
Under review as a conference paper at ICLR 2020

HOW CAN WE GENERALISE LEARNING DISTRIBUTED
REPRESENTATIONS OF GRAPHS?

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a general framework to construct unsupervised models capable of
learning distributed representations of discrete structures such as graphs based
on R-Convolution kernels and distributed semantics research. Our framework
combines the insights and observations of Deep Graph Kernels and Graph2Vec
towards a unified methodology for performing similarity learning on graphs of
arbitrary size. This is exemplified by our own instance G2DR which extends
Graph2Vec from labelled graphs towards unlabelled graphs and tackles issues
of diagonal dominance through pruning of the subgraph vocabulary composing
graphs. These changes produce new state of the art results in the downstream
application of G2DR embeddings in graph classification tasks over datasets with
small labelled graphs in binary classification to multi-class classification on large
unlabelled graphs using an off-the-shelf support vector machine.

1 INTRODUCTION

A fundamental prerequisite for machine learning algorithms to learn about input data is the abil-
ity to discern one observation from another. Even more powerful is the ability to determine how
similar or dissimilar such observations are from one another to make more detailed associations.
For observations represented in Euclidean space with feature vectors the concept of similarity be-
tween observations is intuitive as it may be computed as distance using Euclidean distance or cosine
similarity formulas. Unfortunately, for observations represented as graphs defining the notion of
similarity, and even more so designing methods for computing similarity has been a long ongoing
challenge in maths and computer science. This is partly because assessing comparability of graphs
does not only consist of looking for similar elements (nodes) but also structural similarities between
the substructures within. An obvious real world example on the importance of this distinction can be
found in chemistry where molecules called isomers exhibit identical chemical formulas but different
structural properties which induce different behaviours and traits (Petrucci et al., 2017). The diffi-
culty of comparing graphs is highlighted by the graph isomorphism test (Garey & Johnson, 1990),
which despite its complexity only gives a binary evaluation of the structural equivalence between
two graphs which is insufficient for demands of fine grained machine learning tasks.

Consequently, the graph learning domain predominantly features kernel methods which approximate
the comparability of graphs using invariants or substructures such as nodes, subgraphs and random
walks within the graphs (Vishwanathan et al., 2010). Whilst they are powerful and intuitive, such
kernels are dependent and often tied to certain methods such as support vector machines (SVM) to
perform learning tasks (Yanardag & Vishwanathan, 2015). Hence, existing methods utilizing kernel
methods are often unable to handle other downstream learning tasks such as regression or clustering
without significant revision.

More recently, deep learning approaches for graph representation learning have gained significant
research activity with the successful interpretation of graph convolutional methods for learning node
representations (Kipf & Welling, 2017; Scarselli et al., 2009; Veličković et al., 2018). Representa-
tions at the graph level are then constructed through application of different pooling operations
which aggregate node representations into a single representation for the entire graph (Ying et al.,
2018; Goyal & Ferrara, 2018).

Our approach takes a different perspective through the distributive modelling of discrete higher order
subgraph patterns across the graph dataset. This builds fixed size vector representations of graphs

1

Under review as a conference paper at ICLR 2020

within a distributed vector space created through training a neural language model (Bengio et al.,
2003). The positions of the distributed vector representations are contextualized by the subgraph
patterns within graphs with respect to the patterns seen within other graphs across the dataset. This
is analogous to the distributive modelling of arbitrary sized text documents in Le & Mikolov (2014).
The construction and application of distributed representations of graphs can be summarized in a
three step framework. The first step involves reducing graphs into higher order subgraph patterns
to create graph documents summarizing the patterns seen in each graph. Together the graph docu-
ments constitute a corpus of graphs. The second stage trains a neural language model on the graph
document corpus, thereby building a distributed embedding for each graph within the dataset. In
the third and final stage the embeddings may be used with off-the-shelf learning systems for down-
stream tasks such as classification, regression, clustering, and so on. Alternatively one can even use
the trained model for transfer learning purposes.

We implemented G2DR as an instance of this 3 stage framework and extension on Graph2Vec.
For the first stage, G2DR decomposes graphs into subtree patterns using an algorithm inspired by
the Weisfeiler-Lehman graph isomorphism test (Weisfeiler & Lehman, 1968; Shervashidze et al.,
2011), extending the implementation in Narayanan et al. (2017) with an efficient iterative algo-
rithm which also enables learning beyond labelled and undirected graphs to all combinations of
labelled/unlabelled and directed/undirected graphs. For stage 2, we utilise a neural language model
based on doc2vec (Le & Mikolov, 2014; Narayanan et al., 2017) with a minimum frequency thresh-
old on the vocabulary to reduce the specificity of the subgraph pattern vocabulary and reduce the
size of the neural network representing the neural language model. In the third stage we chose to
evaluate G2DR on graph classification tasks with publicly available graph kernel datasets (Kersting
et al., 2016). Datasets and tasks were selected to cover a range of graphs from small labelled graphs
to large unlabelled graphs exhibiting complex substructures. To be comparatively fair within our as-
sessment with kernel methods that inspire G2DR we utilised support vector machines (SVM) on the
distributed representations and outperformed kernel methods as well as popular supervised graph
neural methods. This helps validate the distributed perspective as a useful inductive bias (Battaglia
et al., 2018) for constructing graph level representations alongside pooling efforts, and as a possible
research avenue for more unsupervised techniques to graph-structured data.

In section 2 we provide a comprehensive background into graph learning and related methods such
as graph kernels. Section 3 describes our 3 stage framework and G2DR in more detail. Section 4
describes the downstream application of the distributed representations in graph classification tasks
with details about datasets and experimental setup. This is followed by reporting of results in section
5 and a discussion of the strengths and limitations of G2DR.

2 BACKGROUND AND RELATED WORK

Many real world phenomena such as chemical compounds (Petrucci et al., 2017), protein structures
(Borgwardt et al., 2005), application process calls (Gascon et al., 2013), and social networks (Ya-
nardag & Vishwanathan, 2015) can be naturally represented using graphs. For example, in chemistry
the graph makes an intuitive model for a molecule where nodes represent atoms and edges the bonds
between them. Here the graph is an appropriate representation as it captures not only the pres-
ence of the atoms in the molecule, but the edges also capture the specific bonding patterns between
the atoms which is important for distinguishing isomers that a classical chemical formula cannot
describe (Petrucci et al., 2017). In other words, the resulting graph topology created by the relation-
ships between the nodes in a graph reveal a structural complexity that can be analysed as a source
of information in pattern recognition problems.

