The manifold learning is realized
by t-SNE for projecting the latent representations to a 2D map. We define a new
anomaly score function by combining β-VAE’s reconstruction error in the raw
feature space and local density estimation in the t-SNE space. AnoDM was eval-
uated on both image and time-series data and achieved better results than models
that use just one of the two measures and other deep learning methods.

1 INTRODUCTION

Detecting anomalies in data flow of modern intelligent systems is an importance but challenging
problem. Formally speaking, anomaly detection problems can be statistically viewed as identi-
fying outliers having low probabilities from the modelling of data distribution p(x). Practically,
since statistical modelling of the data is often difficult, it degenerates to domain description (Tax
& Duin, 1999) or supervised prediction (Gornitz et al., 2013) problems in some cases. The exact
explanation of an anomalous data point depends on the specific domain of focus. In data centers, it
probably indicates an attempt of cyber intrusion. In recognition systems, it could be an adversarial
attack. In biomedical information systems, it means possible onset of certain diseases. In Internet of
Things (IoT) systems, it may represent a hardware failure or alarming event captured by sensors. An
anomalous sample is not always associated with negativity. Sometimes, it leads to novel discoveries
in scientific explorations.

However, from the data analytics perspective, anomaly detection is a very challenging task due to
the following reasons. (1) Many forms of data, e.g., images, text, and other types of sequences,
are often highly unstructured and complex. How can these data be well represented and high-level
information be extracted by an algorithm? (2) The sample sizes of modern data sets are often
extremely large and most of them are unlabelled. Unfortunately, traditional methods do not scale
and perform well on these data. (3) When data of multiple modalities are naturally available for
same events in a system, a robust and precise algorithm needs to be designed to integrate these
information for system diagnosis or decision making. (4) Many intelligent systems, such as IoTs,
require real-time detection and reaction of abnormal events to avoid costly and irrevocable damages.
Thus, anomaly monitoring algorithms to be designed in these platforms must be highly efficient. In
summary, anomaly detection raises challenges in representability, scalability, multimodality, and
time complexity.

Deep learning (LeCun et al., 2015) offers great potentials to overcome these challenges. (1) Rep-
resentation learning mechanisms (such as convolution, word embedding, and recurrence for time-
series) have been developed in supervised and unsupervised deep models to consider the nature of
specific types of input samples and encode them into vectors of continuous values as corresponding
latent representations. (2) Most deep learning models are trained using stochastic gradient descent

1



Under review as a conference paper at ICLR 2020

that splits a giant training set into mini-batches. Thus, learning becomes unrestricted and blessed
by a large sample size. Particularly, stochastic variational inference (Hoffman et al., 2013; Zhang
et al., 2018) has successfully enabled scalable learning and inference for deep generative models
(DGMs) on a vast amount of unlablled data. (3) The development of deep learning programming
packages, such as PyTorch (Paszke et al., 2017) and TensorFlow (Abadi et al., 2016), greatly eases
the assembly of multiple network components (corresponding to different modalities) together for
multimodal representation learning (Li et al., 2018b). (4) Once a deep model is learned, the infer-
ence or encoding step is very efficient, thanks to the highly paralleled computing architectures and
techniques.

In some applications, if the domain of anomalous and normal samples is well defined, the anomaly
detection can be reduced to binary classification problems. However, in many situations, the domain
of anomalous samples cannot be fully understood or modelled, or the domain of the normal samples
is too complicated to be modelled in one class. DGMs are more suitable than supervised methods
in such cases. DGMs are concern with the joint distribution of visible variables and latent variables
with a hierarchy of stochastic (and deterministic) layers. With proper emphasis on disentanglement
of latent representations, DGMs have the potential of dissecting hidden factors that are key to sample
generation. The unsupervised disentangled representation learning (Bengio et al., 2013) renders
several benefits. (1) It helps better understand our data, providing a path towards explainable AI.
(2) It gives a better control on the generation process of novel samples. (3) The disentanglement of
latent space may provide an opportunity to distinguish anomalies based on the landscape of latent
space, which is our interest in this paper. It has been shown that the likelihood of a data point p(x)
estimated in DGM is not a reliable measure for detecting abnormal samples (Nalisnick et al., 2019).
Instead, reconstruction error is widely used as an anomaly score function (An & Cho, 2015).

As a variant of variational autoencoder (VAE) (Kingma & Welling, 2014), β-VAE (Higgins et al.,
2017) is designed for unsupervised discovery of interpretable factorized latent representations from
raw image data. An adjustable hyperparameter β is introduced to balance the extent of learning
constraints (a limit on the capacity of the latent information channel and an emphasis on learning
statistically independent latent factors) and reconstruction accuracy. It was demonstrated that β-
VAE with appropriately tuned value of β (when β > 1) qualitatively outperforms VAE (when β = 1,
β-VAE is exactly VAE). Burgess et al. (2018) proposed a modification to the training regime of β-
VAE by progressively increasing the information capacity of the latent code during training. This
modification facilitates the robust learning of disentangled representations in β-VAE, without the
previous trade-off in the reconstruction accuracy. Hoffman et al. (2017) introduced a reformulation
of β-VAE for 0 < β < 1. They argued that, within in this range, training β-VAE is equivalent to
optimizing an approximate log-marginal likelihood bound of VAE under an implicit prior.

Manifold learning is a family of nonlinear dimensionality reduction techniques. The t-distributed
stochastic neighbor embedding (t-SNE) (van der Maaten & Hinton, 2008) is an unsupervised man-
ifold learning method primarily used for data exploration and visualization by approximating high-
dimensional data distribution using a two or three-dimensional map that could preserve local and
certain global structures of the data. The use of t-SNE for anomaly detection has been sceptical
(van der Maaten & Hinton, 2008). However, no comprehensive investigation has been made in this
topic. Taking advantages of both disentangled representation learning (using β-VAE as an imple-
mentation) and low-dimensional manifold learning (using t-SNE as an implementation), we propose
a novel anomaly detection approach named AnoDM, standing for Anomaly detection based on unsu-
pervised Disentangled representation learning and Manifold learning. We introduce a new anomaly
score function by combining: (1) β-VAE’s reconstruction error, and (2) distances between latent
representations of test points and training points in t-SNE map. AnoDM is a general framework,
thus any disentangled representation learning and manifold learning techniques can be applied. The
choice of a lower-level encoding scheme in β-VAE depends on data type of interest. For image data,
deterministic convolutional network (CNN) is used in the encoder. In case of time series (sequence)
data, we design an improved version of β-VAE by replacing CNN with temporal convolutional net-
work (TCN) (Bai et al., 2018), a generic architecture for convolutional sequence prediction, in the
encoder. We incorporate TCN as part of the encoder, because Bai et al. (2018) have shown that
TCN outperforms canonical recurrent networks such as LSTMs (Hochreiter & Schmidhuber, 1997)
across a range of supervised learning tasks and recommended that CNN should be regarded as the
first method to try for sequence modeling tasks. Regarding the decoding architecture, we simply
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choose CNN, because by choosing a simpler CNN architecture as a part of the decoder, the model
can achieve a comparable even better performance but take much less running time.

The contributions of this paper are summarized as follows. (1) We comprehensively explore the
capacity of unsupervised disentangled representation learning, using β-VAE as an implementation,
for anomaly detection. (2) We thoroughly investigate the potential of manifold learning for outlier
identification by taking the disentangled latent representations from β-VAE as input to t-SNE. To
the best of our knowledge, this is the first attempt to explore t-SNE for anomaly detection. (3)
For sequence anomaly detection, instead of using prevailed recurrent networks (such as LSTM),
as a practical contribution, we adopt an improved convolution architecture (TCN) to capture the
temporal dependency in the encoder in unsupervised way.

