Under review as a conference paper at ICLR 2020

JAX, M.D.
END-TO-END DIFFERENTIABLE, HARDWARE ACCELERATED,
MOLECULAR DYNAMICS IN PURE PYTHON

Anonymous authors
Paper under double-blind review

ABSTRACT

A large fraction of computational science involves simulating the dynamics of
particles that interact via pairwise or many-body interactions. These simulations,
called Molecular Dynamics (MD), span a vast range of subjects from physics and
materials science to biochemistry and drug discovery. Most MD software involves
significant use of handwritten derivatives and code reuse across C++, FORTRAN,
and CUDA. This is reminiscent of the state of machine learning before automatic
differentiation became popular. In this work we bring the substantial advances in
software that have taken place in machine learning to MD with JAX, M.D. (JAX
MD). JAX MD is an end-to-end differentiable MD package written entirely in
Python that can be just-in-time compiled to CPU, GPU, or TPU. JAX MD allows
researchers to iterate extremely quickly and lets researchers easily incorporate
machine learning models into their workflows. Finally, since all of the simulation
code is written in Python, researchers can have unprecedented flexibility in setting
up experiments without having to edit any low-level C++ or CUDA code. In
addition to making existing workloads easier, JAX MD allows researchers to take
derivatives through whole-simulations as well as seamlessly incorporate neural
networks into simulations. This paper explores the architecture of JAX MD and its
capabilities through several vignettes. Code is available at

github.com/jaxmd/jax-md

along with an interactive Colab notebook that goes through all of the experiments
discussed in the paper.

1 INTRODUCTION

Understanding complex many-body systems is a challenge that underlies many of the hard problems
in the physical sciences. A ubiquitous tool at our disposal in trying to understand such systems is to
posit interactions between the constituents and then simulate the resulting dynamics. If interactions
can be identified such that the simulation captures macroscopic behaviors observed in experiments,
then the simulation can be studied to gain insight into the physical system. Since one has access to
the full microscopic state at each step, it is possible to test hypotheses and make measurements that
would otherwise be impossible. Such techniques, generally called molecular dynamics (MD), have
been used to understand a wide range of systems including molecules, crystals, glasses, proteins,
polymers, and whole biological cells.

Significant effort has gone into a number of hlgh quality MD packages such as LAMMPS (,

), HOOMD-Blue (s ,), and OpenMM (R

). Traditional simulation env1ronments are large and specialized codebases written in C++
or FORTRAN, along with custom CUDA kernels for GPU acceleration. These packages include
significant amounts of code duplication and hand written gradients. The state of affairs is reminiscent
of Machine Learning (ML) before the popularization of Automatic Differentiation (AD). Researchers
trying a new idea often have to spend significant effort computing derivatives and integrating them
into these large and specialized codebases. Simultaneously, the amount of data produced from MD
simulations has been rapidly increasing, in part due to ever increasing computational resources
along with more efficient MD software. Furthermore, deep learning is becoming a popular tool

https://www.github.com/jaxmd/jax-md
https://colab.research.google.com/github/jaxmd/jax-md/blob/master/notebooks/jax_md_cookbook.ipynb

Under review as a conference paper at ICLR 2020

both for making MD simulations more accurate and for analyzing data produced in the simulations.
Unfortunately, the issues facing MD libraries are even more pronounced when combining MD with
deep learning, which typically involves complicated derivatives that can take weeks to derive and
implement.

Here we introduce JAX, M.D. (JAX MD) which is a new MD package that leverages the substantial
progress made in ML software to improve this state of affairs. JAX MD is end-to-end differentiable,
written in pure python, and is fast since simulations are just-in-time complled to CPU, GPU, or TPU
using XLA. Moreover, JAX MD is based on JAX (s) which
has a strong neural network ecosystem that can be used seamlessly W1th simulations. In addition to
a strong neural network ecosystem and just-in-time compilation, JAX can automatically vectorize
calculations over one- or multiple-devices. This makes it easy to simulate ensembles of systems in
JAX MD. We will begin with a short introduction to simulations in JAX MD followed by a brief
description of JAX and some architectural choices underlying JAX MD. We then explore the features
of JAX MD through several experiments:

e Efficient generation of ensembles of systems.

e Using neural networks to do machine learning of a potential.

e Meta-optimization through a simulation to optimize physical parameters.
While these examples are designed to be illustrative, they are similar to problems faced in actual
research. Moreover, all but the first example would be significantly more difficult using existing tools.

JAX MD has so far implemented simple pairwise potentials (Lennard-Jones, soft-sphere, Morse)

and the embedded atom method (EAM) (R). It can also work with the Atomic
Simulation Environment (,) and other first-principles calculations that can be
accessed from Python (e.g. Quantum Espresso (,)). Due to its efficient spatial

partitioning strategy, it can simulate millions of particles on a single GPU. On the ML side, JAX MD
has access to all of the ML developments in JAX, including state-of-the-art convolutional networks
and graph networks.

2 RELATED WORK

Automatic differentiation has enjoyed a rich history in machine learning as well as the physical

sciences (,). Backprop has been the core algorithm in the recent explosion of ML

research, enabled by packages like TensorFlow (,), Torch (,),

and Theano (,). While still generally focused on ML, more recent packages have

made automatic differentiation more generally available as a computational tool (e.g. Autograd

(,), JAX (; ,), PyTorch (,
), Chainer (s), and Zygote (R).

In the physical sciences, automatic differentiation has been applied to a large variety of problems
in structural optimization (s), quantum chemistry (s),
fluid dynamics (s ; s ; s), computational
finance (s), atmospheric modelling (s ; s

), optimal control (,), physics engines (,), protein
modelling (; s), and quantum circuits (R). For
further related work at the 1ntersect10n of ML and MD, please see Appendix E. Despite significant
work on the topic, the number of general purpose simulation environments that are integrated with
AD is scarce.

