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ABSTRACT

The goal of this paper is to study why typical neural networks train so fast, and
how neural network architecture affects the speed of training. We introduce a
simple concept called gradient confusion to help formally analyze this. When
confusion is high, stochastic gradients produced by different data samples may be
negatively correlated, slowing down convergence. But when gradient confusion is
low, data samples interact harmoniously, and training proceeds quickly. Through
novel theoretical and experimental results, we show how the neural net architecture
affects gradient confusion, and thus the efficiency of training. We show that
increasing the width of neural networks leads to lower gradient confusion, and thus
easier model training. On the other hand, increasing the depth of neural networks
has the opposite effect. Finally, we observe empirically that techniques like batch
normalization and skip connections reduce gradient confusion, which helps reduce
the training burden of very deep networks.

1 INTRODUCTION

Stochastic gradient descent (SGD) (Robbins & Monro, 1951) and its variants with momentum
(Sutskever et al., 2013) have become the standard optimization routine for neural networks due to
their fast convergence and good generalization properties (Wilson et al., 2017; Keskar & Socher, 2017;
Sutskever et al., 2013). Yet the behavior of SGD on high-dimensional neural network models still
eludes full theoretical understanding, both in terms of its convergence and generalization properties.
In this paper, we study why SGD is so efficient at converging to low loss values on most standard
neural networks, and how neural net architecture design affects training performance.

Classical stochastic optimization theory predicts that the learning rate of SGD needs to decrease over
time for convergence to be guaranteed to the minimizer of a convex function (Shamir & Zhang, 2013;
Bertsekas, 2011). For strongly convex functions for example, such results show that a decreasing
learning rate schedule of O(1/k) is required to guarantee convergence to within e-accuracy of the
minimizer in O(1/€) iterations, where k denotes the iteration number. Such decay schemes, however,
typically lead to poor performance on standard neural network problems. Neural networks operate in
a regime where the number of parameters is much larger than the number of training data. In this
regime, SGD seems to converge quickly with constant learning rates. Most neural net practitioners
use a constant learning rate for the majority of training, with exponentially decaying learning rate
schedules at the end, without seeing the method stall (Krizhevsky et al., 2012; Simonyan & Zisserman,
2014; He et al., 2016; Zagoruyko & Komodakis, 2016). With constant learning rates, theoretical
guarantees show that SGD converges quickly to a neighborhood of the minimizer, but then reaches a
noise floor beyond which it stops converging; this noise floor depends on the learning rate and the
variance of the gradients (Moulines & Bach, 2011; Needell et al., 2014). Some more recent results
have shown that when models can fit the data completely while being strongly convex, convergence
without a noise floor is possible without decaying the learning rate (Schmidt & Roux, 2013; Ma et al.,
2017; Bassily et al., 2018; Vaswani et al., 2018).

While these results do give important insights, they do not fully explain the dynamics of SGD on
neural nets, and how they relate to overparameterization. Training performance is also highly affected
by the neural network architecture. It is common knowledge among neural network practitioners that
deeper networks train slower (Bengio et al., 1994; Glorot & Bengio, 2010). This has led to several
innovations over the years to get deeper networks to train more easily, such as careful initialization
strategies (Glorot & Bengio, 2010; He et al., 2015; Zhang et al., 2019), residual connections (He et al.,
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2016), and various normalization schemes like batch normalization (Ioffe & Szegedy, 2015) and
weight normalization (Salimans & Kingma, 2016). Furthermore, there is ample evidence to indicate
that wider networks are easier to train (Zagoruyko & Komodakis, 2016; Nguyen & Hein, 2017; Lee
et al., 2019), and recent theoretical results suggest that the dynamics of SGD simplify considerably
for very wide networks (Jacot et al., 2018; Lee et al., 2019). Several prior works have investigated
the difficulties of training deep networks (Glorot & Bengio, 2010; Balduzzi et al., 2017), and the
benefits of width (Nguyen & Hein, 2017; Lee et al., 2019; Du et al., 2018; Allen-Zhu et al., 2018).
This work advances the existing literature by identifying and analyzing a condition that enables us to
theoretically and empirically establish novel direct relationships between layer width, network depth,
problem dimensionality, and SGD dynamics on overparameterized networks.

Our contributions. Typical neural nets are overparameterized (i.e., the number of parameters
exceed the number of training points). In this paper, we ask how this overparameterization, and more
specifically the architecture of a neural net, affects the dynamics of SGD. We answer this question
through extensive theoretical and experimental studies and show how network width, depth, batch
normalization and skip connections affect the dynamics. We emphasize that our main contributions
are conceptual. In particular, following are our main contributions.’

e We identify a condition, termed gradient confusion, that impacts the convergence properties
of SGD on overparameterized models. We prove that high gradient confusion may lead to
slower convergence, while convergence is accelerated (and could be faster than predicted by
existing theory) if confusion is low indicating a regime where constant learning rates work
well in practice (sections 2 and 3). We use this gradient confusion condition as the main
proxy, to study the effect of various architecture choices on convergence.

e We study the effect of neural net architecture on gradient confusion (section 4), and prove
(a) gradient confusion increases as the network depth increases, and (b) wider networks
have lower gradient confusion. This indicates that deeper networks are more difficult to
train and wider networks become easier to train. Directly analyzing the gradient confusion
bound enables us to derive novel and tight results on the direct effect of depth and width,
without requiring arguably restrictive assumptions like infinitely wide networks (Schoenholz
et al., 2016; Lee et al., 2019). Our results hold for a large family of neural networks with
non-linear activations and a large class of loss-functions.

e We test our theoretical predictions using extensive experiments on wide residual networks
(WRNSs) (Zagoruyko & Komodakis, 2016), convolutional networks (CNNs) and multi-layer
perceptrons (MLPs) for image classification tasks on CIFAR-10, CIFAR-100 and MNIST
(section 5 and appendix A). We find that our theoretical results consistently hold across
all our experiments. We further show that innovations like batch normalization and skip
connections in residual networks help lower gradient confusion, thus indicating why standard
neural networks that employ such techniques are so efficiently trained using SGD.

2 GRADIENT CONFUSION

Notations. We denote vectors in bold lower-case and matrices in bold upper-case. We use (W); ; to
indicate the (7, 7) cell in matrix W and (W); for the i row of matrix W. ||[W || denotes the operator
norm of W. [N] denotes {1,2,..., N} and [N]o denotes {0,1,..., N}.

Preliminaries. Given V training points (specified by the corresponding loss functions { f; }ic[n)
we use SGD to solve empirical risk minimization problems of the form,

mity egs F(W) = mingezs 3 30 fi(w), (M)
using the following iterative update rule for 7" rounds:
W1 = Wi — aV fr(wy). 2

Here « is the learning rate and f}, is a function chosen uniformly at random from {fi}ie|n) atiteration
k € [T]. We use w* to denote the optimal solution, i.e., w* = arg miny, F'(w).

"Due to space constraints, all proofs and several additional experiments are delegated to the appendix.
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Gradient confusion. SGD works by iteratively selecting a random function fr, and modifying the
parameters to move in the direction of the negative gradient of the objective term f&. It may happen
that the selected gradient V fk is negatively correlated with the gradient of another term V f;. When
the gradients of different mini-batches are negatively correlated, the objective terms disagree on
which direction the parameters should move, and we say that there is gradient confusion.?
Definition 2.1. A set of objective functions { fi}ic|n) has gradient confusion bound n > 0 if the
pair-wise inner products between gradients satisfy, for a fixed w € R,

SGD converges fast when gradient confu-
sion is low. To see why, consider the case o o e
of training a logistic regression model on a o e e 0z N=100,d=120

dataset with orthogonal vectors. We have
fi(w) = £(y;x] w), where £ : R — R is
the logistic loss, {x; };c[n is a set of orthog- w0 | — N=100,d=80
onal training vectors, and y; € {—1,1} is e~ NO100.47120

'th . . 0 20000 4(?000 60000 80000 100000 0 20000 49000 ‘60000 80000 100000
the label for the " training example. We iterations iterations
then have Vf;(w) = (;x;, where (; =

' (y; - x,) w). Note that the gradient con- ; C L ; ;

Yit \Yi - X; W). g Figure 1: Linear regression on an over-parameterized
fusion is 0 since (Vfi(w), Vfj(W)) = (4 = 120) and under-parameterized (d = 80) model with
GiGj(xi,x;) = 0,Vi,j € [N]and ¢ # j. N = 100 samples generated randomly from a Gaussian,
Thus, an update in the gradient direction f; trained using SGD with minibatch size 1. Plots are averaged
has no effect on the loss value of f; for4 # j. over 3 independent runs. Gradient cosine similarities were
In this case, SGD decouples into (determinis- calculated over all pairs of gradients.
tic) gradient descent on each objective term
separately, and we can expect to see the fast convergence rates attained by gradient descent.

040 5 g g @8O o - N

gradient norm
5
min grad cosine similarity

Can we expect a problem to have low gradient confusion in practice? From the logistic regression
problem, we have: |(V f;(w), Vf;(w))| = |(xi,%;)| - |¢;¢;|- This inner product is expected to be
small for all w; the logistic loss satisfies |(;(;| < 1, and for fixed N the quantity max;; [(x;,X;)|
is O(1/+/d) whenever {x;} are randomly sampled from a sphere (see lemma B.1 for the formal
statement).” Thus, we would expect a random linear model to have nearly orthogonal gradients, when
the number of parameters is "large" and the number of training data is "small", i.e., when the model is
over-parameterized. This is further evidenced by a toy example in figure 1, where we show a slightly
overparameterized linear regression model can have much faster convergence rates, as well as lower
gradient confusion, compared to the underparameterized model.