2 RELATED WORK

In the big data era, the development of deep learning models, especially DGMs, flourishes due to
the need of modelling and analyzing massive amount of unstructured data (such as images, time-
series, graphs, text, etc.) generated in many application domains. Designing DGM-based solutions
for anomaly detection becomes an important topic. Since DGMs, such as VAE (Kingma & Welling,
2014), and deep belief net (DBN) (Hinton et al., 2006; Li & Zhu, 2018a), aim at modelling the joint
distribution of visible and latent variables (that is p(x,h)), their likelihood p(x) by marginalizing
out h may serve as an abnormality indicator. However, unlike exponential family restricted Boltz-
mann machines (exp-RBMs) (Li & Zhu, 2018b), exact likelihood is unavailable for most DGMs.
Alternatively, reconstruction error serves as an abnormality measure based on the intuition that out-
of-distribution samples can be reconstructed badly (An & Cho, 2015). Some deep hybrid methods
(e.g. VAE+OCSVM (Andrews et al., 2016) and DBN+OCSVM (Erfani et al., 2016)), successfully
combine classical one-class support vector machine (OCSVM; or kernel-based support vector do-
main description (SVDD)) with DGMs by using DGMs to learn latent representations of samples
and using OCSVM to detect abnormal data points. However, these methods face the challenge of
scalability, because the size of kernel matrices in dual form of SVDD is quadratic of sample size.

Generative adversarial net (GAN) has also been applied for anomaly detection (Schlegl et al., 2017).
Since there is no encoder in GAN, Deecke et al. (2019) presented the ADGAN algorithm based on
the availability of a good representation of a sample in latent space of its generator by assuming
that the generator is able to effectively capture the distribution of the training data. Li et al. (2018a)
proposed the GAN-AD method for cyber-physical systems (CPSs). It distinguishes fake data from
actual data by taking into consideration of both discrimination loss calculated by the trained dis-
criminator and residual loss between reconstructed and actual test data.

Furthermore, DGM-based algorithms are also devised to detect anomaly problem on sequence data
(e.g. LSTM-VAE (Park et al., 2017) and GAN-AD (Li et al., 2018a)). Conventionally, canonical
recurrent networks (such as LSTM and GRUs (Cho et al., 2014)) are considered as the dedicated
methods for sequence modeling. Some recent studies have also claimed that there was no architec-
ture that could consistently beat LSTM in some typical sequence modeling tasks (Jozefowicz et al.,
2015; Greff et al., 2015; Melis et al., 2017). On the other hand, some other researchers insist that
CNN (LeCun et al., 1989) should be considered as more appropriate choice for sequences. Inspired
by more recent CNN-based sequence modelling (such as machine translation (Gehring et al., 2016;
2017) and language modeling (Dauphin et al., 2016)), Bai et al. (2018) conducted a systematic eval-
uation of generic convolutional and recurrent architectures for sequence modeling across a broad
range of tasks that are commonly used to benchmark recurrent networks, and concluded that con-
volutional networks, rather than recurrent networks, should be respected as a “natural starting point
for sequence modeling tasks”.

3 METHOD

In this paper, we propose a novel generic anomaly detection framework named AnoDM, which the
first time combines unsupervised disentangled representation learning (implemented using β-VAE
as an example) and low-dimensional manifold learning (currently using t-SNE as implementation)
together to detect outliers via effectively taking the advantages of reconstruction at raw feature space
and disentangled latent distribution in t-SNE map. Figure 1 shows the architecture of AnoDM which
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Figure 1: Architecture of AnoDM implemented by β-VAE and t-SNE for anomaly detection. First, β-VAE is
learned using normal training data (upper part of the framework). Then it is employed by the anomaly detector
(lower part of the framework) to efficiently obtain latent encodings of training samples (or a representative
subset from the training set) and test samples, and corresponding reconstructed versions using the decoder.
Meanwhile, t-SNE is used to map the deterministic latent embeddings (µtr for training and µte for test samples)
to the 2D space (we call it t-SNE space or map), such that the average distance between the 2D representation of
a test sample and its k nearest neighbors from the 2D representations of training samples is calculated. Finally,
the distance is combined with the reconstruction error of the test sample to define its anomaly score.

includes two main phases: (1) unsupervised disentangled representation learning and (2) anomaly
detector. After β-VAE is learned using unlablled training normal samples, it then can be employed
by the anomaly detector to efficiently obtain latent encoding and reconstructed version of a sample.
Once latent embeddings of both training samples (or a representative subset from the training data)
and a test sample are obtained, t-SNE is used to map the latent representations of these samples fur-
ther to the 2-dimensional space (called t-SNE space or map), such that the average distance between
the 2D representation of the test sample and its k nearest neighbors from the 2D representations of
training samples is calculated. Finally, this distance is combined with the reconstruction error of the
test sample to define its anomaly score. The essential parts of this framework are discussed below
in details. Full AnoDM approach is given in Algorithm 1 in Appendix E.

3.1 UNSUPERVISED DISENTANGLED REPRESENTATION LEARNING

The unsupervised disentangled representation learning component in our architecture is imple-
mented but not limited by β-VAE (Higgins et al., 2017; Burgess et al., 2018; Hoffman et al., 2017;
Mathieu et al., 2019). A self-inclusive description of β-VAE is provided in Appendix B. The objec-
tive function to be maximized for β-VAE is defined as (Burgess et al., 2018):

L = Eqφ(z|x)[log pθ(x|z)]− β|DKL(qφ(z|x)||p(z))− C|. (1)

The first term of this objective function corresponds to reconstruction error in the raw feature space.
The KL divergence characterizes the discrepancy between approximate posterior and isotropic prior
of latent representations. A small discrepancy between them indicates high disentanglement of la-
tent representations in independent variables. C is a hyperparameter which is used to improve the
quality of reconstructed images. The loss function of the original β-VAE proposed in (Higgins et al.,
2017) does not have this hyperparameter. The value of β trades off reconstruction error and disen-
tanglement. Unlike (Higgins et al., 2017) and (Burgess et al., 2018), we consider β > 0 rather than
just β > 1, because it is unnecessary to bound the value of β by 1, β > 0 allows us search for a more
appropriate disentanglement. It worth highlighting that other unsupervised disentanglement models
can be used as well in AnoDM. For example, Mathieu et al. (2019) interpreted disentanglement as
decomposition instead of independence by adding an additional regularization term to reduce the
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discrepancy between the aggregate posterior and a desired structured prior. However, designing a
properly structured prior could be practically challenging. The adoption of β-VAE in our framework
is sufficient to prove the concept that unsupervised disentanglement helps anomaly detection.

3.2 EFFECTIVITY OF T-SNE ALGORITHM

In addition to β-VAE’s reconstruction error, we use the average distance between a test sample
and its k-nearest neighbors from the collection of training samples in the t-SNE map to score the
outlierness of a test sample. As discussed in Appendix C, t-SNE is significantly influenced by
perplexity. The nature of complexity in data distributions makes it impossible to utilize a uniform
criteria to define optimal perplexity for all data. Moreover, Wattenberg et al. (2016) mentioned
several weaknesses of t-SNE, for examples, (1) it naturally expands dense clusters and contracts
sparse ones, evening out cluster sizes, and (2) distances between clusters might not reflect global
geometry. However, it is likely that k-nearest neighbors still work for local clumps, because, with
proper value of perplexity, local topological information of latent distributions can be preserved by
the t-SNE plot. Thus, in t-SNE space, the measure of k-nearest neighbors is more suitable than full
density estimation which is very sensitive with the sizes of clusters. Furthermore, as to be shown in
Section 4, distancing in the 2D t-SNE map could be more robust than distancing in β-VAE’s latent
space where many non-determinative factors may influence the calculation of distances. Finally,
it worth clarifying that we do not directly learn a 2D latent representation from β-VAE, because
it will bottleneck too much the information flow for reconstruction. Instead, a lower-dimensional
representation is learned through t-SNE for density estimation only.