3 WARM-UP: SIMULATING A BUBBLE RAFT

We begin with a lightning introduction to MD simulations. As an example, we’re going to imagine
some bubbles floating on water so that they live on a two-dimensional interface between water and
air. We describe N bubbles by positions, {7 }1<;<n. Since the bubbles are confined to the water’s
surface, the positions will be 2-dimensional vectors, 7; € R2. For simplicity, we can assume that the
bubbles all are the same size and let their diameter be 1 without a loss of generality. We now have to

https://www.tensorflow.org/xla

Under review as a conference paper at ICLR 2020

posit interactions between the simulated bubbles that qualitatively model how real bubbles behave.
More accurate interactions will produce more accurate simulations, which will in turn capture more
realistic phenomena. For the purposes of this example, we assume that bubbles interact with each
other in pairs. We model pairs of bubbles by defining an energy function for the pair that depends only
on the distance between them. We will choose an energy that is zero if the bubbles aren’t touching
and then increases gradually as they get pushed together. Specifically, if 7;; is the distance between
bubble ¢ and j, we use a pairwise energy function,

(1_rij)2 if?"ij <1
U(ry;) = . 1
(rj) {O lfTZ'j >1 M

Once an energy has been defined we can compute the forces on a bubble, Fj, as the negative gradient
of the energy. From their definition, we see that forces move bubbles to minimize their energy. From
Eq. (1) low energy configurations will be those where bubbles are touching as little as possible.
However, bubbles are situated on water which is full of water molecules that are moving around.
These water molecules bump into the bubbles and push them slightly. To model the interaction
between the bubbles and the water we will assume that there are very small random forces from
the water that push the bubbles. This is a model called Brownian motion and it is described by a
first-order differential equation relating the velocity of bubbles to the forces on them along with
random kicks coming from the water,

dr; , ,
d df) — Fi(t) + /2R TE (1) ®)

Here Fj(t) are forces, & ~ N(0,1) is i.i.d. Gaussian distributed noise, and kT specifies the
temperature of the water. Incidentally, this model of objects in water dates back to ().

In Appendix A we show an example where we define a function, final positions =
simulation (rng_key), that takes a random number generator state and returns the final positions
of the particles after simulating for some time. In this example, although we only simulated a small
number of bubbles we were able to emulate a much large bubble raft by using what are known as
“periodic boundary conditions” (which are used in the popular game, “Asteroids’”). With periodic
boundary conditions bubbles can wrap around the side of the simulation to the other side, this is a
ubiquitous technique for simulating the “bulk” properties of a system. In Appendix A we also show
figures from a real experiment compared with the results of the simulation which shows striking
similarities despite the significant simplifying assumptions we made in defining our simulation.

4 ARCHITECTURE

We begin by briefly describing JAX before discussing the architectural choices we made in designing
JAX MD. JAX is the successor to Autograd and shares key design features. As with Autograd, the
main user-facing API of JAX is in one-to-one correspondence with Numpy (,)
the ubiquitous numerical computing library for Python. On top of this, JAX implements sophisticated
“tracing” machinery that takes arbitrary python functions and builds an Abstract Syntax Tree (AST)
for the function called a “Jaxpr”. JAX includes a number of transformations that can be applied
to Jaxprs to produce new Jaxprs. Examples of such transformations are: automatic differentiation
(grad), vectorization on a single device (vmap), parallelization across multiple devices (pmap),
and just-in-time compilation (jit). To see an example of this see Appendix D, which shows that
the grad function ingests a function and returns a new, transformed function that computes its
gradient. This is emblematic of JAX’s functional design; all transformations take functions and
return transformed functions. These function transformations are arbitrarily composable so one can
write e.g. jit (vmap (grad(f))) to just-in-time compile a function that computes per example
gradients of a function f. As discussed above, JAX makes heavy use of the accelerated linear algebra
library, XLLA, which allows compiled functions to be run in a single call on CPU, GPU, or TPU. This
effectively removes execution speed issues that generally face Python programs.

JAX MD adopts a similarly functional style with immutable data and first-class functions. In a
further departure from most other MD software, JAX MD features no classes or object hierarchies
and instead uses a data driven approach that involves transforming arrays of data. JAX MD often
uses named tuples to organize collections of arrays. This functional and data-oriented approach

Under review as a conference paper at ICLR 2020

complements JAX’s style and makes it easy to apply the range of function transformations that JAX
provides. JAX MD makes extensive use of automatic differentiation and automatic vectorization to
concisely express ideas (e.g. force as the negative gradient of energy) that are challenging in more
conventional libraries. Since JAX MD leverages XLA to compile whole simulations to single GPU
calls, it can be entirely written in Python while still being extremely fast. Together this means that
implementing simulations in JAX MD looks almost verbatim like textbook descriptions of the subject.
We now go through the major systems underlying JAX MD.

4.1 SPACES

In MD we simulate a collection of IV particles in either two- or three-dimensions. In the simplest
case, these particles are defined by a collection of position vectors, {7; }1<;<n. Some simulations are
performed with 7 € RP where D = 2, 3 is the spatial dimension of the system; this is implemented
in JAX MD using the space.free () function. However, as discussed in Section 3, it is more
common to use periodic boundary conditions in which case 7 € R” with the association that 7; =
73+ Léy, for basis vectors e and some “box size” L. In this case the simulation space is homeomorphic
to a D-torus; this is implemented in JAX MD using the space.periodic (box_size) function.