Now consider more general neural net problems. There is evidence that the Hessian at the minimizer
is very low rank for many standard overparameterized neural net models (Sagun et al., 2017; Cooper,
2018; Chaudhari et al., 2016; Wu et al., 2017; Ghorbani et al., 2019). What does this imply for the
gradient confusion? For clarity in presentation, suppose each f; has a minimizer at the origin (the
same argument can be easily extended to the more general case). Suppose also that there is a Lipschitz
constant for the Hessian of each function f; that satisfies |H;(w) — H;(w')|| < Lg|w — w’|.
Then V f;(w) = H;w + e, where e is an error term bounded as: ||e| < 1LH||W||2 and we use the
shorthand H; to denote H;(0). Then we have (appendix C):

(Y fi(w), V£ (W) < w1 EG ]+ 5 L [[w | (G| + G ) + L3 [ w ]l

If the Hessians are sufficiently random and low-rank (e.g., of the form H; = aiai where a; € RV*"
are randomly sampled from a unit sphere), then one would expect the terms in this expression to be
small for all w within a neighborhood of the minimizer. This indicates that for many standard neural
network models, the gradient confusion might be low for a large class of weights near the minimizer.

The above arguments are rather informal, and ignore issues like the effect of the structure of neural
networks. In the following sections, we rigorously analyze the effect of gradient confusion on the
speed of convergence on non-convex problems, and the effect of width and depth of the neural net
architecture on the gradient confusion.

This is related to both gradient variance and gradient diversity (Yin et al., 2017), but with important
differences. See appendix sections G and H respectively for more discussion.
3Generally, this is true whenever x; = ﬁ}% where y; is an isotropic random vector (Vershynin, 2018).
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3 SGD 1S EFFICIENT WHEN GRADIENT CONFUSION IS Low

Several prior papers have analyzed the convergence rates of constant learning rate SGD (Nedi¢ &
Bertsekas, 2001; Moulines & Bach, 2011; Needell et al., 2014; Dieuleveut et al., 2017). These results
show that for strongly convex and Lipschitz smooth functions, SGD with a constant learning rate «
converges linearly to a neighborhood of the minimizer. The noise floor it converges to depends on the
learning rate o and the variance of the gradients at the minimizer, i.e., E;||V f;(w*)]||?. To guarantee
convergence to e-accuracy in such a setting, the learning rate needs to be small, i.e., « = O(¢), and
the method requires 7' = O(1/¢) iterations. Some more recent results show convergence of constant
learning rate SGD without a noise floor and without small step sizes for models that can completely
fit the data (Schmidt & Roux, 2013; Ma et al., 2017; Bassily et al., 2018; Vaswani et al., 2018).

The gradient confusion bound is related to these classical results. Cauchy-Swartz inequality implies
that if E; ||V f;(w*)[|? = O(e), then E; ;|(V f;(w*), V f;(w*))| = O(e), Vi, j. Thus the gradient
confusion at the minimizer is small when the variance of the gradients at the minimizer is small.
Further note that when the variance of the gradients at the minimizer is O(e), a direct application of
the results in (Moulines & Bach, 2011; Needell et al., 2014) shows that constant learning rate SGD
has fast convergence to e-accuracy in 7' = O(log(1/¢)) iterations, without the learning rate needing
to be small. Generally however, bounded gradient confusion does not provide a bound on the variance
of the gradients (see appendix G for more discussion). Thus, it is instructive to derive convergence
bounds of SGD explicitly in terms of the gradient confusion to properly understand its effect.

We begin by considering functions satisfying the Polyak-Lojasiewicz (PL) inequality (Lojasiewicz,
1965), a condition related to, but weaker than, strong convexity, and provide bounds on the rate of
convergence in terms of the optimality gap. Then we look at a broader class of smooth non-convex
functions, and analyze convergence to a stationary point. We first make two standard assumptions.

(A1) {fi}ic[n) are Lipschitz smooth: f;(w') < fi(w) + Viiw) T (w —w) + %HW/ — w2

(A2) {fi}ie[n satisfy the PL inequality: %HVfZ(W)H2 > u(fi(w) — f), f7 = ming f;(w).
Theorem 3.1. If the objective function satisfies (Al) and (A2), and has gradient confusion 1, SGD
with updates of the form (2) converges linearly to a neighborhood of the minima of problem (1) as:

E[F(wr) — F*] < pT(F(wo) — F*) + £,

2 . . . s, . .
where o < % p=1-— QW“ (a — NLQG“ ) F* = miny, F(w) and wy is the initialized weights.

This result shows that SGD converges linearly to a neighborhood of a minimizer, and the size of
this neighborhood depends on the level of gradient confusion. When the gradient confusion is small,
i.e., 7 = O(e), SGD has fast convergence to O(e)-accuracy in T' = O(log(1/¢)) iterations, without
requiring the learning rate to be vanishingly small. We now extend this to general smooth functions.

Theorem 3.2. Ifthe objective satisfies (Al) and has gradient confusion bound 7, then SGD converges
to a neighborhood of a stationary point as:
ming_, 7 E|VF(wy)|? < 2ECUE) 4 4

for learning rate o < %, p= zjf[VLa, and F* = min,, F(w).

Theorems 3.1 and 3.2 predict an initial phase of optimization with fast convergence to the neighbor-
hood of a minimizer or a stationary point. This behavior is often observed when optimizing neural
nets (Darken & Moody, 1992; Sutskever et al., 2013), where a constant learning rate reaches a high
level of accuracy on the model. As we show in subsequent sections, this is expected since for neural
networks typically used, the gradient confusion is expected to be low. Convergence slows down as
the iterates approach the noise floor, and at this point typically practitioners employ exponentially
decaying learning rate schedules (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; He et al.,
2016; Zagoruyko & Komodakis, 2016; Ge et al., 2019). See appendix G for more discussion on
theorems 3.1 and 3.2, and how they relate to results in previous works. We stress that our goal is
not to study convergence rates per se, nor is it to prove state-of-the-art rate bounds for this class of
problems. The main intention is to show the direct effect that the gradient confusion bound has on
the convergence rate and the noise floor that constant learning rate SGD converges to. As we show in
the following sections, this new perspective in terms of the gradient confusion helps us more directly
understand how neural net architecture design affects SGD dynamics and why.
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4 EFFECT OF NEURAL NET ARCHITECTURE ON GRADIENT CONFUSION

To draw a rigorous connection between neural net structure and training performance, we analyze
gradient confusion for generic (i.e., random) model problems using methods from high-dimensional
probability. In particular, this section considers the following scenarios: (a) Random data drawn from
a unit sphere and the weights in a ball around the local minimizer (theorem 4.1 and corollary 4.1). (b)
Random weights using standard initialization schemes and both arbitrary bounded data (theorem 4.2,
part 1) and random data drawn from a unit sphere (theorem 4.2, part 2). Our results cover a wide range
of scenarios compared to prior work (e.g., Chen et al. (2018); Schoenholz et al. (2016); Balduzzi
et al. (2017)), require minimal additional assumptions, and hold for a large family of neural nets
with non-linear activations and a large class of loss-functions. In particular, our results hold for fully
connected networks (and convolutional networks in some cases) with the square-loss and logistic-loss
functions, and commonly used non-linear activations such as sigmoid, tanh and ReLU.

(a) Random Data, Bounded Weights Around Minimizer. In this subsection, we consider training
data of the form D = {(x;,C(x;))}ic[n], for some labeling function C : R¢ — [—1,1], and with data
points {x;} drawn uniformly from the surface of a d-dimensional unit sphere. The labeling function
satisfies |C(x)| < 1 and || V<C(x)|2 < 1 for ||x|| < 1. Note that this automatically holds for every
model considered in this paper where the labeling function is realizable (i.e., where the model can
express the labeling function using its parameters). More generally, this assumes a Lipschitz condition
on the labels (i.e., the labels don’t change too quickly with the inputs). In this paper, we consider two
loss-functions, namely, square-loss for regression and logistic loss function for classification. The

square-loss function is defined as f;(w) = 3(C(x;) — gw(x;))? and the logistic function is defined

as fi(w) = log(1 + exp(—C(x;)gw(x;))). Here, gy : R? — R denotes the parameterized function
we fit to the training data and f;(w) denotes the loss-function of hypothesis gy, on data point x;.

Formally, let Wy € R“*? and {W,} ¢ (4] such that W, € R’ *%—1 be the given weight matrices.
Let W denote the tuple (W,,),¢c (3, Define £ := max, (] £, to be the width and 3 to be the depth
of the neural network. Then, the model gw is defined as

gw(x) :=0(Wgo(Wg_1...0(Wi0(Wix))...)), 4

where o denotes the non-linear activation function applied point-wise to its arguments. We assume
that the non-linear activation is given by a function o (z) with the following properties.

e (P1) Boundedness: |o(x)| < 1 for vector x € [—1,1].

e (P2) Bounded differentials: Let o'(xz) and o”(x) denote the first and second sub-
differentials respectively. Then, |o'(x)| < 1 and |o”(z)| < 1forall x € [-1,1].