3.3 DETERMINISTIC OR STOCHASTIC LATENT REPRESENTATIONS FOR T-SNE

Either the mean µ or a sample z from the approximate inference distribution q(z|x) can be passed
to t-SNE to calculate the k-NN distance of a test sample. There is trivial difference between perfor-
mances achieved by these two methods in our framework. Generally, the µ-based method achieved
slight better performance. The comparison of these two methods can be found in Table 2 in appen-
dices. Furthermore, from the latent representations’ t-SNE maps (see Figure 8 in appendices), one
can interestingly see that when β is small (not overly large), the t-SNE maps for both methods are
quite similar. As β becomes overly large, some normal classes can still form their own clusters (even
though some similar classes, such as classes 3 and 8 in MNIST, tend to mingle together) in µ-based
method, but in z-based method all classes are entangled with each other. Same phenomena can be
observed on the other datasets (see Figures 9 and 10 in appendices). Therefore, the µ-based method
is used in current design of AnoDM.

3.4 TCN ENCODER FOR UNSUPERVISED SEQUENCE MODELLING

Bai et al. (2018) distilled superior design in convolutional network into a simple architecture and
referred it as a temporal convolutional network (TCN) with two distinctive characteristics: (1) the
convolutions in the architecture are causal, and (2) the architecture can take a sequence of any length
and map it to an output vector of fixed length, just as with an RNN. Bai et al. (2018) also explained
that TCNs capture significantly longer history than recurrent networks. Inspired by (Bai et al.,
2018), we replace CNN with TCN in the encoder of β-VAE when evaluating the proposed AnoDM
framework on time-series data, while we still use CNN in the decoder, because our preliminary
experiments demonstrated that keeping decoder as simpler CNN can help achieve comparable even
better results, and take much less computing time. The architecture of TCN used in this paper
is depicted in Figure 7 of appendices. In this TCN, we set kernel size to 4 and dilation factors
to [1, 2, 4, 8, 16, 32]. In Section 4, the comparison among TCN, CNN, and LSTM encoders in our
framework also shows that TCN outperforms CNN and particularly LSTM to a great extent for ECG
signal anomaly detection.

3.5 ANOMALY SCORE FUNCTION IN ANODM

In the anomaly detector, the reconstruction error of a test sample in the original feature space and
the average distance from its k-nearest-neighbors in training samples within the 2D t-SNE map are
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combined as a final anomaly score function:

SβVAE+tSNE(xte) = αDRE(xte) + (1− α)DktSNE(xte), (2)

where the first term is defined using normalized squared error (NSE):

DRE(xte) , NSE(xte,x
′
te) =

‖xte − x′te‖22
‖xte‖2

, (3)

where xte is a test sample, and x′te is its reconstructed version by sending the stochastic latent
encoding through the decoder of β-VAE. The second term in Equation (2) is defined using β-VAE’s
deterministic latent encoding (mean from the encoder of learned β-VAE) as input to t-SNE:

DktSNE(x
(i)
te ) ,

1

k

∑
j∈N(i,k)

‖l(i)te − l
(j)
tr ‖2, (4)

where l(i)te is the 2D representation of the i-th test sample in t-SNE map, N(i, k) is the set of indices
of l(i)te ’s k nearest neighbors from training samples’ 2D representations ltr in t-SNE map. In Equation
(2), α ∈ [0, 1] is the combination hyperparameter such that the two terms can effectively complement
each other. To allow the anomaly score function to achieve its full potential, α value should be
sensitively searched, because the values of DRE and DktSNE can stay at different magnitudes, a very
small change of α value may dramatically alter the contributions of these two terms.

4 EXPERIMENTS

We evaluated our model on four public image datasets, including MNIST (LeCun et al., 1998),
Fashion-MNIST (Xiao et al., 2017), Small-Norb (LeCun et al., 2004) and CIFAR-10 (Krizhevsky,
2009), as well as one collection of ECG heartbeat categorization time-series data named Arrhythmia
(Fazeli, 2018). Brief descriptions of these data sets can be found in Appendix F. The detail of β-VAE
architecture is given in Table 3 in appendices. The number of epochs was set to 20 for experiments on
MNIST and Fashion-MNIST datasets, and 50 for CIFAR-10, Small-Norb and Arrhythmia datasets;
batch size was set to 100 for experiments on all these datasets. When using t-SNE, the dimension
of t-SNE map was set as 2 for all datasets, perplexity 30, the learning rate 200, and maximum
number of iterations 1000. The value of α in the anomaly score function is searched from set
{0.0, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1.0}. We used k = 1 for
calculating k-nearest-neighbors distance in t-SNE map (we also tried to set k to 3 or 5, the results
were similar).

4.1 COMPARISON WITH CAPSNET, GANS, AND VAE

We compared AnoDM with state-of-the-art algorithms including a supervised method – CapsNet
(Li et al., 2019), and two types of generative models – GANs (including AnoGAN and ADGAN)
(Deecke et al., 2019) and β-VAE (implemented by setting α = 1 thus using only reconstruction
error as anomaly score). As shown in Table 1, on average, AnoDM achieved either comparable (on
MNIST) or better (on Fashion-MNIST and CIFAR-10) performance in terms of receiver operating
characteristic curve (auROC). On Fashion-MNIST, CapsNet (prediction-probability-based), as the
best benchmark method, obtained an average auROC of 0.765, while AnoDM achieved 0.883. On
MNIST, both AnoDM and CapsNet obtained the highest performance. However, CapsNet is a su-
pervised method that take advantages of class information, while ours is completely unsupervised
that is more suitable in many practices as class information is either incomplete or unavailable. Fur-
thermore, by comparing AnoDM with β-VAE that only considers reconstruction error as anomaly
score, AnoDM dramatically improved the performance in all cases. In other words, t-SNE makes a
prominent contribution to improve β-VAE for anomaly detection problems. However, all generative
models did not work well on Small-Norb, mainly because these models used convolution to extract
features from image, but convolution is only able to capture translation but not other affine transfor-
mations. Though CapsNet learns these transformations as a supervised method, it worth exploring
unsupervised learning of affine transformations as a future topic.
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Table 1: Performance of AnoDM in comparison with other methods in terms of auROC on image data. The
results for AnoDM were obtained by either the µ-based or z-based algorithm. In the column for β-VAE, only
reconstruction error is used as anomaly score. The results for AnoGAN and ADGAN were obtained from
(Deecke et al., 2019). The results for CapsNet were obtained from (Li et al., 2019).

Dataset Class CapsNet AnoGAN ADGAN β-VAE AnoDM
PP-based RE-based

MNIST

0 0.998 0.947 0.990 0.999 0.890 0.985
1 0.990 0.907 0.998 0.992 0.841 0.987
2 0.984 0.970 0.888 0.968 0.967 0.991
3 0.976 0.949 0.913 0.953 0.947 0.969
4 0.935 0.872 0.944 0.960 0.968 0.975
5 0.970 0.966 0.912 0.955 0.966 0.976
6 0.942 0.909 0.925 0.980 0.907 0.983
7 0.987 0.934 0.964 0.950 0.899 0.977
8 0.993 0.929 0.883 0.959 0.946 0.982
9 0.990 0.871 0.958 0.965 0.794 0.928

avg. 0.977 0.925 0.937 0.968 0.913 0.975

Fashion-MNIST

0 0.620 0.454 – – 0.500 0.844
1 0.851 0.871 – – 0.860 0.978
2 0.818 0.486 – – 0.459 0.783
3 0.895 0.693 – – 0.730 0.886
4 0.790 0.394 – – 0.379 0.763
5 0.691 0.982 – – 0.985 0.990
6 0.801 0.480 – – 0.501 0.713
7 0.619 0.787 – – 0.842 0.952
8 0.912 0.885 – – 0.876 0.980
9 0.656 0.754 – – 0.701 0.944