These boundary conditions can be implemented by defining two functions. First, a function d:
RP x RP — RP that computes the displacement between two particles. This function can in turn be
used to define a metric on the space d : RP x RP — R by d(@, b) = |d(a, b)|2. Note, that in systems
with periodic boundary conditions d computes the displacement between a particle and the nearest
“image” of the second particle. Second, a shift function i : RP x R” — R must be defined that
moves a particle by a shift. Motivated by this, in JAX MD we implement the spaces outlined above
by functions that return a “displacement” and “shift” functions. We show an example below.

import jax.numpy as np
from jax_md import space
r_1 = np.array([0.5, 0, 0])
r_2 = np.array ([0, 0.5, 0])

displacement, shift = space.periodic(l.)
dR = displacement (r_1, r_2, t=0.1)

4.2 ENERGY AND FORCES

As discussed above, MD simulations often proceed by defining a potential energy function, U ({7 }),
between particles. The degree to which U ({7;}) approximates reality has a significant influence of
the fidelity of the simulation. For this reason, approximating potential energy functions has received
significant attention from the ML community. JAX MD allows potential energy functions to be
arbitrary “JAX traceable® functions, £ : RV*P — R, including arbitrary neural networks.

JAX MD provides a number of predefined, common, choices of energy functions including several
pair potentials - Lennard-Jones, soft-sphere, and Morse - as well as the Embedded Atom (

,) many-body potential and soft-spring bonds. Functions to compute the energy
of a system are constructed by providing a displacement function for example, energy_fun =
energy.soft_sphere_pair (displacement). Forces can easily be computed using a helper
function quantity.force (energy_fun) which is a thin wrapper around grad. In addition to
the pre-defined energy functions, it is easy to add new potential energy functions to JAX MD.
In Section 5.2 we show how to add a neural network many-body potential called the Behler-
Perrinello (,). In sec. B we describe some additional tools provided by JAX MD
to easily define custom energy functions.

In many applications, the scalar function u(r) has compact support such that u(r) = 0 if r > r,
for some cutoff, 7. € R. We say that particles are not interacting if r;; > r.. The pairwise
function defined in Eq. (4) is wasteful in this case since the number of computations scales as
O(N?) even though the total number of interactions scales as O(V). To improve calculations in this
case we provide the function cell_list_fun = smap.cell_list (fun, box_size, r_c,

Under review as a conference paper at ICLR 2020

example_positions) that takes a function and returns a new function that uses spatial partitioning
to provide a speed up.

4.3 DYNAMICS AND SIMULATIONS

Once an energy function has been defined, there are a number of simulations that can be run. JAX
MD supports simple constant energy (NVE) simulation as well as Nose-Hoover (,

), Langevin, and Brownian simulations at constant temperature (NVT). JAX MD also supports
Fast Inertial Relaxation Engine (Fire) Descent (R) and Gradient Descent to minimize
the energy of systems. All simulations in JAX MD follow a pattern that is inspired by JAX’s
optimizers; for simplicity, we will use Brownian motion as an example in this section. Simulations
are pairs of two functions: an initialization function, state = init_fun (key, positions),that
takes particle positions and returns an initial simulation state and an update function, state =
update_fun (state), that takes a state and applies a single update step to the state. To see an
example of this in the case of Brownian motion, see code from the warm-up in sec. A. Simulation
functions can also feature time-dependent temperatures or spaces in which case a time parameter can
be passed to the update function, state = update_fun (state, t=t).

5 THREE VIGNETTES

5.1 VECTORIZED GENERATION OF ENSEMBLES

Increases in computing power are increasingly due to device parallelism rather compute speed.
Indeed GPUs are designed to process significant amounts of data in parallel and TPUs move futher
in this direction by offering high speed interconnects between chips. This parallelism is often used
to simulate ever larger systems. However, there are other interesting uses of parallelism that have
received less attention. Many of these methods (e.g. replica exchange MCMC sampling (

,) or nudged elastic band (,)) involve simulating an ensemble of
states simultaneously.

Thanks to JAX, ensembling can be done automatically in JAX MD. For small systems, the amount of
necessary compute can be sub-linear in the number of replicas since it can otherwise be difficult to
saturate the parallelism of accelerators. Here we go through an example where we use automatic en-
sembling to quickly compute statistics of a simulation. Suppose we have a function simulate (key)
that simulates a single system given a random key and returns its final positions using code similar to
Section 3. As discussed in Section 4 JAX includes the function vmap that automatically vectorizes
computations. Here to run an ensemble of simulations we simply define,

vectorized_simulation = vmap (simulation)

Fig. 1 (a) shows some example simulations of small, 32-particle systems that were performed in
parallel on a single GPU. These simulations are too small to saturate the compute on a single GPU
and Fig 1 (b) shows that the time-per-simulation decreases with the number of simulations being
performed in parallel. This scaling continues until a batch size of about 100 when the GPU compute
becomes saturated.

5.2 EASY MACHINE LEARNED POTENTIALS

Historically energy functions were often derived by hand based on coarse heuristics and scarce
experimental results were used to fit parameters. More recently, energy functions with a larger
number of fitting parameters (e.g. ReaxFF (,)) have become popular due to
their ability to accurately describe certain systems. However, these methods traditionally involve
significant expert knowledge and fail for systems that deviate too much from those that they were
designed for. A natural progression of this trend is to use neural networks and large datasets to learn
energy functions. There were a number of early efforts that received mixed success; however, it
was not until 2007 when Behler and Parrinello (,) published their general
purpose neural network architecture that learned energy functions emerged as a viable alternative to
traditional approaches.

Under review as a conference paper at ICLR 2020

10t
c b
©
+ .
g 10° o
e .
n .
S 10t .
S .
& NS
® o
1072
10° 10t 102

Vectorization Size

Figure 1: On the left are 6 of the configurations produced by the vectorized simulation function. On
the right is the time-per-simulation using the vmap functionality of JAX.

Since then large amounts of work has been done on this topic, however the substantial progress
in machine learned potentials has not seen as much use as might be expected. At the root of this
discrepancy are two points of friction at the intersection of ML and MD that prevent rapid prototyping
and deployment of learned energies. First, simulation code and machine learning code are written
in different languages. Second, due to the lack of automatic differentiation in molecular dynamics
packages, including neural network potentials in physics simulations can require substantial work
which often prohibits easy experimentation (see Eq. 3 below).