When ||x|| < 1, as in our random data model, activation functions such as sigmoid, tanh, softmax and
ReLU satisfy these requirements. Additionally, we make the following assumption on the weights.

Assumption 1 (Small Weights). We assume that the operator norm of the weight matrices {W}ic3),
are bounded above by 1. In other words, for every i € [3]g we have |[W;|| < 1.

The operator norm of the weight matrices ||W/|| being close to 1 is important for the trainability of
neural nets, as it ensures that the input signal is passed through the net without exploding or shrinking
across layers (Glorot & Bengio, 2010). Proving non-vacuous bounds in case of such blow-ups in
magnitude of the signal or the gradient is not possible in general, and thus, we consider this restricted
class of weights. The small-weights assumption is not just a theoretical concern, but also usually
enforced in practice using weight decay regularizers of the form Y, ||W;]|%., which keep the weights
small during optimization. See appendix F for further discussion on the small weights assumption.

We now prove concentration bounds for the gradient confusion on neural nets.

Theorem 4.1. Consider the problem of training neural nets (equation 4) using either the square-loss
or the logistic-loss function. Let n > 0 be a given constant. Let the weights satisfy assumption 1 and
the non-linearities in each layer satisfy properties (P1) and (P2). For some fixed constant ¢ > 0, the
gradient confusion bound in equation 3 holds with probability at least

_ 2 —cd7]2
1=-N eXp(16c§(5+2>4>’

For both the square-loss and the logistic-loss functions, o < 2+/B (from lemma D.1).
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Thus, theorem 4.1 shows that, for a given dimension d and number of samples /N, when the network
depth [ decreases, the probability that the gradient confusion bound in equation 3 holds increases,
and vice versa. Note that the convergence rate results of SGD in section 3 assume that the gradient
confusion bound holds at every point along the path of SGD. On the other hand, theorem 4.1 shows
concentration bounds for the gradient confusion at a fixed weight W. Thus, to ensure that the
above result is relevant for the convergence of SGD on overparameterized models, we now make the
concentration bound in theorem 4.1 uniform over all weights inside a ball B,. of radius r.

Corollary 4.1 (Uniform concentration for all weights around the minimizer). Select a point W =
(Wo, Wi,...,Wy), satisfying assumption 1. Consider a ball B, centered at W of radius v > 0. If
the data {X;};c|n) are sampled uniformly from a unit sphere, then the gradient confusion bound in
equation 3 holds uniformly at all points W' € B, with probability at least

2 .
1—N2exp<—64<§?+2)4), ifr < n/AG,
2 2.

1— N2exp (— 64<§?g+2)4 + Sdg‘ﬂ) , otherwise.

Thus, corollary 4.1 shows that the probability that the gradient confusion bound holds decreases
with increasing depth, for all weights in a ball around the minimizer. This explains why training
very deep models is hard and typically slow with SGD (Bengio et al., 1994; Glorot & Bengio, 2010).
Note that this is also related to the shattered gradients phenomenon (Balduzzi et al., 2017) that arises
with depth (see appendix H for more discussion). This naturally raises the question why modern
deep neural networks are so efficiently trained using SGD. While careful initialization strategies
prevent vanishing or exploding gradients making deeper networks trainable, these strategies still
suffer from high gradient confusion for very deep networks (as we show below in theorem 4.2). Thus,
in section 5, we empirically study how popular techniques like skip connections (He et al., 2016) and
batch normalization (Ioffe & Szegedy, 2015) affect gradient confusion. We find that these techniques
drastically lower gradient confusion, making very deep networks significantly easier to train. Note
that the above results automatically hold for convolutional nets, since a convolution operation on x
can be represented as a matrix multiplication Ux for an appropriate Toeplitz matrix U.

(b) Standard Weight Initializations and the Effect of Layer Width. Note that on assuming
W]l < 1 for each weight matrix W in our results in part 1 of section 4, the dependence of gradient
confusion on the layer width goes away in general. A simple example that illustrates this is to consider
the case where each weight matrix in the neural network has exactly one non-zero element, which is
set to 1. The operator norm of each such weight matrix is 1, but the forward or backward propagated
signals would not depend on the width. Thus, to better understand the effect of the layer width, in this
subsection we focus on the behavior of neural nets at initialization by considering standard weight
initialization strategies used when training neural nets. For completeness, we consider both the case
where the data is arbitrary but bounded, as well as where the data is randomly drawn from a unit
sphere. A key point used in the following results is that typical weight initialization techniques ensure
that the operator norm is bounded by 1 with high probability, thus enabling us to derive tight bounds
on the gradient confusion. We consider the following weight initialization strategy.

Strategy 4.1. W, € R**? has independent N (0, %) entries. For every p € [f], the weights

W, c R *t—1 have independent N (0 entries for some constant k > 0.

_1
P klp 1
This initialization strategy with different settings of « are used almost universally for neural networks
(Glorot & Bengio, 2010; He et al., 2015). The following theorem shows how the width ¢ :=
max,c (5] £, and the depth 3 affect the gradient confusion condition. In particular, as width increases
or depth decreases the probability that the gradient confusion bound (equation 3) holds increases.

Theorem 4.2 (Neural nets with randomly chosen weights). Let Wy, W1, ..., W g be weight matri-
ces chosen according to strategy 4.1. There exists fixed constants c1, co > 0 such that we have:

1. Consider a fixed but arbitrary dataset X1,Xa, . .., xn with ||x;|| < 1 for every i € [N]. For
n > 4 we have that the gradient confusion bound in equation 3 holds with probability at

least 1 — Bexp (—c1x%0?) — N2 exp (%) .
0
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Figure 2: The effect of network depth with CNN-/3-2 on CIFAR-10. Left plot: convergence curves of SGD,
Middle plot: minimum of pairwise gradient cosine similarities at the end of training, Right plot: kernel density
estimate of the pairwise gradient cosine similarities at the end of training (over all independent runs).

2. If the dataset {X;};c[n is such that each x; is an i.i.d. sample from the surface of d-
dimensional unit sphere, then for every n > 0 the gradient confusion bound in equation 3
holds with probability at least 1 — 3 exp (—01 f<a2€2) — N2exp (16236(2%22)4)'

Thus, theorem 4.2 shows that the layer width improves the trainability of deep networks under most
standard initialization techniques used. When the layers are very wide, other authors have shown that
some of the benefits of width at initialization also persist during training, considerably simplifying the
learning dynamics of SGD (Jacot et al., 2018; Lee et al., 2019). In the next section (and in appendix
A), we show substantial empirical evidence that, given a sufficiently deep network, increasing the
layer width often helps in lowering gradient confusion and speeding up convergence for a range of
neural network models, and that these effects persist throughout optimization for most models.

5 EXPERIMENTAL RESULTS

To test our theoretical results and to probe why standard neural nets are efficiently trained with SGD,
we now present experimental results showing the effect of the neural network architecture on the
convergence of SGD and gradient confusion. It is worth noting that theorems 3.1 and 3.2 indicate that
we would expect the effect of gradient confusion to be most prominent closer to the end of training.

We performed experiments on wide residual networks (WRNs) (Zagoruyko & Komodakis, 2016),
convolutional networks (CNNs) and multi-layer perceptrons (MLPs) for image classification tasks
on CIFAR-10, CIFAR-100 and MNIST. We present results for CNNs on CIFAR-10 in this section,
and present all other results in appendix A. We use CNN-3-/ to denote WRNs that have no skip
connections or batch normalization, with a depth 3 and width factor £.* We turned off dropout
and weight decay for all our experiments. We used SGD as the optimizer without any momentum.
Following Zagoruyko & Komodakis (2016), we ran all experiments for 200 epochs with minibatches
of size 128, and reduced the initial learning rate by a factor of 10 at epochs 80 and 160. We used
the MSRA initializer (He et al., 2015) for the weights as is standard for this model, and used the
same preprocessing steps for the CIFAR-10 images as described in Zagoruyko & Komodakis (2016).
We ran each experiment 5 times, and we show the standard deviation across runs in our plots. We
tuned the optimal initial learning rate for each model over a logarithmically-spaced grid and selected
the run that achieved the lowest training loss value. To measure gradient confusion, at the end of
every training epoch, we sampled 100 pairs of mini-batches each of size 128 (the same size as the
training batch size). We calculated gradients on each mini-batch, and then computed pairwise cosine
similarities. See appendix A.2 for more details on the experimental setup and architectures used.

Effect of depth. To test our theoretical results, we consider CNNs with a fixed width factor of
2 and varying network depth. From figure 2, we see that our theoretical results are backed by the
experiments: increasing depth slows down convergence, and increases gradient confusion. We also
notice that with increasing depth, the density of pairwise gradient cosine similarities concentrates
less sharply around O (indicating higher variance), which makes the network harder to train.

Effect of width. We now consider CNNs with a fixed depth of 16 and varying width factors. From
figure 3, we see that increasing width results in faster convergence and lower gradient confusion.

*The width factor denotes the number of filters relative to the original ResNet model.
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Figure 3: The effect of width with CNN-16-£ on CIFAR-10. Left plot: convergence curves of SGD (for cleaner
figures, we plot results for width factors 2, 4 and 6 here), Middle plot: minimum of pairwise gradient cosine
similarities at the end of training, Right plot: kernel density estimate of the pairwise gradient cosine similarities
at the end of training (over all independent runs).
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Figure 4: The effect of adding skip connections and batch normalization to CNN-/3-2 on CIFAR-10. Plots show
the optimal training loss (left plot), minimum pairwise gradient cosine similarities (middle plot), and test set
accuracies (right plot) at the end of training.