avg. 0.765 0.679 – – 0.683 0.883

CIFAR-10

0 0.622 0.371 0.610 0.661 0.368 0.635
1 0.455 0.737 0.565 0.435 0.746 0.754
2 0.671 0.421 0.648 0.636 0.397 0.589
3 0.675 0.588 0.528 0.488 0.604 0.608
4 0.683 0.388 0.670 0.794 0.387 0.564
5 0.635 0.601 0.592 0.640 0.611 0.638
6 0.727 0.491 0.625 0.685 0.500 0.600
7 0.673 0.631 0.576 0.559 0.614 0.648
8 0.513 0.410 0.723 0.798 0.399 0.642
9 0.466 0.671 0.582 0.643 0.698 0.718

avg. 0.612 0.531 0.612 0.634 0.532 0.640

4.2 IMPACT OF BETA TO PERFORMANCE

As discussed in Higgins et al. (2017), β (> 1) functions as a controller to encourage most efficient
latent representation learning via limiting the capacity of latent information channel. Mathieu et al.
(2019) however interpreted the objective of β as tuning a proper level of overlap of encodings by
working with another term that regularizes the divergence of the aggregate posterior qφ(z) and the
desired prior p(z). The main intuition is that purely increasing β induces too much overlap which
actually discourages the disentanglement of data (information which is necessary for expressing de-
sired structure is lost). Higgins et al. (2017) demonstrated that β-VAE with β > 1 leads to interesting
results when learning interpretable factorized latent representations on a variety of datasets. Surpris-
ingly, our investigation demonstrates that by setting 0 < β < 1, it actually achieved the state-of-the-
art results for anomaly detection problems on a range of datasets, such as MNIST, Fashion-MNIST
and Arrhythmia. Figure 2 illustrates the impact of values of β and α in our anomaly score function.
Interestingly, best performances were achieved when β < 1 and the performances generally degrade
as β increases, resonating with Mathieu et al. (2019) that overly large values of β actually causes a
mismatch between qφ(z) and p(z) (resulting in inappropriate level of overlap in the latent space).
This phenomenon can be further seen in the t-SNE maps of latent embeddings in Figure 3. When β
becomes extremely larger than the appropriate value, the anomalous class becomes entangled with
its normal neighboring classes and the boundaries between normal classes become unclear. The-
oretically, adding the divergence of the aggregate posterior qφ(z) and the desired structured prior
p(z) is an effective way to limit the level of overlap when β is too large. However, it is practically
challenging to design an appropriate structured prior. Therefore, in our investigation, we focused
on exploring the full range of β’s value in β-VAE for the impact of disentanglement to anomaly
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(a) MNIST, digit 7. (b) Fashion-MNIST, “Dress”
class.

(c) Small-Norb, “Human” class.

(d) CIFAR-10, “Dog” class. (e) Arrhythmia, “F” class.

Figure 2: Performances (measured in terms of auROC) of AnoDM evaluated on five datasets: MNIST, Fashion-
MNIST, Small-Norb, CIFAR-10 and Arrhythmia. On each dataset, the anomalous class is indicated in the
corresponding subcaption while treating the rest classes as normal classes.

detection. Since our framework is quite general, it can be easily extended to other unsupervised
disentangled representation learning models for anomaly detection.

4.3 IMPACT OF BETA TO T-SNE REPRESENTATIONS

The t-SNE plots in Figure 3 reflect the impact of β’s value on latent representations in the case of
identifying anomalous digit 7 from MNIST. In this example, the best performance (auROC = 0.975)
was achieved when β = 0.01. Clearly, as β increases, all latent clusters become less dense, and more
anomalous latent data points move to neighboring clusters. Furthermore, Figure 3 also corroborates
that, even though in t-SNE maps distances between clusters might not reflect global geometry and
cluster sizes might not mirror the true sizes (Wattenberg et al., 2016), using averaged distance from
a test sample to its k nearest normal data points represented in t-SNE space to qualify outlierness
still is a very effective way for distinguishing anomalous samples when β is tuned properly.

4.4 EVALUATION OF ANOMALY SCORE FUNCTION

In order to better evaluate our anomaly score function, as formulated in Equation (2), we conducted
a comprehensive comparison with methods only based on either distance in t-SNE map (DktSNE) or
reconstruction-error in raw feature space (DRE). To see the contribution of t-SNE, it is also compared
with the method that calculates nearest neighbor distance directly in latent space of β-VAE. Figure 4
displays the ROC curves of these four approaches when assuming anomalous classes are respectively
1 (“Trouser/pants”), 3 (“Dress”), 5 (“Sandal”), and 7 (“Sneaker”) on Fashion-MNIST. It is obvious
that AnoDM achieves best results among them by taking advantages of both β-VAE reconstruction
and t-SNE embedding. The β-VAE reconstruction reflects whether useful information is captured
by the model through recovering the input x; the t-SNE embedding indicates the disentanglement of

8
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(a) β = 0.01. (b) β = 0.3. (c) β = 1.0.

(d) β = 2.0. (e) β = 4.0. (f) β = 10.0.

Figure 3: The impact of β’s value to t-SNE map of latent representations of MNIST samples. Class 7 is treated
as anomalous class data. Each map displays 10000 data points identical in all maps including 5000 training
data points and 5000 test data points.

latent representations z. Both measures effectively complement each other. Besides, comparing the
auROCs between t-SNE-based and latent-distance-based score functions, one can clearly see that the
former dramatically outperforms the latter. Same conclusion can be drawn for MNIST, CIFAR-10,
and Arrhythmia, as displayed in Figures 11, 13, 15, 16, and 17 in appendices.

(a) Anomalous class: 1. (b) Anomalous class: 3. (c) Anomalous class: 5. (d) Anomalous class: 7.

Figure 4: ROC curves of four methods on Fashion-MNIST. These four examples illustrate the results of using
four different anomaly score functions: t-SNE+Recon-error-based (SβVAE+tSNE = αDRE + (1 − α)DktSNE), t-
SNE-based (DktSNE), Reconstruction-error-based (DRE) and latent-distance-based (calculating distances in latent
space of β-VAE). The α values for these four plots are 0.8, 0.8, 0.95, and 0.8, respectively.

4.5 ANODM FOR TIME-SERIES

As mentioned in Section 3, our method uses a TCN encoder in β-VAE for time-series anomaly de-
tection. Figure 5 displays the comparison among TCN, CNN and LSTM encoders in the AnoDM
framework on Arrhythmia. For the five classes in Arrhythmia, iteratively one class was treated as
anomalous class, while the other classes were used as normal classes. The TCN-encoder-based
method outperforms the other two methods significantly in all five cases. Even though the CNN
encoder achieved impressive results when detecting anomalous class “S”, “V”, “F” and “Q” respec-
tively, it did not work quite well when class “N” was treated as anomaly. One possible reason might
be that comparing with TCN and LSTM, the performance of CNN is more sensitive on the training

9



Under review as a conference paper at ICLR 2020

sample size. Taking the above case as an example, as class 0 (“N”) accounts for over 80% of training
data, when considering it as anomaly, normal training data hence become less sufficient for learning
β-VAE. Nevertheless, in TCN-based β-VAE, each hidden unit of the last deterministic hidden layer
before latent encoding at the bottleneck is calculated based on much longer sequence dependency,
such that it is less sensitive to the limitation of small sample size. Conclusively, as mentioned in
(Bai et al., 2018), TCN should be regarded as a natural starting point for sequence modeling tasks.