To address these issues, several projects developed adapters (; ,

,) between common ML languages, like Torch and Tensorflow,
and common MD languages like LAMMPS. However, these solutions require researchers to be
working in exactly the regime serviced by the adapter. One of the consequences of this is that the
atomistic features which get fed into the neural network need to be differentiated by hand within the
MD package to compute forces. Trying out a new set of features can easily take weeks or months of
work to compute and implement these derivatives.

As an example, we will fit a neural network to the bubble potential defined in Eq. (1) and see
how JAX MD gets around these issues easily. The Behler-Parrinello architecture describes the
total energy of the system as a sum over individual contributions from per-atom neural networks,
U({7:}) = >2; E(0; G;({73})) where f(6;) is a fully-connected neural network with parameters
¢ and G;({r;}) are hand-designed, many-body, features for a particle j. While many choices of
features exist, one simple set are given by the local pair correlation function, g;(p) = >_; (ri; — p),
which measures the the density of particles a distance p from a central particle. The Behler-Parrinello
architecture can be described and initialized in two lines of python.

init_fun, E = stax.serial(
stax.Dense (no_hidden_units), stax.Relu, # hidden layer 1
stax.Dense (no_hidden_units), stax.Relu, # hidden layer 2
stax.Dense (1)) # readout
_, params = init_fun(key, (-1, number_of_features))
stax is JAX’s native neural network library. It is also easy to define the

Behler-Parrinello loss using vmap and the JAX MD function pair_corr_fun =
quantity.pair_correlation (displacement) as shown below.

g = quantity.pair_correlation (displacement)
U lambda params, positions: np.sum(E (params, g(positions))) # Eqg. 4.

def per_example_loss (params, positions):
return (U(params, positions) - energy_fun(positions)) xx2

def loss(params, batch_positions):

Under review as a conference paper at ICLR 2020

return np.mean (vmap (per_example_loss, in_axis=(None, 0)) (params,
batch_positions))

per_example_loss defines the MSE loss on a single state (atomic configuration) and loss is the
total loss over a minibatch of states. We see a comparison between the learned energies and ground
truth energies after training the above architecture for 20 seconds on 800 example states in Fig 5.2

(a).

3.00 - 25 b

> "

fokly) 75 ‘(, 20

8 o,/o.' 6

> 2.50 8 15

et . : O

©2.25 10

8 e %

& 2.00 L'."' 5 I
1.75 0 -- -~ - = —uiiiEE

2.00 2.25 2.50 2.75 3.00 0.5 0.6 0.7 0.8 0.9
Correct energy cosB

Figure 2: Left panel shows the agreement between predicted energies and the correct energies of the
bubble rafts in the test set. Right panel shows the distribution of the inner product between the correct
force and the predicted force.

We now compute forces with JAX MD and consider how this would be implemented in a standard
MD package. Recall that F; = —97 U ({F;}), where U is the potential energy of the system defined

in eq (5.2). Thus,) j
F=-Y" dE(9; G;({73})) dG;({Ti})

G,y dr ®)

using the chain rule. Since dE/dG, is the gradient of a neural network it is easy get in most neural
network packages and feed into MD. However, traditionally dG; /dr; is a pain point and has to be
coded up by hand. In JAX, MD, we get dG; /dr; for free without any extra work using JAX’s grad
function as grad (lambda params, r: -E(params, g(r)), argnums=1)

This energy function and force can now be used in any JAX MD simulation. In Fig. 2 (b) we see a
comparison between the predictions of this network after 20 seconds of training on states generated in
JAX MD. Despite the small amounts of compute involved, we see reasonable agreement for energies
and forces between the machine-learned potential and the real potential.

5.3 OPTIMIZATION THROUGH DYNAMICS

So far we have demonstrated how JAX MD can make common workloads easier. However, combining
molecular dynamics with automatic differentiation opens the door for qualitatively new research.
One such avenue involves differentiating through the simulation trajectory to optimize physical
parameters. There have been several excellent applications so far in e.g. protein folding (,

; ,), but until now this has involved significant amounts of specialized
code. This vein of research is also similar to recent work in machine learning on meta-optimization

(b ; b)'

We revisit the bubble raft example above. In this case, we will control the structure of the bubble raft
by differentiating through the simulation. As we saw in Section 3, bubble rafts form a hexagonal
structure when all of the bubbles have the same size. However, when the bubbles have different sizes
the situation can change considerably. To experiment with these changes, we’re going to set up a
simulation of a bubble raft with bubbles of two distinct sizes. To keep things simple, we’ll let half of
the bubbles have diameter 1 and half have diameter D. To control the conditions of the experiment, we
will keep the total volume of the bubbles constant (see appendix C. Unlike the previous simulations,

Under review as a conference paper at ICLR 2020

— b
a o
2
Wy
g
-1
04 05 06 07 08 09 10
D
0.6 c
Wos
0.4
04 05 06 07 08 09 10
D

Figure 3: Panel a shows the average energy and the standard deviation of the energy at D. Panel b
shows the derivative we calculate by differentiating through energy optimization by gradient descent
as a function of D.

we will minimize the energy of the system using a function simulate (diameter, key) that
returns the energy of a system given a diameter and a random key. Using vmap we can vectorize the
simulation to compute the statistics for an ensemble of states at different diameters in parallel on the
GPU.

Some example states at different diameters along with the energy as a function of diameter can be
found in Fig 3. We see that the hexagonal structure breaks down in the two-species case. Moreover,
we see that there is a “most disordered” point when D = 0.8, which can be seen as the highest
energy point in Fig. 3(a). The study of such disordered systems is often referred to as the study of
“Jammed (s)” solids. However, this was a somewhat brute-force way to investigate
the role of size-disparity in the structure of bubble rafts. Could we have seen the same result
more directly? Since each energy calculation is a result of a differentiable simulation, we can
differentiate through the minimization with respect to D. This would allow us to find extrema of the
minimized-energy as a function of diameter using first-order optimization methods. This could be
implemented in JAX MD as, dE_dD_fun = grad(simulate). Of course the dE_dD_fun function
can be vectorized to aggregate statistics from an ensemble.