We further see that gradient cosine similarities concentrate around 0 with growing width, indicating
that SGD decouples across the training samples with growing width. Note that the smallest network
considered is still overparameterized and achieves a high level of performance (see appendix A.3).

Effect of batch normalization and skip connections. To help understand why many standard
deep nets are so efficiently trained using SGD, we test the effect of adding skip connections and
batch normalization to CNNs of fixed width and varying depth. Figure 4 shows that adding skip
connections or batch normalization individually help in training deeper models, but these models still
suffer from worsening results and increasing gradient confusion as the network gets deeper. Both
these techniques together keep the gradient confusion relatively low even for very deep networks,
significantly improving trainability of deep models. Note that all these observations are consistent
with previous work (Balduzzi et al., 2017; Santurkar et al., 2018; Yang et al., 2019).

6 CONCLUSIONS

In this paper, we investigate how overparameterization and model architecture affect the dynamics
of SGD on neural networks. To help formally analyze this, we introduce a concept called gradient
confusion, and show that when gradient confusion is low, SGD experiences fast convergence. We then
show that increasing layer width leads to lower gradient confusion, making the model easier to train.
In contrast, increasing network depth results in higher gradient confusion, making deeper models
harder to train. We further show how techniques like batch normalization and skip connections
help in tackling this problem. Note that many previous results have shown how deeper models are
more efficient at modeling higher complexity function classes than wider models, and thus depth is
essential for the success of neural networks (Eldan & Shamir, 2016; Telgarsky, 2016; Raghu et al.,
2017). Our results indicate that, given a sufficiently deep network, increasing the network width is
important for the trainability of the model, and will lead to faster convergence rates. This is further
supported by other recent research (Hanin, 2018; Hanin & Rolnick, 2018) that suggest that the width
should increase linearly with depth in a neural network to help dynamics at the beginning of training.
Our results also suggest the importance of further investigation into good initialization schemes for
neural networks that make training very deep models possible (Zhang et al., 2019). Our results on the
test set accuracies in appendix A further suggest that an interesting topic for future work would be to
investigate the connection between gradient confusion and generalization (Fort et al., 2019).
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A ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present more details about our experimental setup, as well as, additional exper-
imental results on a range of models (MLPs, CNNs and Wide ResNets) and a range of datasets
(MNIST, CIFAR-10, CIFAR-100).

A.1 MLPs oN MNIST

To further test the main claims in the paper, we performed additional experiments on an image
classification problem on the MNIST dataset using fully connected neural networks. We iterated over
neural networks of varying depth and width, and considered both the identity activation function (i.e.,
linear neural networks) and the tanh activation function. We also considered two different weight
initializations that are popularly used and appropriate for these activation functions:

e The Glorot normal initializer (Glorot & Bengio, 2010) with weights initialized by sampling
from the distribution N (O, 2/(fan-in + fan-out)), where fan-in denotes the number of input
units in the weight matrix, and fan-out denotes the number of output units in the weight
matrix.

e The LeCun normal initializer (LeCun et al., 2012) with weights initialized by sampling from
the distribution (0, 1/fan-in).

We considered the simplified case where all hidden layers have the same width ¢. Thus, the first
weight matrix W € R4 where d = 784 for the 28 x 28-sized images of MNIST; all intermediate
weight matrices {W,},c(5—1) € R***; and the final layer W5 € R'9** for the 10 image classes in
MNIST. We added biases to each layer, which we initialized to 0. We used softmax cross entropy as
the loss function. We use MLP-3-/ to denote this fully connected network of depth 5 and width £.
We used the standard train-valid-test splits of 40000-10000-10000 for MNIST.
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This relatively simple model gave us the ability to iterate over a large number of combinations of
network architectures of varying width and depth, and different activation functions and weight
initializations. Linear neural networks are an efficient way to directly understand the effect of
changing depth and width without increasing model complexity over linear regression. Thus, we
considered both linear and non-linear neural nets in our experiments.

We used SGD with constant learning rates for training with a mini-batch size of 128 and trained each
model for 40000 iterations (more than 100 epochs). The constant learning rate o was tuned over a
logarithmically-spaced grid:

o€ {10°1071,1072,107%,1074,1075,1075}.

We ran each experiment 10 times (making sure at least 8 of them ran till completion), and picked the
learning rate that achieved the lowest training loss value on average at the end of training. Our grid
search was such that the optimal learning rate never occurred at one of the extreme values tested.

To measure gradient confusion at the end training, we sampled 1000 pairs of mini-batches each of
size 128 (the same size as the training batch size). We calculated gradients on each of these pairs of
mini-batches, and then calculated the cosine similarity between them. To measure the worse-case
gradient confusion, we computed the lowest gradient cosine similarity among all pairs. We explored
the effect of changing depth and changing width on the different activation functions and weight
initializations. We plot the final training loss achieved for each model and the minimum gradient
cosine similarities calculated over the 1000 pairs of gradients at the end of training. For each point,
we plot both the mean and the standard deviation over the 10 independent runs.

The effect of depth. We first present results showing the effect of network depth. We considered a
fixed width of / = 100, and varied the depth of the neural network, on the log scale, as:

g € {3, 10,30, 100, 300, 1000}.

Figure 5 shows results on neural networks with identity and tanh activation functions for the two
weight initializations considered (Glorot normal and LeCun normal). Similar to the experimental
results in section 5, and matching our theoretical results in section 4, we notice the consistent trend
of gradient confusion increasing with increasing depth. This makes the networks harder to train
with increasing depth, and this is evidenced by an increase in the final training loss value. By depth
B = 1000, the increased gradient confusion effectively makes the network untrainable when using
tanh non-linearities.

The effect of width. We explored the effect of width by varying the width of the neural network
while keeping the depth fixed at 3 = 300. We chose a very deep model, which is essentially
untrainable for small widths (with standard initialization techniques) and helps better illustrate the
effects of increasing width. We varied the width of the network, again on the log scale, as:

¢ € {10, 30, 100, 300, 1000}.

Crucially, note that the smallest network considered here, MLP-300-10, still has more than 50000
parameters (i.e., more than the number of training samples), and the network with width £ = 30 has
almost three times the number of parameters as the high-performing MLP-3-100 network considered
in the previous section. Figure 6 show results on linear neural nets and neural nets with tanh
activations for both the Glorot normal and LeCun normal initializations. As in the experimental
results of section 5, we see the consistent trend of gradient confusion decreasing with increasing
width. Thus, wider networks become easier to train and improve the final training loss value. We
further see that when the width is too small (£ = 30), the gradient confusion becomes drastically high
and the network becomes completely untrainable.

A.2 ADDITIONAL EXPERIMENTAL DETAILS FOR CNNS AND WRNS

In this section, we review the details of our setup for the image classification experiments on CNNs
and WRNs on the CIFAR-10 and CIFAR-100 datasets.

WIDE RESIDUAL NETWORKS

The Wide ResNet (WRN) architecture (Zagoruyko & Komodakis, 2016) for CIFAR datasets is a
stack of three groups of residual blocks. There is a downsampling layer between two blocks, and
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the number of channels (width of a convolutional layer) is doubled after downsampling. In the three
groups, the width of convolutional layers is {16¢, 32¢, 644}, respectively. Each group contains 3,
residual blocks, and each residual block contains two 3 x 3 convolutional layers equipped with ReLU
activation, batch normalization and dropout. There is a 3 x 3 convolutional layer with 16 channels
before the three groups of residual blocks. And there is a global average pooling, a fully-connected
layer and a softmax layer after the three groups. The depth of WRN is 8 = 65, + 4.

For our experiments, we turned off dropout. Unless otherwise specified, we also turned off batch
normalization. We added biases to the convolutional layers when not using batch normalization to
maintain model expressivity. We used the MSRA initializer (He et al., 2015) for the weights as is
standard for this model, and used the same preprocessing steps for the CIFAR images as described in
Zagoruyko & Komodakis (2016). This preprocessing step involves normalizing the images and doing
data augmentation (Zagoruyko & Komodakis, 2016). We denote this network as WRN-3-¢, where 3
represents the depth and ¢ represents the width factor of the network.

To study the effect of depth, we considered WRNs with width factor £ = 2 and depth varying as:

B € {16,22,28, 34,40, 52,76, 100}
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For cleaner figures, we sometimes plot a subset of these results: 8 € {16, 28,40, 52, 76,100}. To
study the effect of width, we considered WRN's with depth 8 = 16 and width factor varying as:

0 € {2,3,4,5,6}.

CONVOLUTIONAL NEURAL NETS

The WRN architecture contains skip connections that, as we show, help in training deep networks.
To consider VGG-like convolutional networks, we consider a family of networks where we remove
the skip connections from WRNs. Following the WRN convention, we denote these networks as
CNN-(3-¢, where (8 denotes the depth and ¢ denotes the width factor.

To study the effect of depth, we considered CNNs with width factor ¢ = 2 and depth varying as:
B € {16,22,28, 34,40}.
To study the effect of width, we considered CNNs with depth 8 = 16 and width factor varying as:
le{2,3,4,5,6}.