As a case study, Figure 6a shows the original EGG signals and reconstructed signals by TCN-based
β-VAE when considering class “Q” as anomaly. Normal samples can be reconstructed very well,
whereas abnormal samples suffer from larger reconstruction errors. Meanwhile, the corresponding
t-SNE plot in Figure 6b displays two distinctive clusters of abnormal samples. The combination of
these two measures thus leads to the best performance as seen in Figure 6c.

Figure 5: AuROCs on Arrhythmia.

(a) Reconstructed signals by β-VAE. (b) t-SNE plot. (c) ROC plot.

Figure 6: Reconstructed signals, t-SNE map, and ROC curves on Arrhythmia with class “Q” as anomaly.

5 CONCLUSIONS

We propose a new methodology which successfully integrates t-SNE with disentangled representa-
tion learning for anomaly detection. This approach achieved state-of-the-art performances on both
image data (MNIST, Fashion-MNIST and CIFAR-10) and Arrhythmia time-series data. Specifically,
best performance is accomplished when 0 < β < 1 for almost all cases involving β-VAE. We also
defined an anomaly score function by effectively taking the advantages of both low-dimensional
t-SNE embedding and β-VAE reconstruction. Our algorithm demonstrated that t-SNE plays an es-
sential role for measuring abnormality. This research initiates the research on anomaly detection
using unsupervised disentangled representation learning and lower-dimensional manifold learning.
Besides, our model uses TCN network as encoding architecture for detecting anomalous time-series
data and the experimental results convince us that TCN consistently outperforms CNN and LSTM.
As a proof of concept, our current framework automatically inheres advantages of deep learning
to address anomaly detection’s issues in representability and scalability as discussed in the begin-
ning of this paper. The extension of our framework to multimodal data is straightforward. It is
also possible that a neural t-SNE component could be designed and integrated into the learning of
β-VAE to achieve real-time efficiency. Other new well-performing manifold learning methods, such
as UMAP (McInnes et al., 2018) which is faster and keeps global topologies, could be employed as
replacement of t-SNE.

10
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A VARIATIONAL LOWER BOUND AND VARIATIONAL AUTOENCODER

A directed generative model concerns the joint distribution pθ(x, z) where x is a random vector
variable representing an observation in d-dimension space, z is the vector of latent variables in k-
dimensional space, and θ is the set of model hyperparameters. Inference pθ(z|x) = p(x|z)p(z)

p(x) is
generally intractable, with few exceptions such as exponential family RBM (Li & Zhu, 2018b). An
easy parametric distribution qφ(z|x) is introduced to approximate the intractable posterior pθ(z|x).
Distribution qφ(z|x) should be as close to pθ(z|x) as possible by estimating inference parameters φ.
Based on mean-field variational Bayes, reverse Kullback-Leibler divergence is employed to measure
the distance between these two distributions,DKL

(
qφ(z|x)||pθ(z|x)

)
, with respect to φ. After being

expanded, the following formula is obtained (pθ is fixed with respect to qφ),

DKL
(
qφ(z|x)||pθ(z|x)

)
= log pθ(x) +DKL

(
qφ(z|x)||pθ(z)

)
− Ez∼qφ(z|x)[log pθ(x|z)]. (5)

After being rearranged, we can obtain an objective with respect to both generative θ and inference
parameter φ:

L(θ, φ) = log pθ(x)−DKL
(
qφ(z|x)||pθ(z|x)

)
(6)

= Ez∼qφ(z|x)[log pθ(x, z)− log qφ(z|x)] (7)

= Ez∼qφ(z|x)[log pθ(x|z)]−DKL
(
qφ(z|x)||pθ(z)

)
. (8)

Since the KL divergence in Equation (6) is always non-negative and thus L is the varitional lower
bound (or evidence lower bound, ELBO) of log pθ(x):

L = log pθ(x)−DKL
(
qφ(z|x)||pθ(z|x)

)
≤ log pθ(x). (9)

Equation (8) implies that maximizing the ELBO is to maximize the reconstruction error and also
minimize the difference between the inference distribution and generative prior distribution. From
the variational Bayes perspective, the aim is to obtain the optimal generative and inference parame-
ters through maximizing the ELBO:

θ̂, φ̂ = argmax
θ,φ

L. (10)

The main challenge in learning of directed generative models is to derive the gradient of Equation
(7) with respect to the inference parameter. Therefore, the reparameterization trick is introduced
in VAE (Kingma & Welling, 2014; Rezende et al., 2014) such that backpropagation can be used
through expressing the random variable z as a deterministic variable z = τφ(x, ε), where ε is
an auxiliary independent random variable, and the transformation function τφ parameterized by φ
converts ε to z. For example, when qφ(z|x) is a multivariate Gaussian with a diagonal covariance
structure (qφ(z|x) = N (z;µ,σ2I)), sampling from this distribution is equivalent to:

ε ∼ N (0, I), (11)
z = µ(x) + σ(x)� ε, (12)

where [µ(x),σ(x)] = fφ(x) is a deterministic two-head multilayer perceptrons parame-
terized by φ, and � denotes element-wise product. The reparametrization trick enables
Ez∼q(z|x)[log pθ(x, z) − log qφ(z|x)] = Eε[log pθ(x, z) − log qφ(z|x)], such that the gradient
of Equation (7) with respect to φ can be reformulated to

∂L(θ, φ)
∂φ

=
∂ Ez∼q(z|x)[log pθ(x, z)− log qφ(z|x)]

∂φ
(13)

=
∂ Eε[log pθ(x, z)− log qφ(z|x)]

∂φ
(14)

= Eε
[∂( log pθ(x, z)− log qφ(z|x)

)
∂φ

]
(15)

= Eε
[∂( log pθ(x, τφ(x, ε))− log qφ(z|x)

)
∂φ

]
. (16)
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The gradient with respect to generative parameters θ is easier, because it does not rely on the repa-
rameterization trick:

∂L(θ, φ)
∂θ

=
∂ Ez∼q(z|x)[log pθ(x, z)− log qφ(z|x)]

∂θ
(17)

= Ez∼q(z|x)
[∂( log pθ(x, z)− log qφ(z|x)

)
∂θ

]
(18)

= Ez∼q(z|x)
[∂ log pθ(x, z)

∂θ

]
. (19)

B BETA-VAE AND BEYOND FOR DISENTANGLED REPRESENTATION
LEARNING

Higgins et al. (2017) proposed a novel deep generative model, named β-VAE, a modification of VAE
by introducing an adjustable hyperparameter β to learn an interpretable disentangled representation
of the data generative latent factors. Specifically, β functions as a controller to trade off between
the extent of learning constraints and reconstruction accuracy. The constraints impose a limit on
the capacity of the latent information channel and an emphasis on learning statistically independent
latent factors. Higgins et al. (2017) demonstrated that β-VAE with appropriately tuned β (β > 1)
qualitatively outperforms VAE (β = 1) as well as state of the art unsupervised (InfoGAN) and semi-
supervised (DC-IGN) approaches to disentangled factor learning on a variety of datasets (celebA,
faces and chairs).

Higgins et al. (2017) assumed that an image x is generated by the true world simulator using ground
truth data generative factors: p(x|v,w) = Sim(v,w), where v is set of conditionally independent
factors and w is set of conditionally dependent factors. Therefore, the joint distribution of the
data x and a set of generative latent factors z is: p(x|z) ≈ p(x|v,w) = Sim(v,w). The aim
of this generative model is then to ensure that the inferred latent factors from qφ(z|x) capture the
generative factors v in a disentangled manner. The conditionally dependent data generative factors
w can remain entangled in a separate subset of z that is not entangled with v . Considering the prior
p(z) is set to be an isotropic unit Gaussian p(z) = N (0, I), a constraint δ is introduced to encourage
the matching between qφ(z|x) and p(z) such that the disentangling property in the inferred qφ(z|x)
can be realized.