Described more formally, a graph is an abstract structure which defines a set of entities which are
related in some way. Graphs contain nodes representing said entities with related nodes being con-
nected by an edge which records the relation. We define G = (V,E) as a graph where V is a set of
nodes andE ⊆ (V ×V) be a 2-tuple set of edges in the graph. Hence if u and v are nodes in G, their
relation is recorded with an edge as (u, v) ∈ E. The neighbours of a node v in graph G = (V,E), is
the set of nodes which share an edge with v, denoted N (v) = {u|(v, u) ∈ E}.
Graphs can be categorised depending on the attributes of the nodes and edges. A labelled graph is a
graph whose nodes or edges have labels, which may or may not be unique. Nodes and/or edges can
be labelled, with the graphs then being called node- or edge-labelled graphs respectively. Otherwise

2

Under review as a conference paper at ICLR 2020

it is simply known as an unlabelled graph. Edges can either directed or undirected. Directed edges
are uni-directional relations from a starting to node u to a target node v and recorded as (u, v) ∈ E
and (u, v) 6= (v, u). Undirected edges describe bi-directional relationships between nodes u and v,
hence (u, v) = (v, u).

2.1 GRAPH LEARNING AND KERNEL METHODS

An operational assumption made in learning with graph-structured data is that similar phenomena
represented by graphs will also exhibit similar topological properties. Hence the ability to quantify
the similarity of graph topologies is central to graph learning algorithms. As topological patterns are
not intuitively well represented using classic feature vectors, research has predominantly focused
on using kernel methods for machine learning tasks involving graphs. Kernel methods are machine
learning algorithms which rely on a kernel for the pattern recognition task. Kernels are functions
which define a relation or more contextually, a similarity over pairs of data points using their raw
representations. Subsequently one can use kernel methods which can operate on kernels such as
support vector machines (SVMs) (Yanardag & Vishwanathan, 2015).

Ideally a kernel would be a similarity function sim(G,G′) = d, d ∈ R+ where d or ”distance”
between graphs G and G′ is small if they have similar structural properties, and a larger distance
otherwise. The most intuitive measure of similarity is the binary indication of whether two graphs
are topologically identical or isomorphic.

This is also known as the Graph Isomorphism (GI) test. Despite being a rudimentary measure of
similarity, the complexity of the GI test is in NP and has neither been proven to be NP complete nor
solved by a polynomial time algorithm (Garey & Johnson, 1990). Out of the twelve computational
complexity problems listed in Garey and Johnson (Garey & Johnson, 1990), only the GI problem and
integer factorisation remain unsolved. In addition to being computationally expensive, the binary
measure of similarity provided by GI based measures requires graphs to be identical or contain large
identical subgraphs in order to be considered similar. This is too restrictive to be used effectively by
machine learning methods. As a result a number of more flexible kernels based on approximate and
inexact matching of graphs were proposed to address this problem.

Examples of these approximate kernels include graph edit distance methods and invariant based
methods. Graph edit distance methods as proposed by Bunke & Allermann (1983); Neuhaus &
Bunke (2005) define a set of graph edit operations and associates a ”cost” with each operation. The
distance between the graphs can then be approximated by the minimum number and cost of edits
needed to transform one graph into another. Slightly less intuitive, but powerful kernels exploit
graph invariants. Kondor & Borgwardt (2008) introduced the skew spectrum where the invariant
feature known as the graph skew is computed from the graph and extracted bispectral invariants can
be compared into a kernel value. Less than a year later, Kondor et al. (2009) proposed the graphlet
spectrum which computes a spectrum of matrices relative to a set of subgraphs. These features
capture the number and position of the subgraphs which could then be compared between graphs.

Yanardag & Vishwanathan (2015) noted that kernel methods such as the graphlet spectrum are part a
larger family of graph kernels which evaluate the similarity between graphs G and G′ by decompos-
ing them into atomic substructures such as random walks, shortest paths, graphlets, and subgraph
patterns. The kernel value is then calculated by some function such as counting the number of com-
mon substructures over G and G′. These kernel values would then be exploited by kernel methods
performing the machine learning task. Such count based graph kernels can largely be grouped into
three major families: those based on finite size subgraphs (Kondor et al., 2009; Horváth et al., 2004;
Shervashidze et al., 2009), subtree patterns (Shervashidze et al., 2011; Shervashidze & Borgwardt,
2009; Ramon & Gärtner, 2003), and walks or paths (Borgwardt & Kriegel, 2005; Kashima et al.,
2003; Vishwanathan et al., 2010).

Graph kernels are intuitive, efficient and perform well on smaller benchmark datasets however ex-
hibit two limitations. Firstly, most kernels do not create explicit graph embeddings. This makes
many out of the box machine learning algorithms that rely on vector embeddings such as Random
Forests, Neural Networks, Naive Bayes, etc. unable to work with graph data. Secondly, the sub-
structures which the graphs are decomposed to have to be determined manually with well defined
functions that help extracting such substructures from graphs. When such substructures are used in

3

Under review as a conference paper at ICLR 2020

very large datasets this can lead to building extremely high-dimensional, sparse, and non-smooth
representations of graphs (Narayanan et al., 2017).

2.2 DEEP LEARNING APPROACHES

More recently, success in the node classification tasks with graph convolutional networks (GCN)
(Kipf & Welling, 2017) and successful translation of attention models (GAT) (Veličković et al.,
2018) brought a flurry of attention to learning representations of substructures and whole graphs
using deep learning. Whilst a majority of research in this regard has focused on learning representa-
tions of nodes (Goyal & Ferrara, 2018; Battaglia et al., 2018) methods have been proposed to pool
or aggregate substructure representations into graph level representations (Goyal & Ferrara, 2018).
A notable example is Ying et al. (2018) which hierarchically clusters and coarsens substructure rep-
resentations towards a graph representation with stacks of graph neural networks. These have pro-
duced excellent empirical results on graph classification datasets overcoming some of the limitations
of graph kernels on datasets with large graphs. However these methods face interesting challenges as
they are sensitive to network initialisations and jumping knowledge structures, and simple structure-
unaware MLPs and single layer GCN models have been shown to display comparable performance
to the most powerful models despite their great algorithmic and memory complexity as shown in
Luzhnica et al. (2019).