The gradient is plotted in Fig. 3 (b). We see that the gradient is positive and constant for D < 0.8
corresponding to the linear increase in the average energy. Moreover, we see that the derivative
crosses zero exactly at the maximum average energy. Finally, we observe that the gradient goes back
to zero at D = 1. This suggests that D = 0.8 is the point of maximum disorder, as we found by
brute force above. It also shows that D = 1 is the minimum energy configuration of the diameter.
Although we hadn’t hypothesized it, we realize this must be true since D < 1 states are symmetric
with D > 1 as we keep the total packing fraction constant.

6 CONCLUSION

We have described recent work on a general purpose differentiable molecular dynamics physics
package, JAX MD and demonstrated several instances where it simplifies the research process and
enables new avenues of work. There is significant future work ahead. First, many of these research
avenues are novel and must be investigated to see what the limitations and opportunities are. Second,
JAX MD is still lacking a range of features that we continue to implement. However, we have been
doing so to support the needs of researchers working with JAX MD. Please let us know if there are
features that you would find interesting. We are always seeking contributions!

Under review as a conference paper at ICLR 2020

REFERENCES

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for
large-scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), pp. 265-283, 2016.

Mohammed AlQuraishi. End-to-end differentiable learning of protein structure. Cell systems, 8(4):
292-301, 2019.

Joshua A Anderson, Chris D Lorenz, and Alex Travesset. General purpose molecular dynamics
simulations fully implemented on graphics processing units. Journal of computational physics,
227(10):5342-5359, 2008.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. In Advances in neural information processing systems, pp. 3981-3989, 2016.

Nongnuch Artrith and Jorg Behler. High-dimensional neural network potentials for metal surfaces: A
prototype study for copper. Physical Review B, 85(4):045439, 2012.

Nongnuch Artrith and Alexander Urban. An implementation of artificial neural-network potentials
for atomistic materials simulations: Performance for tio2. Computational Materials Science, 114:
135-150, 2016.

Nongnuch Artrith, Tobias Morawietz, and Jorg Behler. High-dimensional neural-network potentials
for multicomponent systems: Applications to zinc oxide. Physical Review B, 83(15):153101, 2011.

Nongnuch Artrith, Alexander Urban, and Gerbrand Ceder. Efficient and accurate machine-learning
interpolation of atomic energies in compositions with many species. Physical Review B, 96(1):
014112, 2017.

Nongnuch Artrith, Alexander Urban, and Gerbrand Ceder. Constructing first-principles phase
diagrams of amorphous li x si using machine-learning-assisted sampling with an evolutionary
algorithm. The Journal of chemical physics, 148(24):241711, 2018.

Albert P Bart6k, James Kermode, Noam Bernstein, and Gabor Csanyi. Machine learning a general-
purpose interatomic potential for silicon. Physical Review X, 8(4):041048, 2018.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, lan Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, David Warde-Farley, and Yoshua Bengio. Theano: new features and speed
improvements. arXiv preprint arXiv:1211.5590, 2012.

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. Journal of machine learning research, 18
(153), 2018.

Jorg Behler. Atom-centered symmetry functions for constructing high-dimensional neural network
potentials. The Journal of chemical physics, 134(7):074106, 2011.

Jorg Behler and Michele Parrinello. Generalized neural-network representation of high-dimensional
potential-energy surfaces. Physical review letters, 98(14):146401, 2007.

Christian H Bischof, H Martin Biicker, Arno Rasch, Emil Slusanschi, and Bruno Lang. Automatic
differentiation of the general-purpose computational fluid dynamics package fluent. Journal of
fluids engineering, 129(5):652-658, 2007.

Erik Bitzek, Pekka Koskinen, Franz Gihler, Michael Moseler, and Peter Gumbsch. Structural
relaxation made simple. Physical review letters, 97(17):170201, 2006.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, and Skye Wanderman-Milne. JAX: composable transformations of Python+NumPy programs,
2018. URL http://github.com/google/ jax.

http://github.com/google/jax

Under review as a conference paper at ICLR 2020

Luca Capriotti. Fast greeks by algorithmic differentiation. Available at SSRN 1619626, 2010.

Richard Car and Mark Parrinello. Unified approach for molecular dynamics and density-functional
theory. Physical review letters, 55(22):2471, 1985.

Gregory R Carmichael, Adrian Sandu, et al. Sensitivity analysis for atmospheric chemistry models
via automatic differentiation. Atmospheric Environment, 31(3):475-489, 1997.

Isabelle Charpentier and Mohammed Ghemires. Efficient adjoint derivatives: application to the
meteorological model meso-nh. Optimization Methods and Software, 13(1):35-63, 2000.

Stewart J Clark, Matthew D Segall, Chris J Pickard, Phil] Hasnip, Matt 1J Probert, Keith Refson, and
Mike C Payne. First principles methods using castep. Zeitschrift fiir Kristallographie-Crystalline
Materials, 220(5/6):567-570, 2005.

Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. Torch: a modular machine learning software
library. Technical report, Idiap, 2002.

Ekin D Cubuk, Samuel Stern Schoenholz, Jennifer M Rieser, Brad Dean Malone, Joerg Rottler,
Douglas J Durian, Efthimios Kaxiras, and Andrea J Liu. Identifying structural flow defects in
disordered solids using machine-learning methods. Physical review letters, 114(10):108001, 2015.

Ekin D Cubuk, Samuel S Schoenholz, Efthimios Kaxiras, and Andrea J Liu. Structural properties of
defects in glassy liquids. The Journal of Physical Chemistry B, 120(26):6139-6146, 2016.