Following the same incentive as in VAE: maximizing the probability of generating real data, while
minimizing the distance between the generative and approximate posterior distributions, as formu-
lated below

max
φ,θ

Ex∼X[Eqφ(z|x)[log pθ(x|z)] (20)

s.t. DKL
(
qφ(z|x)||p(z)

)
< δ, (21)

where X = {x1,x2, . . . ,xn} is the training data set. Rewriting this equation as a Lagrangian under
the KKT conditions (Kuhn & Tucke, 1951; Karush, 1939), the following equation F(θ, φ, β) is
obtained:

F(θ, φ, β)
= Eqφ(z|x)[log pθ(x|z)]− β(DKL

(
qφ(z|x)||p(z))− δ

)
= Eqφ(z|x)[log pθ(x|z)]− βDKL

(
qφ(z|x)||p(z)

)
− βδ

≥ Eqφ(z|x)[log pθ(x|z)]− βDKL
(
qφ(z|x)||p(z)

)
. (22)

The objective function to be maximized in β-VAE is thus defined as:

Lβ(θ, φ) = Eqφ(z|x)[log pθ(x|z)]− βDKL
(
qφ(z|x)||p(z)

)
, (23)

where the Lagrangian multiplier β is the regularisation coefcient that constrains the capacity of the
latent information channel z and puts implicit independence pressure on the learnt posterior due to
the isotropic nature of the Gaussian prior p(z). When β = 1, β-VAE corresponds to the original
VAE formulation of Kingma & Welling (2014). When β > 1, it applies stronger constraint which
limits the capacity of z and encourages the model to learn the most efficient representation of the
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data. Theoretically, a higher β encourages more efficient latent encoding and further encourages the
disentanglement. However, a higher β may lead to poorer reconstructions due to the loss of high
frequency details when passing through a constrained latent bottleneck.

Burgess et al. (2018) proposed an improvement to β-VAE, by progressively increasing the infor-
mation capacity of the latent code during training. It facilitates the robust learning of disentangled
representations in β-VAE without the previous trade-off in reconstruction accuracy. The objective
function to be maximized in β-VAE is redefined as:

Lβ(θ, φ) = Eqφ(z|x)[log pθ(x|z)]− β|DKL(qφ(z|x)||p(z))− C|, (24)

where the hyperparameter β controls how heavily to penalise the deviation of DKL
(
qφ(z|x)||p(z)

)
and a controllable value C. By gradually increasing C from zero to a large value, good-quality
reconstruction can be obtained.

Hoffman et al. (2017) had also made a deeper research on β-VAE considering β < 1. They argued
that optimizing this partially regularized ELBO is equivalent to performing variational expectation
maximization (EM) with an implicit prior r(z) (r(z) ∝ qφ(z)

(1−β)p(z)β) that depends on the
marginal (aggregate) posterior q(z) , 1

N

∑N
i=1 q(z|x(i)), and further derived some approximations

to examine this prior.

Mathieu et al. (2019) explained that most recent work for learning disentangled representations of
data with deep generative models has focused on capturing purely independent factors of variation
by employing regularizers explicitly encouraging independence in the representations. They argued
that such an approach is not generalisable, and quite restrictive for complex models where the true
generative factors are not independent, very large in number, or where a set of true generative factors
cannot be well defined. Overly large β is not universally benecial for disentanglement, Since this in
turn causes a mismatch between marginal posterior qφ(z) and the prior p(z). Thus they proposed
a generalization of disentanglement in VAE by explicitly separating such a decomposition as two
tasks: a) the latent encoding of data should achieved an appropriate level of non-negligible overlap
in aggregate encoding qφ(z), and b) the aggregate encoding of data qφ(z) should match the prior
p(z) which demonstrates the desired dependency structure between latent variables. By improving
the match of qφ(z) and p(z), the overlap is only up to an appropriate level. Mathieu et al. (2019)
developed a new objective that incorporates both a) and b) by introducing an additional divergence
term D

(
qφ(z), p(z)

)
. The objective of this improved β-VAE is defined as below:

Lα,β(x) = Eqφ(z|x)[log pθ(x|z)]− βKL(qφ(z|x)||p(z))− αD(qφ(z), p(z)). (25)

By appropriately setting β and α, it allows direct control over the level of overlap and the regulariza-
tion between the marginal posterior and the prior. However, a practical challenge of this method is
how to define a proper structured prior when the structure of real hidden factors is poorly known. For
this reason, our computational experiment in this paper is based on Burgess et al. (2018)’s β-VAE.

Instead of employing the regularization controller β to disentangle the independent data factors by
putting implicit independence pressure in the representation, Hamaguchi et al. (2018) presented a
new method to learn disentangled representation by introducing two additional loss functions Lsim
(a similarity loss function) and Lact (an activation function). This technique aims to detect trivial
events in an image resulting from environmental changes (such as illumination changes, background
motions and shadows) by disentangling each image into two kinds of features, specific and common.
The functionality of Lsim constrains common features to represent invariant factors between two
paired images. Lact encourages activation of common features to avoid a trivial solution. After
common features of paired images are separated, the means of common features from two images
are fed into event detector (a classifier) for training. As mentioned in (Hamaguchi et al., 2018),
this method cannot achieve good disentanglement when dealing with complicated scenes, since the
activation of the units in the common features are degenerated a certain value.

C T-SNE FOR MANIFOLD LEARNING

The t-distributed stochastic neighbor embedding (t-SNE), introduced by van der Maaten & Hinton
(2008), is a popular technique for nonlinear dimensionality reduction that is particularly well suited
for visualizing similarity of high-dimensional data that lie on several different, but related, low-
dimensional manifolds. It is an improvement of stochastic neighbor embedding (SNE) presented

16



Under review as a conference paper at ICLR 2020

by Hinton & Roweis (2002) with easier optimization and better visualization via replacing the SNE
cost function with a symmetrized version and using a Student-t distribution instead of a Gaussian to
compute the similarity between two points in the low-dimensional space.

C.1 STOCHASTIC NEIGHBOR EMBEDDING (SNE)

SNE measures similarities (in both original high-dimensional space and mapped low-dimensional
space) between points by converting Euclidean distances between data points into conditional proba-
bilities under Gaussian distributions. In original high-dimensional space, for example, the similarity
of a pair of data points xi and xj is represented by pj|i under a Gaussian centered at xi. High pj|i
means xi and xj are close to each other, and vice versa. pj|i is defined as:

pj|i =
exp(−||xi − xj ||2/2σ2

i )∑
k 6=i exp(−||xi − xk||2/2σ2

i ))
, (26)

where σi is the variance of the Gaussian that is centered on data point xi. It is influenced by the
perplexity Perp(Pi), which is defined as follows,

Perp(Pi) = 2H(Pi), (27)

where Pi corresponds particular σi and H(Pi) is the Shannon entropy of Pi measured in bits.

For the low-dimensional counterparts yi and yj of the high-dimensional data points xi and xj , the
similarity of these two points is denoted as qj|i, and similarly defined as:

qj|i =
exp(−||yi − yj ||2)∑
k 6=i exp(−||yi − yk||2)

, (28)

where the variance of the Gaussian is set to 1√
2

. Since the focus is modeling pairwise similarities,
both pi|i and qi|i are set to zero.