One deep learning approach that works slightly differently is Niepert et al. (2016) PATCHY-SAN.
This method incorporates ideas from work in kernels and assigns labels to nodes using the labelling
procedure from the Weisfeiler-Lehman kernel (Shervashidze et al., 2011), and sorts the node labels
into a line. Subsequently, PATCHY-SAN defines a receptive field around each node by selecting a
fixed number of nodes in d-hop neighbourhood where d is a natural number chosen by the practi-
tioner. It then uses a standard convolutional neural network to learn a representation of the graph.
This method features prominently as a state of the art supervised approach to graph classification.

2.3 DEEP GRAPH KERNELS AND GRAPH2VEC

Our work is inspired by Deep Graph Kernels (Yanardag & Vishwanathan, 2015) and Graph2Vec
(Narayanan et al., 2017). Yanardag & Vishwanathan (2015) recognised that the many graph kernel
methods can be formulated as instances of the R-Convolutional kernel framework (Haussler, 1999)
which decomposes discrete structures such as graphs into smaller substructure patterns to define
kernels compatible with kernel methods like SVMs. Yanardag & Vishwanathan (2015) then utilised
graph-edit distance methods or learning methods based on neural language models to compute a
similarity matrix over the substructures to define kernel functions.

Graph2Vec (Narayanan et al., 2017) builds upon principles of Deep Graph Kernels. The authors de-
fined a recursive subgraph decomposition algorithm based on the Weisfeiler-Lehman test (Weisfeiler
& Lehman, 1968) to find subtree patterns for each node in labelled and undirected graphs, subtree
patterns are recorded as strings in documents for each graph (we will delve into this algorithm fur-
ther in the next section as we developed a general variant of this algorithm). A key deviation from
Deep Graph Kernels is the subsequent input of the documents into a neural language model based
on word2vec’s skipgram architecture (Mikolov et al., 2013). This produced a scalable unsupervised
approach to building distributed vector representations of graphs which captures generic structural
properties of graphs. Yet the effectiveness of the embeddings, at least where data is publicly avail-
able, was only shown with classification datasets consisting of small labelled graphs. Nonetheless,
the potential of the underlying methodology and potential motivates the general framework and
G2DR we describe in the next section.

3 GENERAL METHODOLOGY

We present a 3 stage framework for constructing models that combines the generality of Deep Graph
Kernels and performance of Graph2Vec.

1. Substructure pattern extraction: The first stage consists of decomposing each graph into
subgraph patterns using methods that respect the R-Convolution kernel framework, such
as graphlets, subtree patterns, and walks. During this process a hash function is used to

4

Under review as a conference paper at ICLR 2020

Figure 1: A subtree of degree d = 2 rooted at node 1. The red arrows are the trajectories of the first
hop, whilst the green arrows are of the second hop. These hops generate a subtree pattern of height
2 with root node 1 seen on the right. Note that repeated visits of nodes is allowed.

record patterns to unique string labels within a dictionary which defines a vocabulary of
the different subgraph patterns found across the dataset. The string labels of patterns found
in a graph are recorded in an associated text document called a graph document. This
process creates a collection of graph documents corresponding to each graph in the dataset
forming a graph document corpus representative of the input graph dataset.

2. Distributed representation learning: This stage borrows concepts from statistical lan-
guage modelling where the distributional hypothesis (Harris, 1954) is used to imbue se-
mantic meaning to words and documents based on context. This distributional hypothesis
suggests that words which are used and exist in the same context have similar meanings
(Harris, 1954). We may adopt the same view about graphs by hypothesising that graphs
which exhibit similar subgraph patterns entail similar properties and classifications. There-
fore fixed distributed representations of graphs may be learned via neural language models
such as word2vec (Mikolov et al., 2013), doc2vec (Le & Mikolov, 2014), or GloVe (Pen-
nington et al., 2014) on the graph documents of stage 1.

3. Downstream application: The third and final stage involves the downstream application of
the distributed representations learned in stage 2. As the learning models in stage 2 produce
fixed-size vector representations of each graph, any off-the-shelf learning algorithm can
readily be applied such as SVMs and multi-layer perceptrons for classification, or K-Means
for clustering, or decision trees for regression. This opens up a host of use-cases for graph
datasets that are enabled by the distributed vector representations.

3.1 G2DR

G2DR is an instance of this 3 stage methodology which specifically addresses some limitations of
existing kernel methods and incorporates the distributive hypothesis to graph representations.

3.1.1 STAGE 1: SUBTREE DECOMPOSITION VIA WEISFEILER-LEHMAN REDUCTION

In the first stage G2DR utilises a subtree decomposition algorithm based on the Weisfeiler-Lehman
(WL) graph isomorphism test. Amongst the possible algorithms tackling graph isomorphism the
Weisfeiler-Lehman (WL) test (Weisfeiler & Lehman, 1968) stands out as a particularly effective
solution that differentiates graphs based on the composition of the subtree patterns extracted from
the nodes, and works for most cases except those covered in Cai et al. (1992). In its essence, the
WL test consists of iteratively assigning unique labels to the multisets formed by a nodes label with
the labels of its neighbours. As this is performed on each node within the graph, the dth iteration of
node relabeling is equivalent to encoding a subtree pattern formed of a node and the neighbourhood
within d-hops as shown in Figure 1. If the composition of assigned labels differs between graphs at
any iteration, the WL test considers them non-isomorphic.

We wish to find subtree patterns of degree/depth d for every node within the graph of every graph
in the dataset. This is achieved as a byproduct of the WL test’s node relabeling (Shervashidze
et al., 2011) and is fully described in Algorithm 1. G2DR utilises subtree patterns over other atomic
substructures which could compose graphs for two reasons. Firstly, subtrees are higher order sub-
structures over nodes which offer richer description of not only the nodes in a graph but the local
neighbourhood structures which when sampled can give better embeddings of graphs. Secondly,

5

Under review as a conference paper at ICLR 2020

compared to linear patterns such as walks and paths, non-linear subtree patterns capture the struc-
ture of node neighbourhoods more generally (Narayanan et al., 2017).