Ekin D Cubuk, Brad D Malone, Berk Onat, Amos Waterland, and Efthimios Kaxiras. Representations
in neural network based empirical potentials. The Journal of chemical physics, 147(2):024104,
2017a.

Ekin Dogus Cubuk, RJS Ivancic, Samuel S Schoenholz, DJ Strickland, Anindita Basu, ZS Davidson,
Julien Fontaine, Jyo Lyn Hor, Y-R Huang, Y Jiang, et al. Structure-property relationships from
universal signatures of plasticity in disordered solids. Science, 358(6366):1033—-1037, 2017b.

Murray S Daw and Michael I Baskes. Embedded-atom method: Derivation and application to
impurities, surfaces, and other defects in metals. Physical Review B, 29(12):6443, 1984.

Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J Zico Kolter.
End-to-end differentiable physics for learning and control. In Advances in Neural Information
Processing Systems, pp. 7178-7189, 2018.

Volker L Deringer, Noam Bernstein, Albert P Bartok, Matthew J Cliffe, Rachel N Kerber, Lauren E
Marbella, Clare P Grey, Stephen R Elliott, and Gdbor Csanyi. Realistic atomistic structure of
amorphous silicon from machine-learning-driven molecular dynamics. The journal of physical
chemistry letters, 9(11):2879-2885, 2018a.

Volker L Deringer, Miguel A Caro, Richard Jana, Anja Aarva, Stephen R Elliott, Tomi Laurila, Gibor
Csanyi, and Lars Pastewka. Computational surface chemistry of tetrahedral amorphous carbon
by combining machine learning and density functional theory. Chemistry of Materials, 30(21):
74387445, 2018b.

Peter Eastman, Jason Swails, John D Chodera, Robert T McGibbon, Yutong Zhao, Kyle A Beauchamp,
Lee-Ping Wang, Andrew C Simmonett, Matthew P Harrigan, Chaya D Stern, et al. Openmm 7:
Rapid development of high performance algorithms for molecular dynamics. PLoS computational
biology, 13(7):e1005659, 2017.

Albert Einstein. On the motion of small particles suspended in liquids at rest required by the
molecular-kinetic theory of heat. Annalen der physik, 17:549-560, 1905.

J e Enkovaara, Carsten Rostgaard, J Jgrgen Mortensen, Jingzhe Chen, M Dutak, Lara Ferrighi, Jeppe
Gavnholt, Christian Glinsvad, V Haikola, HA Hansen, et al. Electronic structure calculations with
gpaw: a real-space implementation of the projector augmented-wave method. Journal of Physics:
Condensed Matter, 22(25):253202, 2010.

10

Under review as a conference paper at ICLR 2020

Felix A Faber, Luke Hutchison, Bing Huang, Justin Gilmer, Samuel S Schoenholz, George E Dahl,
Oriol Vinyals, Steven Kearnes, Patrick F Riley, and O Anatole Von Lilienfeld. Prediction errors of
molecular machine learning models lower than hybrid dft error. Journal of chemical theory and
computation, 13(11):5255-5264, 2017.

Roy Frostig, Matthew James Johnson, and Chris Leary. Compiling machine learning programs via
high-level tracing, 2018.

Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car, Carlo Cavazzoni,
Davide Ceresoli, Guido L Chiarotti, Matteo Cococcioni, Ismaila Dabo, et al. Quantum espresso:
a modular and open-source software project for quantum simulations of materials. Journal of
physics: Condensed matter, 21(39):395502, 2009.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 1263-1272. JMLR. org, 2017.

Jens Glaser, Trung Dac Nguyen, Joshua A Anderson, Pak Lui, Filippo Spiga, Jaime A Millan,
David C Morse, and Sharon C Glotzer. Strong scaling of general-purpose molecular dynamics
simulations on gpus. Computer Physics Communications, 192:97-107, 2015.

Jirgen Hafner. Ab-initio simulations of materials using vasp: Density-functional theory and beyond.
Journal of computational chemistry, 29(13):2044-2078, 2008.

Paul Z Hanakata, Ekin D Cubuk, David K Campbell, and Harold S Park. Accelerated search and
design of stretchable graphene kirigami using machine learning. Physical review letters, 121(25):
255304, 2018.

Graeme Henkelman, Blas P Uberuaga, and Hannes Jénsson. A climbing image nudged elastic band
method for finding saddle points and minimum energy paths. The Journal of chemical physics,
113(22):9901-9904, 2000.

Stephan Hoyer, Jascha Sohl-Dickstein, and Sam Greydanus. Neural reparameterization improves
structural optimization. arXiv preprint arXiv:1909.04240, 2019.

John Ingraham, Adam Riesselman, Chris Sander, and Debora Marks. Learning protein structure with
a differentiable simulator. 2018.

Mike Innes, Alan Edelman, Keno Fischer, Chris Rackauckus, Elliot Saba, Viral B Shah, and Will
Tebbutt. Zygote: A differentiable programming system to bridge machine learning and scientific
computing. arXiv preprint arXiv:1907.07587, 2019.

Ask Hjorth Larsen, Jens Jgrgen Mortensen, Jakob Blomgvist, Ivano E Castelli, Rune Christensen,
Marcin Dutak, Jesper Friis, Michael N Groves, Bjgrk Hammer, Cory Hargus, et al. The atomic
simulation environment—a python library for working with atoms. Journal of Physics: Condensed
Matter, 29(27):273002, 2017.

Ruggero Lot, Franco Pellegrini, Yusuf Shaidu, and Emine Kucukbenli. Panna: Properties from
artificial neural network architectures. arXiv preprint arXiv:1907.03055, 2019.

Xiaoguang Ma, Zoey S Davidson, Tim Still, Robert JS Ivancic, SS Schoenholz, AJ Liu, and AG Yodh.
Heterogeneous activation, local structure, and softness in supercooled colloidal liquids. Physical
review letters, 122(2):028001, 2019.

Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Autograd: Effortless gradients in numpy.
In ICML 2015 AutoML Workshop, volume 238, 2015.

Glenn J Martyna, Michael L Klein, and Mark Tuckerman. Nosé-hoover chains: The canonical
ensemble via continuous dynamics. The Journal of chemical physics, 97(4):2635-2643, 1992.

Luke Metz, Niru Maheswaranathan, Brian Cheung, and Jascha Sohl-Dickstein. Meta-learning update
rules for unsupervised representation learning. arXiv preprint arXiv:1804.00222, 2018.

11

Under review as a conference paper at ICLR 2020

J-D Miiller and P Cusdin. On the performance of discrete adjoint cfd codes using automatic
differentiation. International journal for numerical methods in fluids, 47(8-9):939-945, 2005.

Berk Onat, Ekin D Cubuk, Brad D Malone, and Efthimios Kaxiras. Implanted neural network
potentials: Application to li-si alloys. Physical Review B, 97(9):094106, 2018.

Corey S O’hern, Leonardo E Silbert, Andrea J Liu, and Sidney R Nagel. Jamming at zero temperature
and zero applied stress: The epitome of disorder. Physical Review E, 68(1):011306, 2003.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of computa-
tional physics, 117(1):1-19, 1995.

Pankaj Rajak, Rajiv K Kalia, Aiichiro Nakano, and Priya Vashishta. Neural network analysis of
dynamic fracture in a layered material. MRS Advances, 4(19):1109-1117, 2019a.

Pankaj Rajak, Aravind Krishnamoorthy, Aiichiro Nakano, Priya Vashishta, and Rajiv Kalia. Structural
phase transitions in a mowse 2 monolayer: Molecular dynamics simulations and variational
autoencoder analysis. Physical Review B, 100(1):014108, 2019b.

Samuel S Schoenholz. Combining machine learning and physics to understand glassy systems. In
Journal of Physics: Conference Series, volume 1036, pp. 012021. IOP Publishing, 2018.

Samuel S Schoenholz, Ekin D Cubuk, Daniel M Sussman, Efthimios Kaxiras, and Andrea J Liu. A
structural approach to relaxation in glassy liquids. Nature Physics, 12(5):469, 2016.

Samuel S Schoenholz, Ekin D Cubuk, Efthimios Kaxiras, and Andrea J Liu. Relationship between
local structure and relaxation in out-of-equilibrium glassy systems. Proceedings of the National
Academy of Sciences, 114(2):263-267, 2017.

Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran. Evaluating
analytic gradients on quantum hardware. Physical Review A, 99(3):032331, 2019.

Atsuto Seko, Akira Takahashi, and Isao Tanaka. First-principles interatomic potentials for ten
elemental metals via compressed sensing. Physical Review B, 92(5):054113, 2015.

Austin D Sendek, Ekin D Cubuk, Evan R Antoniuk, Gowoon Cheon, Yi Cui, and Evan J Reed.
Machine learning-assisted discovery of solid li-ion conducting materials. Chemistry of Materials,
31(2):342-352, 2018.

Tristan A Sharp, Spencer L Thomas, Ekin D Cubuk, Samuel S Schoenholz, David J Srolovitz,
and Andrea J Liu. Machine learning determination of atomic dynamics at grain boundaries.
Proceedings of the National Academy of Sciences, 115(43):10943—-10947, 2018.

José M Soler, Emilio Artacho, Julian D Gale, Alberto Garcia, Javier Junquera, Pablo Ordejon, and
Daniel Sanchez-Portal. The siesta method for ab initio order-n materials simulation. Journal of
Physics: Condensed Matter, 14(11):2745, 2002.

Qiming Sun, Timothy C Berkelbach, Nick S Blunt, George H Booth, Sheng Guo, Zhendong Li, Junzi
Liu, James D McClain, Elvira R Sayfutyarova, Sandeep Sharma, et al. Pyscf: the python-based
simulations of chemistry framework. Wiley Interdisciplinary Reviews: Computational Molecular
Science, 8(1):¢1340, 2018.

Daniel M Sussman, Samuel S Schoenholz, Ekin D Cubuk, and Andrea J Liu. Disconnecting structure
and dynamics in glassy thin films. Proceedings of the National Academy of Sciences, 114(40):
10601-10605, 2017.

Robert H Swendsen and Jian-Sheng Wang. Replica monte carlo simulation of spin-glasses. Physical
review letters, 57(21):2607, 1986.

12

Under review as a conference paper at ICLR 2020

Teresa Tamayo-Mendoza, Christoph Kreisbeck, Roland Lindh, and Aldn Aspuru-Guzik. Automatic
differentiation in quantum chemistry with applications to fully variational hartree—fock. ACS
central science, 4(5):559-566, 2018.

Jeffrey P Thomas, Earl H Dowell, and Kenneth C Hall. Using automatic differentiation to create a
nonlinear reduced-order-model aerodynamic solver. AIAA journal, 48(1):19-24, 2010.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a next-generation open
source framework for deep learning. In Proceedings of workshop on machine learning systems

(LearningSys) in the twenty-ninth annual conference on neural information processing systems
(NIPS), volume 5, pp. 1-6, 2015.

Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure for efficient
numerical computation. Computing in Science & Engineering, 13(2):22, 2011.

Adri CT Van Duin, Siddharth Dasgupta, Francois Lorant, and William A Goddard. Reaxff: a reactive
force field for hydrocarbons. The Journal of Physical Chemistry A, 105(41):9396-9409, 2001.

Andrea Walther. Automatic differentiation of explicit runge-kutta methods for optimal control.
Computational Optimization and Applications, 36(1):83-108, 2007.

Qian Yang, Carlos A Sing-Long, and Evan J Reed. Learning reduced kinetic monte carlo models of
complex chemistry from molecular dynamics. Chemical science, 8(8):5781-5796, 2017.