HYPERPARAMETER TUNING AND OTHER DETAILS

We used SGD as the optimizer without any momentum. Following Zagoruyko & Komodakis (2016),
we ran all experiments for 200 epochs with minibatches of size 128, and reduced the initial learning
rate by a factor of 10 at epochs 80 and 160. We turned off weight decay for all our experiments.

We ran each individual experiment 5 times. We ignored any runs that were unable to decrease the loss
from its initial value. We also made sure at least 4 out of the 5 independent runs ran till completion.
When the learning rate is close to the threshold at which training is still possible, some runs may
converge, while others may fail to converge. Thus, these checks ensure that we pick a learning rate
that converges reliably in most cases on each problem. We show the standard deviation across runs in
our plots.

We tuned the optimal initial learning rate for each model over a logarithmically-spaced grid:
a € {10',3%x10°,10%,3x1071,1071,3x1072,1072,3x 1073,1073,3x 107*,107*,3 x 10"},

and selected the run that achieved the lowest final training loss value (averaged over the independent
runs). Our grid search was such that the optimal learning rate never occurred at one of the extreme
values tested. We used the standard train-valid-test splits of 40000-10000-10000 for CIFAR-10 and
CIFAR-100.

To measure gradient confusion, at the end of every training epoch, we sampled 100 pairs of mini-
batches each of size 128 (the same size as the training batch size). We calculated gradients on each
mini-batch, and then computed pairwise cosine similarities. To measure the worse-case gradient
confusion, we computed the lowest gradient cosine similarity among all pairs. We also show the
kernel density estimation of the pairwise gradient cosine similarities of the 100 minibatches sampled
at the end of training (after 200 epochs), to see the concentration of the distribution. To do this,
we combine together the 100 samples for each independent run and then perform kernel density
estimation with a gaussian kernel on this data.

A.3 ADDITIONAL PLOTS FOR CIFAR-10 oN CNNs

In section 5, we showed results for image classification using CNNs on CIFAR-10. In this section,
we show some additional plots for this experiment. Figure 7 shows the effect of changing the depth,
while figure 8 shows the effect of changing the width factor of the CNN. We see that the final training
loss and test set accuracy values show the same trends as in section 5: deeper networks are harder
to train, while wider networks are easier to train. As mentioned previously, theorems 3.1 and 3.2
indicate that we would expect the effect of gradient confusion to be more prominent near the end
of training. From the plots we see that deeper networks have higher gradient confusion close to
minimum, while wider networks have lower gradient confusion close to the minimum.

16



Under review as a conference paper at ICLR 2020

°
®

—— depth 16

depth 22
04 depth 28
—— depth 34
—— depth 40

°

°
&

final training loss
°
=

final test set accuracy
° °
@ &

min grad cosine similarity
| i

o
o

°
o
°

15 20 25 30 35 40 15 20 25 30 35 40 % 50 100 150 200
network depth network depth epochs

Figure 7: The effect of network depth with CNN-3-2 on CIFAR-10. Left plot: final training loss values at the
end of training, Middle plot: final test set accuracy values at the end of training. Right plot: curves showing the
minimum of pairwise gradient cosine similarities during training.

—— width 2

‘[‘. width 4

°
o
8

5

—— width 6

°
8

5

final training loss
°
2

final test set accuracy
°
2
min grad cosine similarity
°
g

°
b

10"

°
8
|
o
3

|

5 6 0 50 100

2 3 4
layer width epochs

5 6 2 3 200

\ayerAwidth
Figure 8: The effect of width with CNN-16-¢ on CIFAR-10. Left plot: final training loss values at the end

of training, Middle plot: final test set accuracy values at the end of training. Right plot: curves showing the
minimum of pairwise gradient cosine similarities during training.

A.4 CIFAR-100 oN CNNs

We now consider image classifications tasks with CNNs on the CIFAR-100 dataset. Figure 9 shows
the effect of varying depth, while figure 10 shows the effect of varying width. We notice the same
trends as in our results with CNNs on CIFAR-10. Interestingly, from the width results in figure 10, we
see that while there is no perceptible change to the minimum pairwise gradient cosine similarity, the
distribution still sharply concentrates around 0 with increasing width. Thus more gradients become
orthogonal to each other with increasing width, implying that SGD on very wide networks becomes
closer to decoupling over the data samples.

A.5 IMAGE CLASSIFICATION WITH WRNS ON CIFAR-10 AND CIFAR-100

We now show results for image classification problems using wide residual networks (WRNs) on
CIFAR-10 and CIFAR-100. The WRNs we consider do not have any batch normalization. Later we
show results on the effect of adding batch normalization to these networks.

Figures 11 and 12 show results on the effect of depth using WRNs on CIFAR-10 and CIFAR-100
respectively. We again see the consistent trend of deeper networks having higher gradient confusion,
making them harder to train. We further see that increasing depth results in the pairwise gradient
cosine similarities concentrating less around 0.

Figures 13 and 14 show results on the effect of width using WRNs on CIFAR-10 and CIFAR-100
respectively. We see that increasing width typically lowers gradient confusion and helps the network
achieve lower loss values. The pairwise gradient cosine similarities also typically concentrate around
0 with higher width. We also notice from these figures that in some cases, increasing width might
lead to diminishing returns, i.e., the benefits of increased width diminish after a certain point, as one
would expect.

A.6 EFFECT OF BATCH NORMALIZATION

In section 5 we showed results on the effect of adding batch normalization to CNNs and WRN’s
on an image classification task on CIFAR-10. In this section, we present similar results for image
classification on CIFAR-100. Similar to section 5, figure 15 shows that adding skip connections or
batch normalization individually help in training deeper models, but these models still suffer from
worsening results and increasing gradient confusion as the network gets deeper. Both these techniques
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Figure 9: The effect of network depth with CNN-£-2 on CIFAR-100. Left plot: training loss values at the end
of training. Middle plot: minimum of pairwise gradient cosine similarities at the end of training, Right plot:
kernel density estimate of the pairwise gradient cosine similarities at the end of training.
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Figure 10: The effect of width with CNN-16-¢ on CIFAR-100. Left plot: training loss values at the end of
training. Middle plot: minimum of pairwise gradient cosine similarities at the end of training, Right plot: kernel
density estimate of the pairwise gradient cosine similarities at the end of training.

together keep the gradient confusion relatively low even for very deep networks, significantly
improving trainability of deep models.

B NEAR ORTHOGONALITY OF RANDOM VECTORS

For completeness, we state and prove below a lemma on the near orthogonality of random vectors.
This result is often attributed to Milman & Schechtman (1986).

Lemma B.1 (Near orthogonality of random vectors). For vectors {X;};c(n) drawn uniformly from a
unit sphere in d dimensions, and v > 0,

Pr[3i,j [x/x;| >v] < N?/Texp (- L0?).

Proof. Given a fixed vector x, a uniform random vector y satisfies [x"y| > v only if y lies in
one of two spherical caps: one centered at x and the other at —x, and both with angular radius
cos7l(v) < 5 — v. A simple result often attributed to Milman & Schechtman (1986) bounds the
probability of lying in either of these caps as

Prjx"y| > v] < \/i exp (—d; 1u2> : (5)

Because of rotational symmetry, the bound (5) holds if both x and y are chosen uniformly at random.

We next apply a union bound to control the probability that [x, x;| > v for some pair (4, 7). There
are fewer than N2 /2 such pairs, and so the probability of this condition is

N? | d—1
Pr(|x, x;| > v, for some i, j] < - gexp (— 5 u2> . O

C LOW-RANK HESSIANS LEAD TO LOW GRADIENT CONFUSION

In this section, we slightly elaborate on the argument that low-rank random Hessians result in low
gradient confusion. For clarity in presentation, suppose each f; has a minimizer at the origin (the
same argument can be easily extended to the more general case). Suppose also that there is a Lipschitz
constant for the Hessian of each function f; that satisfies ||H;(w) — H;(w')|| < Lyl|lw — w/||.
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Figure 11: The effect of depth with WRN-3-2 (no batch normalization) on CIFAR-10. Left plot: training loss
values at the end of training. Middle plot: minimum of pairwise gradient cosine similarities at the end of training,
Right plot: kernel density estimate of the pairwise gradient cosine similarities at the end of training.
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Figure 12: The effect of depth with WRN-3-2 (no batch normalization) on CIFAR-100. Left plot: training
loss values at the end of training. Middle plot: minimum of pairwise gradient cosine similarities at the end of
training, Right plot: kernel density estimate of the pairwise gradient cosine similarities at the end of training.

Then V fi(w) = H;w + e, where e is an error term bounded as: [le|| < 3Ly ||w]||?, and we use the
shorthand H; to denote H;(0). Then we have:

[V £(w). ¥ £5(w))] = [(Hiw, Hyw) | + (e, Hyw + Hjw) + [
< [[wIP L L |+ el ffw L -+ EL ) + [l
1 1
< (1w 2 L |+ 5 Lo Wl + L) + 5 Ellw

If the Hessians are sufficiently random and low-rank (e.g., of the form H; = aiaiT where a; € RV*7
are randomly sampled from a unit sphere), then one would expect the terms in this expression to
be small for all w within a neighborhood of the minimizer. Given that it has been observed that
many standard neural nets have low rank Hessians at the minimizer, this indicates that the gradient

confusion might be low for a large class of weights near the minimizer for these models.