Algorithm 1: WL-Relabel (G, d)

Input : G = {G1,G2, ...,Gn} a set of n graphs
d the desired degree of rooted subgraph found from each node

Output: G with each of the node relabellings made at each iteration saved in all nodes of all
graphs

1 for i = 0 to d, by 1 do
2 Multiset-Label determination

• if i = 0, set Mi(v) = l0(v) = λ(v)

• if i > 0, assign a multiset-label Mi(v) to each node v in G for all G ∈ G which
consists of the multiset {li−1(u)|u ∈ N (v)}

3 Sorting each multiset
• Sort elements in Mi(v) in ascending order and concatenate them into a string si(v)

• Concatenate li−1(v) as a prefix to si(v) and set the resulting string as si(v)

4 Label Compression
• Sort all of the strings si(v) for all v form G ∈ G in ascending order.
• Map each string si(v) to a new compressed label, using a hash function
f : Σ∗ → Σ such that f(si(v)) = f(si(w)) iff si(v) == si(w)

5 Node Relabelling
• Set li(v) = f(si(v)) for all nodes in G ∈ G

6 end

Algorithm 1, generates rooted subgraphs t(d) of depth d around every node v of graph G ∈ G. In
this iterative algorithm starting from i = 0 to i = d, a hash function is initialised at the beginning
of each iteration which maps the subgraph pattern to compressed multiset labels. When i = 0 no
subgraph needs to be extracted and hence the original label of node v is returned (line 1). If the
graph is unlabelled, the degree of a node is set as its label. Using degree as the initial node label
can also apply to labelled graphs and will effectively construct a vocabulary of structural patterns
(Shervashidze et al., 2011). When i > 0 the labels of the previous iteration are used to create new
compressed labels. For each node v we find the previous iterations’ labels of all v’s neighbours as a
multi set {li−1(u)|u ∈ N (v)} and sort the elements in ascending order. The sorted set is then turned
into a string si(v) with v’s label in the previous iteration prepended to it. These strings are passed
into the hash function to assign new compressed labels for the multiset string si(v). Note that this
makes sure that if the same subgraph pattern of v is found in another graph, that node is given the
same compressed label due to the hashmap, simultaneously building a ”vocabulary” of the different
subtree patterns in G. Furthermore, at each iteration of this algorithm compressed labels li(v) are
produced which correspond to subtree patterns of depth i rooted at v.

At the end of algorithm 1 each graph Gj ∈ G will have d relabellings for each of the nodes v ∈ Gj in
string form si(v) which we store as attributes inside of a NetworkX graph object (Schult, 2008). For
each graph G ∈ G, we generate a graph document by writing each of the compressed relabellings
si(v) for all i ∈ [1, d] of every node v ∈ G into a text file. All of the graph documents together form
our corpus of graphs.

Algorithm 1 deviates from the algorithm presented in the Graph2Vec paper (Narayanan et al., 2017)
where multisets representing subtree patterns are recursively constructed using the labels of neigh-
bours of a target node for each node of all graphs in the dataset, and then assigned to that node.
Instead the proposed WL-Relabel algorithm iteratively assigns compressed multiset labels based on
a nodes previous multiset label, and in the case of an unlabelled graph, runs an initial relabelling
based on the degree of the node. Our changes bring three advantages. One, it allows extraction
of subgraph patterns for unlabelled graphs, allowing G2DR to learn distributed representations of
unlabelled graphs and labelled graphs; and can apply directly to directed graphs. Two, during the

6

Under review as a conference paper at ICLR 2020

iterative process, the subtree patterns of each degree prior to the user specified degree are observed
and can be used or saved without finding them again. Three, the compressed labels are a memory
efficient alternative to saving entire subgraph patterns for each node.

3.1.2 TACKLING ZIPF’S LAW IN VOCABULARY SIZE

The degree of the subtrees to be extracted from the graphs in the dataset directly affects the vocabu-
lary size eventually used in the training of the neural language model. As the degree to be analysed
increases, the number of unique subgraphs which enter the vocabulary also increases (Yanardag &
Vishwanathan, 2015). The increase in specificity allows very similar graphs to be drawn even closer,
and is useful in small datasets with small graphs and low numbers of distinct labels where finding
patterns that set graphs apart may be useful. However, as the complexity and size of graphs and
graph datasets increases, the number of substructure patterns explodes leading to extraction of pat-
terns which occur infrequently in the dataset, which is a limitation of graph kernels in general. A
pattern to frequency analysis will show that the ’language’ of subgraph patterns follows Zipf’s law
(Powers, 1998). Zipf’s empirical law describes how the frequency of a word in a given language is
inversely proportional to its rank in a frequency table. The phenomenon brings the forth diagonal
dominance seen in graph kernels (Yanardag & Vishwanathan, 2015). A naive yet natural fix which
addresses the untuned network parameters corresponding to infrequent subgraphs is to modify the
corpus and vocabulary so that a rooted subgraph has to occur a set minimum number of times in the
dataset to be included in the vocabulary and hence the language model. We chose to set a minimum
threshold of 2 occurrences of a subgraph pattern to be included in the vocabulary if the half of the
tail of single occurrences was larger than the number of graphs in the dataset.

3.1.3 STAGE 2: MODIFIED PV-DBOW WITH NEGATIVE SAMPLING

Once the graph documents have been generated using algorithm 1 it is possible to learn a distribu-
tional vector space in a completely unsupervised manner using a neural language model. We follow
Graph2Vec (Narayanan et al., 2017) and use a PV-DBOW model with negative sampling (Le &
Mikolov, 2014; Mikolov et al., 2013) as outlined in Algorithm 2.