C.2 COST FUNCTION OF T-SNE

Kullback-Leibler divergence is utilized to measure the difference between the low-dimensional data
representation distribution qj|i and high-dimensional data distribution pj|i. The cost function of
SNE, which is sum of Kullback-Leibler divergences over all data points, to be optimized by a gra-
dient descent method, is given by

C =
∑
i

DKL(Pi||Qi) =
∑
i

∑
j

pj|i log
pj|i

qj|i
. (29)

Aiming to alleviate the difficult optimization problem of the cost function above and “crowding
problem” (comparing nearby data points, moderate distant data points will not occupy reasonably
large area in the low-dimensional map), van der Maaten & Hinton (2008) introduced symmetric
SNE and employed a Student t-distribution with one degree of freedom (which is the same as a
Cauchy distribution) as the heavy-tailed distribution in the low-dimensional map. The cost function
is redefined as:

C = DKL(P ||Q) =
∑
i

∑
j

pij log
pij
qij
, (30)

where again, pii and qii are also set to zero, and

pij =
exp(−||xi − xj ||2/2σ2)∑
k 6=l exp(−||xk − xl||2/2σ2)

, (31)

qij =
(1 + ||yi − yj ||2)−1∑
k 6=l(1 + ||yk − yl||2)−1

. (32)

The gradient of the Kullback-Leibler divergence between P and the Student-t based joint probability
distribution Q is given by

δC

δyi
= 4

∑
i

(pij − qij)(yi − yj)(1 + ||yi − yj ||2)−1. (33)
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D TEMPORAL CONVOLUTIONAL NETWORKS

Bai et al. (2018) employed a basic architecture which is essentially same as the time delay neural
network proposed by Waibel et al. (1990) to ensure outputs of same length as inputs and no leakage
from the future into the past.

TCN = 1D FCN + causal convolutions.

However, since a simple causal convolutions is not able to achieve a long effective history size, Bai
et al. (2018) employed dilated causal convolutions (same architecture as WaveNet (van den Oord
et al., 2016), please refer to Figure 7a) that enable an exponentially large receptive field. The dilated
convolution operation F on element s of the sequence is defined as:

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i) · xs−d·i, (34)

where x ∈ Rn is a 1-D sequence input, f : 0, . . . , k − 1→ R is a filter, d is the dilation factor, k is
the filter size, and s− d · i accounts for the direction of the past. When d = 1, a dilated convolution
reduces to a regular convolution. By choosing larger filter sizes k and increasing the dilation factor
d, the receptive field of TCN can be enlarged.

Bai et al. (2018) also utilized a generic residual module (He et al., 2015) in place of a convolutional
layer. A residual block is defined as:

o = Activation(x + F(x)).

The outputs of a series of transformations F are added to the input x of the block. To tackle with
discrepancy of input and output widths in a standard residual block, an additional 1× 1 convolution
is used to ensure that element wise addition ⊕ receives tensors of the same shape (see Figure 7b).

Bai et al. (2018) further discussed the advantages of TCN (including parallelism, flexible receptive
field size, stable gradients, low memory requirement for training and variable length inputs) and its
disadvantages (including possibly high memory requirement for evaluation and potential parameter
change for a transfer of domain).

E THE FULL ANODM ALGORITHM

Algorithm 1: AnoDM Algorithm
Result: Anomaly scores of test samples
Inputs: Xtr: training samples,Xte: test samples, β > 0: hyperparameter for β-VAE

1 while epoch no more than training iterations do
2 Encoder net mapsXtr into µtr and σtr;
3 Ztr = µtr + σtr � ε, ε ∼ N (0, I);
4 Decoder net reconstructsXtr toX′

tr using Ztr;
5 Update β-VAE’s parameters θ and φ;
6 end
7 ForXtr andXte, obtain µtr and µte respectively using trained β-VAE;
8 Use t-SNE to map µtr and µte to 2D representations ltr and lte;
9 for x(i)

te withinXte do
10 DRE(x

(i)
te ) , NSE(x(i)

te ,x
′(i)
te ) =

‖x(i)
te −x

′(i)
te ‖

2
2

‖x(i)
te ‖2

; // reconstruction error

11 DktSNE(x
(i)
te ) , 1

k

∑
j∈N(i,k)‖l

(i)
te − l

(j)
tr ‖2 ; // N(i, k) is the set of indices of l

(i)
te ’s

k nearest neighbors from ltr

12 SβVAE+tSNE(x
(i)
te ) = αDRE + (1− α)DktSNE ; // α ∈ [0, 1]

13 end
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(a) A dilated causal convolution with dilation factors d = [1, 2, 4, 8, 16, 32] and filter size k = 4.

(b) Residual block (k = 4, d = 1).

Figure 7: Architecture of the temporal convolutional network (TCN).

F DESCRIPTIONS OF DATA SETS

• MNIST: It contains a training set of 60000 gray scale digit images of 28 × 28 and a test
set of 10000 same resolution gray scale examples from approximately 500 different writers
(LeCun et al., 1998).

• Fashion-MNIST: It is a dataset of Zalando’s article images, comprising 70000 MNIST-
like labeled fashion images of 28× 28, with 7000 images per category (Xiao et al., 2017).
The training set has 60000 images and the test set has 10000 images. The samples come
from 10 classes: T-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and
ankle boot.

• Small-Norb: It contains 24300 96 × 96 grayscale images pairs of 50 toys belonging to 5
generic categories: four-legged animals, human figures, airplanes, trucks, and cars (LeCun
et al., 2004). The objects were imaged by two cameras under 6 lighting conditions, 9 eleva-
tions , and 18 azimuths. As in (Sabour et al., 2017), the images were resized to 48×48; ran-
dom 32×32 crops of them were obtained during training process. Central 32×32 patches
of test images were used during test.

• CIFAR-10: It consists of 60000 32 × 32 colour images in 10 classes, with 6000 images
per class. There are 10000 test images which include exactly 1000 randomly-selected
images from each class and 50000 training images (with 5000 images from each class) are
randomly grouped into 5 batches (Krizhevsky, 2009).
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• Arrhythmia: It is derived from Physionet’s MIT-BIH Arrhythmia Datase which consists
of ECG recordings from 47 different subjects recorded at the sampling rate of 360Hz .
This dataset is created by five different heart beat categories: “N”, “S”, “V”, “F” and “Q”,
in accordance with Association for the Advancement of Medical Instrumentation (AAMI)
EC57 standard (Kachuee et al., 2018). The meanings of these categories are explained
below.

1. “N”: normal, left or right bundle branch block, atrial escape and nodal escape.
2. “S”: atrial premature, aberrant atrial premature, nodal premature and supra-ventricular

premature.
3. “V”: premature ventricular contraction and ventricular escape.
4. “F”: fusion of ventricular and normal.
5. “Q”: paced, fusion of paced and normal and unclassifiable.

(a) β = 0.01 (µ-based) (b) β = 0.8 (µ-based) (c) β = 5.0 (µ-based) (d) β = 10.0 (µ-based)

(e) β = 0.01 (z-based) (f) β = 0.8 (z-based) (g) β = 5.0 (z-based) (h) β = 10.0 (z-based)

Figure 8: Comparison of µ-based method or z-based method on MNIST data (anomalous class is 3) for
inferring latent representations that are visualized in t-SNE map.

20



Under review as a conference paper at ICLR 2020

Table 2: AuROCs for both µ-based and z-based techniques.