D MISSING PROOFS

D.1 PROOFS OF THEOREMS 3.1 AND 3.2

This section presents proofs for the convergence theorems of SGD presented in section 3, under the
assumption of low gradient confusion. For clarity of presentation, we re-state each theorem before its
proof.

Theorem 3.1. If the objective function satisfies (Al) and (A2), and has gradient confusion 1, SGD
with updates of the form (2) converges linearly to a neighborhood of the minima of problem (1) as:
E[F(wr) — F*] < p"(F(wo) — F*) +

1—p?

2 . . . .. . .
where o < % p=1-— QW” (a — %) F* = miny F(w) and wy is the initialized weights.

Proof. Let i € [N] denote the index of the realized function fj, in the uniform sampling from
{fi}ie|n) at step k. From assumption (A1), we have

L
F(wis1) < F(wi) + (VE(Wr), Wisr = W) + S l[wesr — wi|”
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Figure 13: The effect of width with WRN-16-¢ (no batch normalization) on CIFAR-10. Left plot: training
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— Plwi) = a(VFw), Tfalw) + 20 [ o) P

« La?

= F(wi) = (5 = 5 ) IVAG0I? = 5 D2 (Vhilwa), Vfi(wi)
Vizis
< Few) — (&~ 20) 9 w2+ 2D
a La? 5
< Plwi) = (5 = “5 - IVAwi)l* +an,

where the second-last inequality follows from definition 2.1. Let the learning rate v < 2/N L. Then,
using assumption (A2) and subtracting by F* = min, F'(w) on both sides, we get

N N a La?y, - o
F(wis1) = F* < Flwi) = F* = 25 = =5 ) (fulwi) = i) +an,
where f;‘ = miny, fi(W). Itis easy to see that by definition we have, E;[f}] < F*. Moreover, from
assumption that o < ﬁ, it implies that (% — LT"‘2> > 0. Therefore, taking expectation on both

sides we get,

E[F(Wiy1) = F*] < (1 - Q“Ta + ,uLaQ)E[F(wk) — F*] +an.

Writing p =1 — 2“7“ + uLa?, and unrolling the iterations, we get

k
E[F(wis1) — F7] < oM (F(wo) — ) + 3 play
=0
e .
< PP F(wo) = F) 4+ plan
=0

= PFHL(F(wo) — F*) + 1%’7[). O
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Figure 15: The effect of adding skip connections and batch normalization to CNN-3-2 on CIFAR-100. Plots
show the training loss, minimum pairwise gradient cosine similarities, and test accuracies at the end of training.

Theorem 3.2. Ifthe objective satisfies (Al) and has gradient confusion bound n, then SGD converges
to a neighborhood of a stationary point as:

ming—; 7 E|VF(wy)|? < 2E0D-FD o

for learning rate o < % p= zjfvaa, and F* = min,, F(w).

Proof. From theorem 3.1, we have:

« La?

F(wist) < F(we) = (5 = S ) IVAlwi)l? + an. ©)

Now we know that:

E|V fe(wi)|? = E|IVfi(wi) = VE(wi)|* + E|VF(w)|* > EIVF(w)|*.

Thus, taking expectation and assuming the step size a < 2/(IN L), we can rewrite equation 6 as:

ON 2N
2 E[F(wy)— F =
50— NLaz o (k) = (Wil + 552

Taking an average over T iterations, and using F* = min,, F'(w), we get:

E|[VEF(wi)|* <

2N F(wy) — F* n 2Nn
o — NLao? T 2— NLa'

-
1
. 2 2
kzr?,l.?’TEHVF(Wk)H < Tg_l]EIIVF(Wk)II =3

D.2 PROOFS OF HELPER LEMMAS

Lemma D.1. Consider the set of loss-functions { f;(W) };c|n) where all f; are either the square-loss
function or the logistic-loss function. Consider a feed-forward neural network as defined in equation 4
whose weights W satisfy assumption 1,. Consider the gradient Vv f;(W) of each function f;. Note
that we can write Vw f;(W) = (x,(W)Vwgw (X;), where we define (x,(W) = 0f;(W)/0gw.
Then we have the following properties.

1. When ||x]| < 1 we have ||Vwgw (x;)] < 1.

2. There exists a constant (o > 0 such that |(x,(W)| < 2,
IVw G, (W)]l2 < Co.

We show that (y < 2+/B, where 3 is the depth of the neural network.

Vi Ces (W)ll2 < o,

Proof. Let W denote the tuple (W, ),¢(g],- Consider |(x,(W)| = [0f;(W)/Ogw|. In the case
of square-loss function this evaluates to |gw (x) — C(x)| < 2. In case of logistic regression, this
evaluates to | 1+exp(c(;1)gw(x,)) | < 1. Now we consider ||V, (x, (W)||. Consider the squared loss

function. We then have the following.
V3¢ Goes (W = [V, S/ (W]
= [IVxigw (xi) = C(xi)|
< Vi gw ()| + 1.

21



Under review as a conference paper at ICLR 2020

Likewise, consider the logistic-loss function. We then have the following.

C(xi)*
19 G W < | e (€ )| [ w0
< Vw3

Thus, it suffices to bound ||V, gw (x;)||. Using assumption 1 and the properties (P1), (P2) of o, this
can be upper-bounded by 1.

Consider Vw ,(x, (W) for some layer index p € [3]o. We will show that ||V, (x,(W)[[2 < 2.

Then it immediately follows that | Vw (x, (W)||2 < 24/3. In the case of a squared loss function. We
have the following.

IVw, G (W = [IVw, /(W)
= ||[Vw, 9w (x:) — C(x;)||
< | Vw,gw (x| + 1.

Likewise, consider the logistic-loss function. We then have the following.
C(xi)*
v <« (W) <
19w, W < | ooy
< IVw, 9w (x3) .

)2 eXp(C(Xi)QW(Xz‘))H IVw, 9w (x:)|]

Since |[Vw,gw (x;)|| < 1, we have that |[Vw,(x,(W)|| < 2 in both the cases. Thus, ¢y =

2./B. 0

D.3 PROOFS OF THEOREM 4.1 AND COROLLARY 4.1
In this section, we will analyze the case when we have non-linear activations at each layer.

Theorem 4.1. Consider the problem of training neural nets (equation 4) using either the square-loss
or the logistic-loss function. Let n > 0 be a given constant. Let the weights satisfy assumption 1 and
the non-linearities in each layer satisfy properties (P1) and (P2). For some fixed constant ¢ > 0, the
gradient confusion bound in equation 3 holds with probability at least

2 —cdn?
1— N?exp (716%(512)4) ,

For both the square-loss and the logistic-loss functions, (o < 2~/ (from lemma D.I).

Proof. We show two key properties, namely bounded gradient and non negative expectation. We will
then use both these properties to complete the proof.

Bounded gradient. For every ¢ € [n] define (x, (W) := f'(W). For every p € [3] define H,, as
follows.
H,(x):=0(W,-0(Wp_1-0(...-0c(Wpy-x)...).
Fix an ¢ € [N]. Then we have the following recurrence
98(xi) =0’ (Hp(x:))
gp(x:) 1= (W1 - gpr1(xy)) - Diag(o” (Hp(x:))) Vpe{0,1,....8-1}.

Then the gradients can be written in terms of the above quantities as follows.
Vw, [i( W) = gp(xi) - Hyp1(xi) " p € [Blo-

We can write hw (x;, x;) as follows.

Cx; (W)ng' (W) Z Tr[prl(xi) 'gp(xi)—r 'gp(xj) 'prl(xi)—r] . (7N
pE[Blo
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We will now bound ||V (x, x,)hw (Xi,X;)|[2. Consider Vy,hw (x;,x;). This can be written as
follows.

(Vi G (W))ij (W) Z Tr[Hp—1(x;) 'gp(xi)T - 8p(x;) 'Hp—l(xi)T] +
p€[Blo

.
Cx; (W)ij' (W) Z [vxl- (prl(xi) : gp(xi)T : g:o(xj) : prl(xi))] - )
p€(Blo
Observe that each of the entries in the diagonal matrix Diag(o’(H,(x;))) is at most 1. Thus, we
have that || Diag(o’ (H,(x;)))|| < 1.
We have the following relationship.

llgs(x)ll <1
g (ea) Il < Wy g1 llllgp+1 (xi) | Diag(o” (H, (x:))) || < 1 Vpe{0,L,....5 -1}

Moreover we have,

I Te[Hp 1 () (xi) g (37) Hp—1 (3¢:) T]I| < 1Hp—1 (x0) |l (30) "1 () | Hp—1 (3¢2) 7| < 1.

Consider ||V, (Hp—1(x;) - 8p(x:) " - 8p(x;) - Hp_1(x;)) || for every p € [Blo.
This can be upper-bounded by,
V5, Hp 1 (3¢ 1 (35) 1 (35 ) 1L -1 (32 |4 HLp— 1 (30) [ Vi, 8 (2) Tl 1 () L1 (3¢2) .

Note that V, H,,—1(x;) = g1(x;) - Diag(c’(Wq-x;))- W{ -gp(x;) . Thus, ||V, H,—1(x;)| < 1.
We will now show that ||V, g,(x;)|| < 8 — p+ 1. We prove this inductively. Consider the base case
when p = .

IV g8 (i)l = I Vs, o' (Hp(x:))| 1= 8- B +1.
Now, the inductive step.

IV, 8o (i)l < [V 8p41(x:) | + (| Ve, Diag (o’ (Hp(x:))| < B —p < B—p+1.