Algorithm 2: Train-Graph2Vec (G, D, δ, e, α)

Input : G = {G1,G2, ...,Gn} a set of n graphs
D the desired degree of rooted subgraph found from each node
δ the desired dimensionality of the vector embeddings
e the number of epochs to train the neural network
α the learning rate

Output: Φ Matrix of distributed representations of the graphs Φ ∈ R|G|×δ
1 Initialisation of Φ: randomly sample Φ from R|G|×δ;
2 for e← 0 to e, by 1 do
3 G = SHUFFLE(G);
4 foreach Gi ∈ G do
5 foreach v ∈ Vi do
6 for d = 0 to D, by 1 do
7 t

(d)
v = GetSubgraph(Gi, v, d);

8 J(Φ) = − logP (t
(d)
v |Φ(Gi));

9 Φ = Φ− α ∂J∂Φ ;
10 end
11 end
12 end
13 end

Calculating the posterior probability in line 9 of the algorithm can be prohibitively expensive because
t
(d)
v ∈ Tvocab and the size of the vocabulary, |Tvocab| can be very large. To mitigate this problem,

the neural language model is trained with negative sampling as suggested by Mikolov et al. (2013).
For every training epoch, given a graph Gi ∈ G and a set of subtrees in its context, C(Gi) = c =

7

Under review as a conference paper at ICLR 2020

{ti1, ti2, ...}, a fixed number of k subgraphs are randomly selected as negative samples forming
c′ = {ti1, ti2, ..., tik} such that c′ ⊂ Tvocab and k << |Tvocab| and c ∩ c′ = {}. In other words
the negative samples c′ for graph Gi is a set of k samples from Tvocab that are not present in c(Gi).
For training, the target-context pairs (Gi, c) are trained and the embeddings of the corresponding
subgraphs are updated. Subsequently only the embeddings of the negative samples c′ are updated,
instead of the whole vocabulary. The number of negative samples selected is a hyperparameter, and
G2DR uses a default of 10 negative samples.

The training process produces representations which achieves the original kernel design aims. Given
a pair of graphs Gi and Gj , Train-Graph2Vec makes their vector embeddings Φ(Gi) and Φ(Gj) closer
if they share or have similar subgraphs in their contexts, i.e. c(Gi) is similar to c(Gj).

3.1.4 STAGE 3: DOWNSTREAM APPLICATION

After training the graph neural language model, Φ contains the distributed representations of every
graph Gi ∈ G, where the embedding of Gi is denoted Φ(Gi). The task agnostic nature of the
embeddings allows any downstream task such as classification, regression, clustering, etc. to be
performed on the graphs of G simply by applying the appropriate methods which accept vector
inputs.

4 EVALUATION ON DOWNSTREAM GRAPH CLASSIFICATION

We utilised the embeddings trained on graph classification datasets to assess the suitability of the
approach, and as a benchmark against other graph learning methods. One of the key motivations
of this work was to assess the suitability of the distributed representations beyond small labeled
graphs towards larger (also unlabelled) graphs where the limitations of specification in graph ker-
nels were expected to show. For ease of replicability a suite of public datasets were selected from
Kersting et al. (2016) based on frequency in papers and size. The selection of benchmark datasets
and tasks range from smaller, classic datasets with graphs averaging 17 nodes in size tasked on
binary classification, to significantly larger graphs averaging over 500 nodes in size over 11929
examples in a multi-community prediction task. This list includes the MUTAG (Debnath et al.,
1991) , PTC (Helma et al., 2001), PROTEINS (Borgwardt et al., 2005) , NCI1, NCI109 (Wale
et al., 2008), REDDIT-BINARY, REDDIT-MULTI-5K, REDDIT-MULTI-12K (Yanardag & Vish-
wanathan, 2015) datasets. The datasets represent applications from a number of research domains
including: chemoinformatics, bioinformatics, and social networks whose properties are summarised
in Table 3 in the supplementary material.

We were particularly keen to investigate the case of unlabelled graphs and large datasets with mul-
tiple graph labels where the ’large’ applies to both the number of data points as well as the size
of the graphs therein. The large graphs make the representation learning inherently more complex
as the number of expected subgraph patterns substantially increases (Yanardag & Vishwanathan,
2015) and questions the necessary specificity required to compare large graphs to each other as well
as large graphs to small graphs.

4.1 EXPERIMENTAL SETUP

For fairer comparative analysis with graph kernel methods and experimental setups of Deep Graph
Kernels Yanardag & Vishwanathan (2015) and Graph2Vec Narayanan et al. (2017), G2DR uses an
off-the-shelfC-Support Vector Machine implemented in the SciKit-Learn package (Pedregosa et al.,
2011) on the learned embeddings for each dataset. 10 fold cross validation was used to evaluate test
classification accuracy. The C value for each fold was independently tuned using training data from
that fold. In order to exclude random effects of the fold assignments, each experiment was repeated
10 times, and mean classification accuracies with their standard deviations were recorded.

Results are presented over two section, one dedicated to datasets whose graphs are labelled, and the
other dedicated to datasets of graphs which are initially unlabelled and hence get labelled through
Algorithm 1 using the degree of the nodes as in Shervashidze et al. (2011). For comparative purposes
of existing methods we have selected prominent methods applicable to each of the graph types and
recorded the results they have published.

8

Under review as a conference paper at ICLR 2020

Table 1: Mean classification accuracy and standard deviation on labelled graph classification
Dataset MUTAG PTC PROTEINS NCI1 NCI109
node2vec 72.62 ± 10.20 55.85 ± 8.00 57.49 ± 3.57 54.89 ± 1.61 52.68 ± 1.56
sub2vec 61.05 ± 15.79 59.99 ± 6.38 53.03 ± 5.55 52.84 ± 1.47 50.67 ± 1.50
Graphlet Kernel 81.66 ± 2.11 57.26 ± 1.41 71.67 ± 0.55 62.28 ± 0.29 62.60 ± 0.19
Shortest Path Kernel 85.22 ± 2.43 58.24 ± 2.44 75.07 ± 0.54 73.00 ± 0.24 73.00 ± 0.26
WL Kernel 80.72 ± 3.00 56.97 ± 2.01 72.92 ± 0.56 80.13 ± 0.50 80.22 ± 0.34
Deep GK 82.66 ± 1.45 57.32 ± 1.13 71.68 ± 0.50 62.48 ± 0.25 62.69 ± 0.23
Deep SP 87.44 ± 2.27 60.08 ± 2.55 75.68 ± 0.54 73.55 ± 0.51 73.26 ± 0.26
Deep WL 82.94 ± 2.68 59.17 ± 1.56 73.30 ± 0.82 80.31 ± 0.46 80.32 ± 0.33
Graph2Vec 83.15 ± 9.25 60.17 ± 6.86 73.30 ± 2.05 73.22 ± 1.81 74.26 ± 1.47
PATCHY-SAN (K=10) 88.95 ± 4.67 62.29 ± 5.68 75.89 ± 2.76 76.34 ± 1.68 76.37 ± 1.43
G2DR + SVM 92.13 ± 0.06 67.14 ± 0.08 76.42 ± 0.03 84.91 ± 0.02 84.35 ± 0.02

G2DR was experimented using embedding dimensions of 16, 32, 64, 128, 256, 512, 1024, 2048
across a consideration of subtree degrees of 1,2,3. For each configuration the neural network was
trained over 1000 epochs with an initial learning rate of 0.5 set on an linear decay over the epochs
towards 0.001. A negative sampling size of 10 was used throughout as in Graph2Vec (Narayanan
et al., 2017). The best downstream results on the different embedding configurations is reported in
the results of the next section.