Dataset Class µ-based z-based
auROC β α auROC β α

MNIST

0 0.984 0.01 0.8 0.985 0.8 0.1
1 0.986 0.01 0.6 0.987 0.01 0.6
2 0.990 0.4 0.9 0.991 0.2 0.9
3 0.969 0.05 0.9 0.968 0.05 0.9
4 0.974 0.01 0.95 0.975 0.1 0.95
5 0.975 0.01 0.95 0.976 0.01 0.95
6 0.983 0.01 0.8 0.980 0.01 0.8
7 0.975 0.01 0.9 0.977 0.01 0.9
8 0.980 0.01 0.9 0.982 0.01 0.9
9 0.928 0.4 0.8 0.925 0.05 0.8

avg. 0.974 – – 0.975 - –

Fashion-MNIST

0 0.844 0.05 0.2 0.840 0.05 0.0
1 0.977 0.01 0.8 0.978 0.01 0.8
2 0.783 0.01 0.0 0.783 0.05 0.0
3 0.886 0.01 0.8 0.884 0.01 0.8
4 0.760 0.1 0.0 0.763 0.3 0.0
5 0.990 0.2 0.95 0.990 0.2 0.95
6 0.713 0.05 0.0 0.709 0.05 0.0
7 0.952 0.01 0.8 0.950 0.01 0.8
8 0.980 0.05 0.8 0.980 0.05 0.8
9 0.940 0.3 0.8 0.944 0.3 0.7

avg. 0.883 – – 0.882 - –

CIFAR-10

0 0.635 0.4 0.0 0.634 0.2 0.0
1 0.752 0.6 0.99 0.754 0.05 0.99
2 0.589 1.0 0.0 0.558 0.7 0.0
3 0.608 10.0 0.95 0.606 10.0 0.99
4 0.564 0.01 0.0 0.563 0.4 0.0
5 0.638 0.4 0.95 0.627 0.7 0.95
6 0.600 0.3 0.0 0.590 0.7 0.0
7 0.648 0.1 0.95 0.644 0.01 0.95
8 0.642 0.3 0.0 0.624 1.2 0.0
9 0.717 1.0 0.95 0.718 0.01 0.95

avg. 0.639 – – 0.632 - –

Small-Norb

0 0.512 0.1 0.0 0.520 7.0 0.0
1 0.656 0.01 0.0 0.647 0.01 0.0
2 0.771 0.05 1.0 0.771 0.05 1.0
3 0.581 10.0 1.0 0.581 10.0 1.0
4 0.564 0.5 1.0 0.564 0.5 1.0

avg. 0.617 – – 0.617 - –

ECG (Arrhythmia)

0 0.911 0.05 0.95 0.906 0.01 0.95
1 0.924 0.01 0.95 0.925 0.01 0.95
2 0.970 0.01 0.99 0.970 0.01 0.99
3 0.905 0.01 0.95 0.910 0.01 0.95
4 0.991 0.01 0.99 0.991 0.01 0.99

avg. 0.940 – – 0.940 - –
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(a) β = 0.01 (µ-based) (b) β = 0.8 (µ-based) (c) β = 5.0 (µ-based) (d) β = 10.0 (µ-based)

(e) β = 0.01 (z-based) (f) β = 0.8 (z-based) (g) β = 5.0 (z-based) (h) β = 10.0 (z-based)

Figure 9: Comparison of µ-based method or z-based method on Fashion-MNIST data (anomalous class is 1
(“Trouser/pants”)) for inferring latent representations that are visualized in t-SNE space.

(a) β = 0.01 (µ-based) (b) β = 0.8 (µ-based) (c) β = 5.0 (µ-based) (d) β = 10.0 (µ-based)

(e) β = 0.01 (z-based) (f) β = 0.8 (z-based) (g) β = 5.0 (z-based) (h) β = 10.0 (z-based)

Figure 10: Comparison of µ-based method or z-based method on Arrhythmia time-series data (anomalous
class is 4 (“Q”)) for inferring latent representations that are visualized in t-SNE space.
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(a) digit 0 (b) digit 1 (c) digit 2 (d) digit 3

(e) digit 4 (f) digit 5 (g) digit 6 (h) digit 7

(i) digit 8 (j) digit 9

Figure 11: ROC plots on MNIST (µ-based).
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(a) “T-shirt/top” (b) “Trouser/pants” (c) “Pullover shirt” (d) “Dress”

(e) “Coat” (f) “Sandal” (g) “Shirt” (h) “Sneaker”

(i) “Bag” (j) “Ankle boot”

Figure 12: ROC plots on Fashion-MNIST (µ-based).
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(a) “Airplane” (b) “Automobile” (c) “Bird” (d) “Cat”

(e) “Deer” (f) “Dog” (g) “Frog” (h) “Horse”

(i) “Ship” (j) “Truck”

Figure 13: AuROC plots on CIFAR-10 (µ-based).

(a) “Four-legged ani-
mals”

(b) “Human figures” (c) “Airplanes” (d) “Trucks”

(e) “Cars”

Figure 14: ROC plots on Small-Norb (µ-based).

25



Under review as a conference paper at ICLR 2020

(a) “N” (b) “S” (c) “V” (d) “F”

(e) “Q”

Figure 15: ROC plots of Arrhythmia using CNN-encoder (µ-based).

(a) “N” (b) “S” (c) “V” (d) “F”

(e) “Q”

Figure 16: ROC plots of Arrhythmia using LSTM-encoder (µ-based).
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(a) “N” (b) “S” (c) “V” (d) “F”

(e) “Q”

Figure 17: ROC plots of ECG using TCN-encoder (µ-based).

Table 3: Architecture of the β-VAE used in AnoDM.

Dataset Optimizer Architecture

MNIST Adam (1e−3)

Input 784 (flattened 28× 28× 1).

Encoder Conv2d (filters 32, kernel size 3, strides 2), Conv2d (filters 32,
kernel size 3, strides 2), FC (128), FC (128). ReLU activation.

Decoder FC (128), FC (1568), Deconv2d (filters 32, kernel size 3, strides 2),
Deconv2d (filters 1, kernel size 3, strides 2). ReLU activation.

Fashion-MNIST Adam (1e−3)

Input 784 (flattened 28× 28× 1).

Encoder Conv2d (filters 32, kernel size 3, strides 2), Conv2d (filters 32,
kernel size 3, strides 2), FC (128), FC (128). ReLU activation.

Decoder FC (128), FC (1568), Deconv2d (filters 32, kernel size 3, strides 2),
Deconv2d (filters 1, kernel size 3, strides 2). ReLU activation.

CIFAR-10 Adam (1e−3)

Input 3072 (flattened 32× 32× 3).

Encoder

Conv2d (filters 64, kernel size 3, strides 2), BN, Conv2d (filters 128,
kernel size 5, strides 2), BN, Conv2d (filters 128, kernel size 5,
strides 2), BN, FC (256), Dropout (0.9), BN, FC (256), Dropout (0.9),
BN. ReLU activation.

Decoder

FC (256), BN, FC (256), BN, FC (2048), BN, Deconv2d (filters 128,
kernel size 5, strides 2), BN, Deconv2d (filters 64, kernel size 5,
strides 2), BN, Deconv2d (filters 3, kernel size 3, strides 2).
ReLU activation.

Small-Norb Adam (1e−3)

Input 1024 (flattened 32× 32× 1).

Encoder

Conv2d (filters 32, kernel size 3, strides 2), BN, Conv2d (filters 64,
kernel size 3, strides 2), BN, Conv2d (filters 128, kernel size 3,
strides 2),BN, FC (256), Dropout (0.7), BN, FC (256), Dropout (0.7),
BN. ReLU activation.

Decoder

FC (256), BN, FC (256), BN, FC (2048), BN, Deconv2d (filters 128,
kernel size 5, strides 2), Deconv2d (filters 64, kernel size 5, strides 2),
Deconv2d (filters 3, kernel size 3, strides 2). ReLU activation.

Arrhythmia Adam (1e−3)

Input 187.

Encoder TCN (filters 64, kernel size 4, stacks 1, dilations [1, 2, 4, 8, 16, 32],
padding “causal”, use skip connections “True”, dropout rate 0.05)

Decoder

FC (256), FC (384), FC (2048), BN, Deconv1d (filters 64,
kernel size 3, strides 2), Deconv2d (filters 64, kernel size 3, strides 2),
Deconv2d (filters 64, kernel size 3, strides 2), Deconv2d (filters 32,
kernel size 3, strides 2), Deconv2d (filters 32, kernel size 3, strides 2),
Deconv2d (filters 1, kernel size 3, strides 2). ReLU activation.
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