Thus, using equation 8 and the above arguments, we obtain, ||V, hw (xi,x;)|l2 < G(B8+ 1) +
(B +1)(B+2) < 2 (8 +2)? and thus, ||V x, 5, hw (xi, %) [[2 < 465 (8 + 2)%.

Non-negative expectation.
Exhxj [h(xi7 X )] :Exi \Xj [<Vfl (W)7 vf] (W)”
= (Ex, [Vfi(W)], Ex, [V f;(W)])
= |Ex,[V£(W)]|I? > 0.

We have used the fact that V f;(W) and V f;(W) are identically distributed and independent.

Concentration of Measure. We combine the two properties as follows. From Non-negative
Expectation property and equation 23, we have that

—edn?
Pl (x.3) < 1] < Prlin (56,55) < B v (6] 1] < 0 (o ).

€))

To obtain the probability that some value of hyw (Vw fi, Vw f;) lies below —7, we use a union bound.
There are N(N — 1)/2 < N?/2 possible pairs of data points to consider, and so this probability is

bounded above by N2 exp (wgﬁ%) . O
0
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D.3.1 PROOF OF COROLLARY 4.1

Before we prove corollary 4.1 we prove the following helper lemma.

Lemma D.2. Suppose maxw ||Vw fi(W)|| < M, and both Vw f;(w) and Vw f;(W) are Lips-
chitz in W with constant L. Then hw (x;,X;) is Lipschitz in W with constant 2LM.

Proof. We view W as flattened vector. We now prove the above result for these two vectors. For two
vectors w, w’,

hw(Xi,Xj> — hw’ (Xi,Xj)|

= [V fi(w), Vaw f;(W)) = (Ve fi(W'), Ve (W)
= [(Vwfi(w) = Vw fi(W') + Vi fi(W'), Ve f(W))
— (Var fi(W'), Ve (W) = Vi [ (W) + Vi (W)
= [(Vw/fi(w) = Vw fi(w ) Vwfi(W)) = (Vw fi(W'), Ve (W) = Vo f5(w))]
< UVwfi(w) = Ve fi(W'), Var [ (W] + (Ve (W), Vi f5(W') = Vi f(W))
< IVwfilw) = Ve fi(w )HHwaj( W)+ [V fi (W [V f5 (W) = Ve f5(W)]

< Llw = wl[[IVw f; (W)l + IV fi (WL W" — w]|
< 2LM|w —w'].

Here the first inequality uses the triangle inequality, the second inequality uses the Cauchy-Schwartz
inequality, and the third and fourth inequalities use the assumptions that Vs, f;(w) and V, f;(w)
are Lipschitz in w and have bounded norm. O

We are now ready to prove the corollary, which we restate here. The proof uses a standard
"epsilon-net" argument; we identify a fine net of points within the ball B,. If the gradient confusion
is small at every point in this discrete set, and the gradient confusion varies slowly enough with W,
when we can guarantee small gradient confusion at every point in ;..

Corollary 4.1 (Uniform concentration for all weights around the minimizer). Select a point W =
(Wo, Wi,..., Wy), satisfying assumption 1. Consider a ball B, centered at W of radius v > 0. If
the data {X;};c|n) are sampled uniformly from a unit sphere, then the gradient confusion bound in
equation 3 holds uniformly at all points W' € B, with probability at least

2
1—N2exp(—64<§?+2)4), lf7"§77/4C37

Proof. Define the function h* (W) = max;; hw(x;,x;). Our goal is to find conditions under
which AT (W) > —n for all W in a large set. To derive such conditions, we will need a Lipschitz
constant for A (W), which is no larger than the maximal Lipschitz constant of hw (x;,x;) for all
i,j. We have that | Vw fi|| = [|¢x; (W)x;|| < (0. Now we need to get a W-Lipschitz constants
for Vy, fi = (x;, (W)x;. By lemma D.1, we have | Vw ((x;, (W)x;)|| = |(Vwx;, (W))x;]| < (o.
Using lemma D.2, we see that 2¢Z is a Lipschitz constant for Aw (x;,X;), and thus also ™ (W).

Now, consider a minimizer W of the objective, and a ball 3, around this point of radius r. Define the
constant € = CQ , and create an e-net of points N. = {W,} inside the ball. This net is sufficiently
dense that any W' € B, is at most ¢ units away from some W; € N.. Furthermore, because h* (W)
is Lipschitz in W, |hT(W') — b (W;)| < 2¢3e = n/2.
‘We now know the following: if we can guarantee that

hT(W;) > —n/2, forall W; € N, (10)

then we also know that h™(W') > —n for all W’ € B,.. For this reason, we prove the result by
bounding the probability that (10) holds. It is known that N, can be constructed so that |N.| <
(2r/e + 1)4 = (8¢3r/n + 1) (see Vershynin (2018), corollary 4.1.13). Theorem 4.1 provides a
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bound on the probability that each individual point in the net satisfies condition (10). Using a union
bound, we see that all points in the net satisfy this condition with probability at least

1— N? (8678r+1>dexp (—%) an
=1— N?exp(dlog(8¢2r/n+ 1)) exp (—ﬁ’éé) (12)
> 1 N2 exp(8d¢3r /1) exp (—gjzg) (13)
=1- N2exp (— EZZ; gdg§T> . (14)

Finally, note that, if r < ¢, then we can form a net with | V.| = 1. In this case, the probability of

satisfying (10) is at least
d(n/2)?
1— N2exp 7% . O
64¢y

D.4 PROOF OF THEOREM 4.2

Theorem 4.2 (Neural nets with randomly chosen weights). Let Wo, Wy, ..., W g be weight matri-
ces chosen according to strategy 4.1. There exists fixed constants c1, co > 0 such that we have:

1. Consider a fixed but arbitrary dataset X1,Xa, . .., Xy with ||x;|| < 1 for every i € [N]. For
n > 4 we have that the gradient confusion bound in equation 3 holds with probability at

242 2 —cd(n—4)*
least 1 — Bexp (—cm 14 ) — N?exp (W) .
2. If the dataset {x;}ic[n is such that each x; is an i.i.d. sample from the surface of d-
dimensional unit sphere, then for every n > 0 the gradient confusion bound in equation 3

holds with probability at least 1 — [ exp (7015262) — N2exp (164_("10(2%)'
Both parts in theorem 4.2 depend on the following argument. From theorem 2.3.8 and Proposition
2.3.10in Tao (2012) with appropriate scaling’, we have forevery p = 1, ..., 3 we have that the matrix
norm |[W,|| < 1 with probability at least 1 — 8 exp (—c1£2¢%) and ||[W|| < 1 with probability at
least 1 — exp (—cl /<;2d2) when the weight matrices are initialized according to strategy 4.1. Thus,
conditioning on this event it implies that these matrices satisfy assumption 1. From theorem 4.1

we have that with probability at least 1 — N2 exp ( the gradient confusion bound in

—cdn?
16¢5 (B+2)* ) ’
equation 3 holds. Taking a union bound gives the part (2) of the theorem. We now prove part (1) of
this theorem conditioning on the event that || W || < 1 forevery p € {0,1,...,3}.

The proof strategy is similar to that of theorem 4.1. We will first show that the gradient of the function
h(.,.) as defined in equation 7 with respect to the weights is bounded. We obtain the following
analogue of equation 8.

(VWG (W))Ge, (W) | D Te[Hp1(xi) - gp(xi) T - gp(xy) - Hypor () 7] | +
p€[Blo

(Vwix; (W))x, (W) Z Tr[Hp—1(x;) 'gp<xi)T - gp(x;) 'prl(xi)T] +
pE€Blo

Cxs (W)Cx]- (W) Z [VW (prl(xi) 'gp(xi)T 'gp(xj) ) prl(xi))]—r - (15
P€[Blo

>In particular, each entry has to be scaled by % for matrices {Wp},¢(4) and % for the matrix Wy.
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As in the case of the proof for theorem 4.1, we will upper-bound the ¢>-norm of the above expression.
In particular, we show the following.

[ (TW G (W)G, (W) 37 TelL, 1 (i) - gy(x0) - gy(0x) - Hyma ()] | ||, < 26305+ 2%
P€([Blo
(16)

[ (TW G (W) (W) |37 Tl 1 (i) - gy (x0) - gy(0x) - ()T | ||| < 26305+ 2

P€(Blo
a7
G (WG, (W) Y [V (Hyo1x0) - gy (xi) 1) - Hya(x0)] | < 4B (5 + 2)2,
p€[Blo
(18)

Equations 16 and 17 follow from the the fact that ||(Vw(x, (W))||2 < (o and the arguments in the

proof for theorem 4.1. We will now show the proof sketch for equation 18. For every p € [5]o,
consider || Vw (Hp_1(x;) - gp(x:) " - 8p(x;) - Hp—1(x;)) || Using the symmetry between x; and

X, the expression can be upper-bounded by,

2/ VwHy—1(x:) |l (i) " 1 () H1TELp—1 (¢2) [+ 21Hp—1 () 1V wgp () 1 (35 1L -1 (x2) -
As before we can use an inductive argument to find the upper-bound and thus, we obtain the following

which implies equation 18.

IVw (Hp-1(x:) - gp(xi) " - gp(x)) - Hypo1(xi)) || < 4(8+2)°

Next, we show that the expected value can be lower-bounded by —4 as in the case of theorem 4.2
above. Combining these two gives us the desired result. Consider Ew [hAw (x;,%;)]. We compute
this expectation iteratively as follows.