4.2 RESULTS: LABELLED GRAPHS

Table 3 shows that the labelled graph datasets have a range of different properties, including datasets
with small graphs and a small number of distinct labels such as the MUTAG dataset to larger datasets
with larger graphs and number of distinct labels. It was expected that lower-order substructure
embedding methods such as node2vec (Grover & Leskovec, 2016) and sub2vec (Adhikari et al.,
2017) would perform well in datasets of small graphs with few labels, but gradually perform worse
as the graphs became more complex. As shown in Table 1, these methods initially perform well
on smaller datasets, but suffer from the naive agglomeration schemes for larger datasets, barely
performing better than random on NCI1 and NCI109. Sub2vec samples only one random walk of
fixed length from the given graph and learns its representations using fixed length linear context
skipgram models. This prevents sub2vec from learning structurally meaningful embeddings of the
entire graph, and suffers considerably when applied to larger graphs as can be seen in the difference
between MUTAG and NCI109.

The graph kernels perform better overall, as they have been purpose built for this task, with the WL-
kernel performing particularly well in the larger datasets, which also initially prompted the decision
to use subtrees in G2DR. The deep graph kernels (Yanardag & Vishwanathan, 2015) attempt to over-
come the limitation of previous methods by addressing the sparsity problem of graph kernels. This
raises the performance significantly over node2vec and sub2vec, however only marginally better
than the traditional graph kernels upon which they are based. This is attributed to the assumption of
linear context between substructures and the assumption that every substructure in any given graph
has an identical number of subgraphs in its context. The latter assumption is too strict and violates
the general neighbourhood structure of nodes and subgraph patterns in graphs.

The proposed embedding learning system combined with an out-of-the-box C-SVM returns highly
competitive results. The system returns the best mean classification accuracy across the labelled
graph datasets. The success of this method is attributed to the descriptive power of non-linear pat-
terns extracted through subtrees and the usage-based representations learnt of the subgraphs within
the graphs leading to similar graphs being closer to each other, and dissimilar graphs more distant,
allowing the C-SVM to compute more effective hyper planes which maximise the separation of
graphs of different classes. We also attribute the improvement over Graph2Vec on labelled graphs
mainly on the consideration of vocabulary pruning which overcomes issues of diagonal dominance
in graph comparison (Yanardag & Vishwanathan, 2015).

9

Under review as a conference paper at ICLR 2020

Table 2: Mean classification accuracy and standard deviation on unlabelled graph classification
Datasets REDDIT-BINARY REDDIT-5K REDDIT-12K
Graphlet Kernel 77.34 ± 0.18 41.01 ± 0.17 31.82 ± 0.08
Deep GK 78.04 ± 0.39 41.27 ± 0.18 32.22 ± 0.10
PATCHY-SAN (K=10) 86.30 ± 1.58 49.10 ± 0.70 41.32 ± 0.42
2D-CNN 89.12 ± 1.70 52.11 ± 2.24 48.13 ± 1.47
G2DR + SVM 83.25 ± 0.01 53.48 ± 0.02 41.44 ± 0.02

4.3 RESULTS: UNLABELLED GRAPHS

The social network datasets of Yanardag & Vishwanathan (2015), distinguish themselves from the
previous set of graphs in 3 ways. Firstly, the graphs within the dataset are unlabelled hence the
proposed system labels the nodes within the graphs by their degree and cannot be utilised in the
unmodified Graph2Vec system. Secondly, the graphs are considerably larger than those seen in the
classic benchmarks, having a direct effect on the complexity and number of substructures within,
which in turn have a significant effect on the vocabulary size used in the neural language model.
Finally, for REDDIT-5K and REDDIT-12K, is a multi-class classification task as opposed to the
previous binary classification tasks. As a result, several of the previous methods are unsuitable
for this task, and we have included another system, 2D-CNN (Tixier et al., 2019), which represents
graphs as multi-channel image-like structures so that they can be fed into image convolutional neural
networks. This methodology produces the best results amongst the considered approaches.

As seen in table 2, G2DR performs better than the GK kernel and the Deep Graph Kernel variant
Deep GK as expected. However, it fails to achieve the performances of 2D-CNN, as the speci-
ficity and sheer number, of unique subgraph patterns makes limitations of Graph2Vec apparent. A
quick investigation showed that the lower performance could partly be attributed to the extremely
large vocabulary of subtrees that is produced from the combination of very large complex graphs
and a high number of data points in the dataset. This manifests into two related problems in the
system. Foremost, whilst Graph2Vec reduces the effect of diagonal dominance by exploiting the
distributional hypothesis and dimensionality reduction, the sheer number of infrequently occuring
subgraphs (relatively untuned from its initial random state in the corresponding weights of the neural
language model) can inadvertently cause diagonal dominance. Secondly and on a related note, the
size of the subtree vocabulary Tvocab sets the number of weights and biases in the neural language
model, the large number of parameters makes minimisation of the loss function more difficult and
computationally intensive. Hence, even models using subtree patterns of lower degree, which would
otherwise be too unspecific to find meaningful similarities/dissimilarities fare better in contrast to
the case in smaller datasets. This suggests that better methods will be needed to tackle the issue of
sparsity and specificity of the vocabularies utilised to train the distributed vector space models of
larger graphs, as well as classification tasks considering more than two classes.