Kun Yao, John E Herr, David W Toth, Ryker Mckintyre, and John Parkhill. The tensormol-0.1
model chemistry: A neural network augmented with long-range physics. Chemical science, 9(8):
2261-2269, 2018.

A BUBBLE RAFT EXAMPLE CODE

Listing 1: A simulation function that takes a random key and returns final particle positions.

N = 32

dt = le-1

temperature = 0.1
simulation_steps = np.arange (1000)

key = random.PRNGKey (0)

box_size = box_size_at_number_density (particle_count=N, number_density=1)
displacement, shift = space.periodic(box_size)

energy_fun = energy.soft_sphere_pair (displacement)

def simulation (key) :
pos_key, sim_key = random.split (key)

R = random.uniform(pos_key, (N, 2), maxval=box_size)
init_fn, apply_fn = simulate.brownian (
energy_fun, shift, dt, temperature)

state = init_fn(sim_key, R)

do_step = lambda state, t: (apply_fn(state, t=t), t)
state, _ = lax.scan(do_step, state, simulation_steps)

return state.position

positions = simulation (key)

13

Under review as a conference paper at ICLR 2020

Figure 4: An experiment of a bubble raft compared with the results of a simulation.

B DEFINING CUSTOM POTENTIALS

Many popular potential energy functions are either pairwise or bonded in the sense that

Upair({":’i}) = Z U(Tij) or Ubond({":’i}) = Z u(rbubiz) “)

1<i<j<N 1<i<B

where 7;; is the distance between particles ¢ and j and {b;,}1<i<p indexes a bond be-
tween particles b;; and b;; for a total of B bonds. In this case, we offer the functions
energy_fun = smap.pair(scalar_energy_fun, displacement_fun) and energy_fun
= smap.bond(scalar_energy_fun, displacement_fun) that will convert a scalar function,
u(r), to the either pair-potential defined in Eq. (4). An example of this is shown below.

from jax_md import smap

scalar_energy_fun = lambda r, #**kwargs: r *x 2
metric_fun = space.metric(displacement_fun)
pair_energy_fun = smap.pair(scalar_energy_fun, metric_fun)

E_pair = pair_energy_fun(positions)

bonds = np.array([[0, 1]11])
bond_energy_fun = smap.bond(scalar_energy_fun, metric_fun, bonds)
E_bond = bond_energy_fun (positions)

The difference between these two functions amounts to the choice of whether to use dpair Or dpond
defined above. The two-line examples above and in Section 5.2 should be contrasted with the
significant undertaking that would be required to implement these features in traditional MD packages.

C OPTIMIZATION THROUGH DYNAMICS

If there are [N bubbles then the total volume of water filled by bubbles is,

N
Vbubbles = §7T(D2 +1)

where the factor of 8 comes from the fact that our system is split into two halves and we are using
diameters not radii. Since the volume of our simulation is V' = L? if we want to keep the “packing

fraction”, ¢ = Viubbles/V constant then we will have to scale the size of the box to be, L = ,/ %

14

Under review as a conference paper at ICLR 2020

D EXAMPLE JAXPR AND ITS GRADIENT

Listing 2: Python Listing 3: Jaxpr
3 def f(x): { lambda ; ; a.
f($):$ return x ** 3 let b = pow a 3.0
print (£(2.0)) # 8.0 in [b] }
Listing 4: Python Listing 5: Jaxpr
from jax.api import grad { lambda ; ; a.
df 9 df_dx = grad(f) let b = pow a 2.0
%ZSm print (df_dx(2.0)) # 12.0 c =mul 3.0 b
d = safe_mul 1.0 ¢
in [d] }

E FURTHER RELATED WORK

General MD packages have been widely used to simulate molecules and solids, either using first-
principles potentials (using software packages that derive the potential from quantum mechanics (Car
& Parrinello, 1985) e.g. Quantum Espresso (Giannozzi et al., 2009), VASP (Hafner, 2008), SIESTA
(Soler et al., 2002), GPAW (Enkovaara et al., 2010), CASTEP (Clark et al., 2005), PySCF (Sun
et al,, 2018)) or with empirical potentials (using approximate potentials that descrive specific atomic
interactions e.g. LAMMPS (Plimpton, 1995), HOOMD-Blue (Anderson et al., 2008; Glaser et al.,
2015), and OpenMM (Eastman et al., 2017)). HOOMD-Blue in particular has been built with GPU
acceleration in mind from the beginning, with the ability to script MD experiments using Python.

Coupled with the growing interest in deep learning, machine learning (ML) has become a popular
tool for analyzing data that is produced by MD (Cubuk et al., 2015; Schoenholz et al., 2016; Cubuk
et al., 2016; Schoenholz et al., 2017; Cubuk et al., 2017b; Schoenholz, 2018; Rajak et al., 2019b;a;
Sharp et al., 2018; Sussman et al., 2017; Hanakata et al., 2018; Sendek et al., 2018; Yang et al., 2017;
Ma et al., 2019), as well as making MD simulations faster and more accurate (Behler & Parrinello,
2007; Behler, 2011; Artrith et al., 2011; Artrith & Behler, 2012; Artrith et al., 2018; Deringer et al.,
2018a; Bartok et al., 2018; Yao et al., 2018; Seko et al., 2015; Deringer et al., 2018b; Cubuk et al.,
2017a; Faber et al., 2017; Gilmer et al., 2017).

15

	Introduction
	Related Work
	Warm-up: Simulating a bubble raft
	Architecture
	Spaces
	Energy and Forces
	Dynamics and Simulations

	Three Vignettes
	Vectorized Generation of Ensembles
	Easy Machine Learned Potentials
	Optimization Through Dynamics

	Conclusion
	Bubble Raft Example Code
	Defining Custom Potentials
	Optimization Through Dynamics
	Example Jaxpr and its gradient
	Further related work