5 CONCLUSION

We have presented a general framework for constructing models which learn distributed representa-
tions of graphs, that can be further generalised to other discrete structures under the R-Convolution
kernel framework. This combines the theoretic frameworks of Deep Graph Kernels and advance-
ments under Graph2Vec exemplified by our own instance, G2DR, which builds upon both previous
works. G2DR is a scalable system which can learn task agnostic distributed representations of un-
labelled/labelled and directed/undirected graphs of arbitrary size automatically. The suitability of
this unsupervised approach is validated against graph kernels and supervised neural approaches in
downstream graph classification tasks, where G2DR displays strong state of the art results despite
its unsupervised nature and use of an off-the-shelf SVM. This enables the application of G2DR as
a tool to numerous real world questions on graphs in different research domains. Furthermore, this
suggests that the distributional perspective of graphs as compositions of discrete substructures is an
useful inductive bias for building smooth vector representations of graphs along other research in
hierarchical graph coarsening and substructure pooling.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B. Aditya Prakash. Distributed representa-
tions of subgraphs. 2017 IEEE International Conference on Data Mining Workshops (ICDMW),
pp. 111–117, 2017.

Peter Battaglia, Jessica Blake Chandler Hamrick, Victor Bapst, Alvaro Sanchez, Vinicius Zam-
baldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
Caglar Gulcehre, Francis Song, Andy Ballard, Justin Gilmer, George E. Dahl, Ashish Vaswani,
Kelsey Allen, Charles Nash, Victoria Jayne Langston, Chris Dyer, Nicolas Heess, Daan Wier-
stra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Re-
lational inductive biases, deep learning, and graph networks. arXiv, 2018. URL https:
//arxiv.org/pdf/1806.01261.pdf.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic
language model. J. Mach. Learn. Res., 3:1137–1155, March 2003. ISSN 1532-4435. URL
http://dl.acm.org/citation.cfm?id=944919.944966.

Karsten M. Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Proceedings
of the Fifth IEEE International Conference on Data Mining, ICDM ’05, pp. 74–81, Washington,
DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2278-5. doi: 10.1109/ICDM.2005.132.

Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alex J. Smola,
and Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(1):
47–56, January 2005. ISSN 1367-4803.

H Bunke and G Allermann. Inexact graph matching for structural pattern recognition. Pat-
tern Recognition Letters, 1(4):245 – 253, 1983. ISSN 0167-8655. doi: https://doi.org/
10.1016/0167-8655(83)90033-8. URL http://www.sciencedirect.com/science/
article/pii/0167865583900338.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, Dec 1992. ISSN 1439-6912. doi: 10.
1007/BF01305232. URL https://doi.org/10.1007/BF01305232.

Asim Kumar Debnath, Rosa L. Lopez de Compadre, Gargi Debnath, Alan J. Shusterman, and Cor-
win Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro com-
pounds. correlation with molecular orbital energies and hydrophobicity. Journal of Medicinal
Chemistry, 34(2):786–797, Feb 1991. ISSN 0022-2623. doi: 10.1021/jm00106a046.

Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990. ISBN 0716710455.

Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. Structural detection of android
malware using embedded call graphs. In Proceedings of the 2013 ACM Workshop on Artificial
Intelligence and Security, AISec ’13, pp. 45–54, New York, NY, USA, 2013. ACM. ISBN 978-
1-4503-2488-5. doi: 10.1145/2517312.2517315.

Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications, and performance:
A survey. Knowledge-Based Systems, 151:78 – 94, 2018. ISSN 0950-7051. doi: https://doi.
org/10.1016/j.knosys.2018.03.022. URL http://www.sciencedirect.com/science/
article/pii/S0950705118301540.

Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks. In Proceedings
of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pp. 855–864, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.
1145/2939672.2939754. URL http://doi.acm.org/10.1145/2939672.2939754.

Zellig S. Harris. Distributional structure. WORD, 10(2-3):146–162, 1954. doi: 10.1080/00437956.
1954.11659520.

David Haussler. Convolution kernels on discrete structures. Technical report, University of Califor-
nia at Santa Cruz, Santa Cruz, CA, USA, 1999.

11

https://arxiv.org/pdf/1806.01261.pdf
https://arxiv.org/pdf/1806.01261.pdf
http://dl.acm.org/citation.cfm?id=944919.944966
http://www.sciencedirect.com/science/article/pii/0167865583900338
http://www.sciencedirect.com/science/article/pii/0167865583900338
https://doi.org/10.1007/BF01305232
http://www.sciencedirect.com/science/article/pii/S0950705118301540
http://www.sciencedirect.com/science/article/pii/S0950705118301540
http://doi.acm.org/10.1145/2939672.2939754

Under review as a conference paper at ICLR 2020

C. Helma, R. D. King, S. Kramer, and A. Srinivasan. The predictive toxicology challenge 2000
2001. Bioinformatics, 17(1):107–108, 2001. doi: 10.1093/bioinformatics/17.1.107.

Tamás Horváth, Thomas Gärtner, and Stefan Wrobel. Cyclic pattern kernels for predictive graph
mining. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’04, pp. 158–167, New York, NY, USA, 2004. ACM. ISBN
1-58113-888-1. doi: 10.1145/1014052.1014072.

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Marginalized kernels between labeled graphs.
In Proceedings of the Twentieth International Conference on International Conference on Ma-
chine Learning, ICML’03, pp. 321–328. AAAI Press, 2003. ISBN 1-57735-189-4. URL
http://dl.acm.org/citation.cfm?id=3041838.3041879.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann. Bench-
mark data sets for graph kernels, 2016. URL http://graphkernels.cs.tu-dortmund.
de.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings, 2017.

Risi Kondor and Karsten M. Borgwardt. The skew spectrum of graphs. In Proceedings of the
25th International Conference on Machine Learning, ICML ’08, pp. 496–503, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-205-4. doi: 10.1145/1390156.1390219. URL http:
//doi.acm.org/10.1145/1390156.1390219.

Risi Kondor, Nino Shervashidze, and Karsten M. Borgwardt. The graphlet spectrum. In ACM
International Conference Proceeding Series, volume 382, pp. 67, 01 2009.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Proceed-
ings of the 31st International Conference on International Conference on Machine Learning -
Volume 32, ICML’14, pp. II–1188–II–1196. JMLR.org, 2014. URL http://dl.acm.org/
citation.cfm?id=3044805.3045025.

Enxhell Luzhnica, Ben Day, and Pietro Liò. On graph classification networks, datasets and baselines.
In 36th International Conference on Machine Learning, ICLM’19, 2019.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word repre-
sentations in vector space. In 1st International Conference on Learning Representations, ICLR
2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, 2013. URL
http://arxiv.org/abs/1301.3781.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu,
and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. CoRR,
abs/1707.05005, 2017. URL http://arxiv.org/abs/1707.05005.

M. Neuhaus and H. Bunke. Self-organizing maps for learning the edit costs in graph matching. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(3):503–514, June 2005.
ISSN 1083-4419. doi: 10.1109/TSMCB.2005.846635.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural net-
works for graphs. CoRR, abs/1605.05273, 2016. URL http://arxiv.org/abs/1605.
05273.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543,
2014. URL http://www.aclweb.org/anthology/D14-1162.

12

http://dl.acm.org/citation.cfm?id=3041838.3041879
http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
http://doi.acm.org/10.1145/1390156.1390219
http://doi.acm.org/10.1145/1390156.1390219
http://dl.acm.org/citation.cfm?id=3044805.3045025
http://dl.acm.org/citation.cfm?id=3044805.3045025
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1707.05005
http://arxiv.org/abs/1605.05273
http://arxiv.org/abs/1605.05273
http://www.aclweb.org/anthology/D14-1162

Under review as a conference paper at ICLR 2020

R.H. Petrucci, F.G. Herring, J.D. Madura, and C. Bissonnette. General Chemistry: Principles
and Modern Applications. Pearson Education, 2017. ISBN 9780133400588. URL https:
//books.google.co.uk/books?id=E1CTDAAAQBAJ.

David M. W. Powers. Applications and explanations of zipf’s law. In Proceedings of the Joint
Conferences on New Methods in Language Processing and Computational Natural Language
Learning, NeMLaP3/CoNLL ’98, pp. 151–160, Stroudsburg, PA, USA, 1998. Association for
Computational Linguistics. ISBN 0-7258-0634-6. URL http://dl.acm.org/citation.
cfm?id=1603899.1603924.

Jan Ramon and Thomas Gärtner. Expressivity versus efficiency of graph kernels. In Proceedings of
the First International Workshop on Mining Graphs, Trees and Sequences, pp. 65–74, 2003.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. Trans. Neur. Netw., 20(1):61–80, January 2009. ISSN 1045-
9227. doi: 10.1109/TNN.2008.2005605. URL http://dx.doi.org/10.1109/TNN.
2008.2005605.

Daniel A. Schult. Exploring network structure, dynamics, and function using networkx. In In
Proceedings of the 7th Python in Science Conference (SciPy), pp. 11–15, 2008.

Nino Shervashidze and Karsten M. Borgwardt. Fast subtree kernels on graphs. In Proceedings
of the 22Nd International Conference on Neural Information Processing Systems, NIPS’09, pp.
1660–1668, USA, 2009. Curran Associates Inc. ISBN 978-1-61567-911-9. URL http://dl.
acm.org/citation.cfm?id=2984093.2984279.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. Ef-
ficient graphlet kernels for large graph comparison. In David van Dyk and Max Welling (eds.),
Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, vol-
ume 5 of Proceedings of Machine Learning Research, pp. 488–495, Hilton Clearwater Beach
Resort, Clearwater Beach, Florida USA, 16–18 Apr 2009. PMLR.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-lehman graph kernels. J. Mach. Learn. Res., 12:2539–2561, November
2011. ISSN 1532-4435.

Antoine J.-P. Tixier, Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis.
Graph classification with 2d convolutional neural networks. In Igor V. Tetko, Věra Kůrková, Pavel
Karpov, and Fabian Theis (eds.), Artificial Neural Networks and Machine Learning – ICANN
2019: Workshop and Special Sessions, pp. 578–593, Cham, 2019. Springer International Publish-
ing. ISBN 978-3-030-30493-5.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borgwardt. Graph
kernels. J. Mach. Learn. Res., 11:1201–1242, August 2010. ISSN 1532-4435.

Nikil Wale, Ian A. Watson, and George Karypis. Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowl. Inf. Syst., 14(3):347–375, March 2008. ISSN
0219-1377. doi: 10.1007/s10115-007-0103-5.

B. Weisfeiler and A. A. Lehman. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsia, 9(9):12–16, 1968.

Pinar Yanardag and S.V.N. Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’15, pp.
1365–1374, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3664-2. doi: 10.1145/2783258.
2783417. URL http://doi.acm.org/10.1145/2783258.2783417.

13

https://books.google.co.uk/books?id=E1CTDAAAQBAJ
https://books.google.co.uk/books?id=E1CTDAAAQBAJ
http://dl.acm.org/citation.cfm?id=1603899.1603924
http://dl.acm.org/citation.cfm?id=1603899.1603924
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dl.acm.org/citation.cfm?id=2984093.2984279
http://dl.acm.org/citation.cfm?id=2984093.2984279
https://openreview.net/forum?id=rJXMpikCZ
http://doi.acm.org/10.1145/2783258.2783417

Under review as a conference paper at ICLR 2020

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In Proceedings of the
32nd International Conference on Neural Information Processing Systems, NIPS’18, pp. 4805–
4815, USA, 2018. Curran Associates Inc. URL http://dl.acm.org/citation.cfm?
id=3327345.3327389.

14

http://dl.acm.org/citation.cfm?id=3327345.3327389
http://dl.acm.org/citation.cfm?id=3327345.3327389

Under review as a conference paper at ICLR 2020

A SUPPLEMENTARY MATERIAL: FIGURES AND TABLES

Datasets Size Classes Avg. Nodes Distinct Labels
MUTAG 188 2 17.93 7
PTC 344 2 25.5 19
PROTEINS 1113 2 39.06 3
NCI1 4110 2 29.87 37
NCI109 4127 2 29.68 38
REDDIT-BINARY 2000 2 429.61 unlabelled
REDDIT-MULTI-5K 4999 5 508.52 unlabelled
REDDIT-MULTI-12K 11929 11 391.41 unlabelled

Table 3: Properties of the benchmark graph classification datasets.

15

	Introduction
	Background and related work
	Graph learning and kernel methods
	Deep learning approaches
	Deep Graph Kernels and Graph2Vec

	General methodology
	G2DR
	Stage 1: Subtree decomposition via Weisfeiler-Lehman reduction
	Tackling Zipf's Law in Vocabulary Size
	Stage 2: Modified PV-DBOW with negative sampling
	Stage 3: Downstream application

	Evaluation on downstream graph classification
	Experimental setup
	Results: Labelled graphs
	Results: Unlabelled graphs

	Conclusion
	Supplementary Material: Figures and Tables