Ew [hw (xi,%;)]

= EWO [Ewl [ .. ]EWB [hw(Xi, Xj)]

2> —4Ew, |Ew, |...Ew, Z Tr(Hp—1(xi) - gp(xi)T - gp(x;) - Hp—l(xi)T)
pE[Blo
The inequality combines Eq. (7) with Lemma D.1. We now prove the following inequality.

Ew, |Ew, |.. Bw, | > Tr(Hy 1(x:)-gp(x:) " - gp(x;) - Hp_1(x:) ") <1. (19
p€(Blo
Consider the inner-most expectation. Note that the only random variable is W g. Moreover, the term
inside the trace is scalar. Note that the activation function o satisfies |0’ (x)| < 1. Using the linearity
of expectation, the LHS in equation 19 can be upper-bounded by the following.

Ew, [Ewl [ ..Ew,_, [Tr(Hﬁ_l(xi) : Hﬁ_l(xi)T)m (20)
+ Ew, [Ewl [ ..Ew, [ ST Tr(H, i (x) - gp(xi) T - () - Hp_l(xi)T)m . @
peldlo\{5}

The first sum in the above expression can be upper-bounded by 1, since |o(z)| < 1. We will now
show that the second sum is 0. Consider the inner-most expectation. The weights W g appears only

in the expression g, (x;) | - g,(x;). Moreover, note that every entry in W is an i.i.d. normal random
variable with mean 0. Thus, the second summand simplifies to,

Ewo [Bw, |- Ew, [ Y T(H,a(x)-g0x)T - gplx) - Hpma(x) )] ]
PE[Blo\{B,8—-1}
Applying the above argument repeatedly we obtain that the second summand (equation 21) is 0.

Thus, we obtain the inequality in equation 19 which implies that Ew [Aw (x;,%;)] > —4.
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E TECHNICAL LEMMAS

We will briefly describe some technical lemmas we require in our analysis. The following
Chernoff-style concentration bound is proved in Chapter 5 of Vershynin (2018).

Lemma E.1 (Concentration of Lipshitz function over a sphere). Let x € R? be sampled uniformly
from the surface of a d-dimensional sphere. Consider a Lipshitz function { : R — R which is
differentiable everywhere. Let ||V {||5 denote supycpa ||VE(X)||2. Then for any t > 0 and some fixed
constant ¢ > 0, we have the following.

cdt?

Pr [ 0(x) — E[Z(x)]’ > t] < 2exp (—p2> , (22)

where p > ||V{||2.

We will rely on the following generalization of lemma E.1. We would like to point out that the
underlying metric is the Euclidean metric and thus we use the ||. ||2-norm.

Corollary E.1. Let x,y € R? be two mutually independent vectors sampled uniformly from the
surface of a d-dimensional sphere. Consider a Lipshitz function { : R* x R® — R which is
differentiable everywhere. Let ||V ||z denote sup . yyeraxre ||VE(X, y)|l2. Then for any t > 0 and
some fixed constant ¢ > 0, we have the following.

cdt?
Pr Hf(x,y) — E[ﬁ(x,y)}‘ > t} < 2exp <_p2> , (23)
where p > ||V{]|2.

Proof. This corollary can be derived from lemma E.1 as follows. Note that for every fixed y € R?,
equation 22 holds. Additionally, we have that the vectors x and y are mutually independent. Hence
we can write the LHS of equation 23 as the following.

(¥)1=00 (§)a=o0
[
(¥)1=—00 (§)a=—o0
Here ¢(¥) refers to the pdf of the distribution of y. From independence, the inner term in the integral

evaluates to Pr Hé(x, y) — E[¢(x, y)]’ > t} . We know this is less than or equal to 2 exp (—%).
2

ex.y) ~ Bl y)]| > t |y =3

] A(¥)A(F)1...d(¥)a-

Therefore, the integral can be upper bounded by the following.

(¥)a=oc0
cdt? o )
/ Y1=—00 / 2€Xp ||v€||2) ¢(Y)d(y)1 d(y)d

Since ¢(y) is a valid pdf, we get the required equation 23. O
Additionally, we will use the following facts about a normalized Gaussian random variable.

Lemma E.2. For a normalized Gaussian x (i.e., an x sampled uniformly from the surface of a unit
d-dimensional sphere) the following statements are true.

1. Vp € [d] we have that E[(x),] = 0.

2. Vp € [d] we have that E[(x)2] = 1/d.
Proof. Part (1) can be proved by observing that the normalized Gaussian random variable
is spherically symmetric about the origin. In other words, for every p € [d] the vectors

(x1,22,...,%p,...,xq) and (1, 22,...,—Zp, ..., Tq) are identically distributed. Hence E[z,] =
E[—x),] which implies that E[z,] = 0.

Part (2) can be proved by observing that for any p, p’ € [d], ,, and x,, are identically distributed. Fix
any p € [d]. We have that 3,y E[z7,] = d x E[z}]. Note that we have
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(x)1=00 (x)a=o0 Z 22
> Eloy = / / ST (x)d(x)s - d(x)a = 1.
(x p

p'eld) (x)1=—00 2eprrela) T

Therefore E[z2] = 1/d. 0O

)a=—00

We use the following well-known Gaussian concentration inequality in our proofs (e.g., Chapter 5 in
Boucheron et al. (2013)).

Lemma E.3 (Gaussian Concentration). Let x = (21, %2, ...,q) be i.i.d. N'(0,v?) random vari-

ables. Consider a Lipshitz function { : RY — R which is differentiable everywhere. Let ||V (|| denote
SUPyerd || VE(X)||2. Then for any t > 0, we have the following.

|

) ~ B[160)]| = ¢] < 2030 (—;p) , 24)

where p > ||V{||2.

F ADDITIONAL DISCUSSION OF THE SMALL WEIGHTS ASSUMPTION
(ASSUMPTION 1)

Without the small-weights assumption, the signal propagated forward or the gradients Vv f; could
potentially blow up in magnitude, making the network untrainable. Proving non-vacuous bounds in
case of such blow-ups in magnitude of the signal or the gradient is not possible in general, and thus,
we assume this restricted class of weights.

Note that the small-weights assumption is not just a theoretical concern, but also usually enforced in
practice. Neural networks are often trained with weight decay regularizers of the form >, ||W;||%.,
which keep the weights small during optimization. The operator norm of convolutional layers have
also recently been used as an effective regularizer as well for image classification tasks by Sedghi
et al. (2018).

In the proof of theorem 4.2 we showed that assumption 1 holds at initialization with high probability.
While, in general, there is no reason to believe that such a small-weights assumption would continue to
hold during optimization without explicit regularizers like weight decay, some recent work has shown
evidence that the weights do not move too far away during training from the random initialization
point for overparameterized neural nets (Neyshabur et al., 2018; Dziugaite & Roy, 2017; Nagarajan &
Kolter, 2019; Zou et al., 2018; Allen-Zhu et al., 2018; Du et al., 2018; Oymak & Soltanolkotabi, 2018).
It is worth noting though that all these results have been shown under some restrictive assumptions,
such as the width requiring to be much larger than generally used by practitioners.

G CONNECTIONS BETWEEN GRADIENT CONFUSION AND GRADIENT
VARIANCE

The gradient confusion condition has interesting connections the variance of the gradients. If we
assume bounded gradient variance o2, we can bound the gradient confusion parameter 7 in terms of
other quantities. Specifically, we have:

g6 90| < llgallllgsll < 1/2- (lgill® +llgs 1) = 1/2- (llgi — 911> +llg; — glI*) +lgll* < o* +lg],
where g; and g; are two stochastic grads and g is true grad, all at the same w.

More interestingly, it is not possible in general to bound the gradient variance in terms of the gradient
confusion parameter. As a counter-example to the existence of such a bound, consider a problem with
the following distribution on the stochastic gradients: ﬁ samples with gradient % and % samples
with gradient ¢, where p = ¢ — 0. In this case, the gradients are positive, so gradient confusion
1 = 0. The mean of the gradients is given by 1 + ¢(1 — €), which remains bounded as ¢ — 0. On the
other hand, the variance (and thus the squared norm of the stochastic gradients) is actually unbounded
(O(1/¢) as € — 0). While this is a contrived example, it does show why such a bound does not exist.
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A consequence of this is that in theorems 3.1 and 3.2 in section 3, the noise term (the second term
in the RHS of the convergence bounds) does not depend on the learning rate in the general case. If
gradients have unbounded variance, lowering the learning rate does not reduce the variance of the
updates, and thus does not reduce the noise term (i.e., the second term). This further indicates a
regime of high gradient variance but low gradient confusion where SGD would converge faster than
predicted by classical convergence rate results (Moulines & Bach, 2011; Needell et al., 2014).

Of course, in practice, typically the gradient variance is bounded. In this case, tighter convergence
rate bounds (than theorems 3.1 and 3.2) in terms of 7 are possible, which follow as simple corollaries
from classical convergence bounds in terms of the gradient variance such as those in Moulines &
Bach (2011); Needell et al. (2014). In section 3, we deliberately avoid such a bounded variance
condition however, and instead focus on the good behavior of models with better-than-worst-case
gradient confusion.

Having said this, we want to emphasize that our main contribution is to better understand how the
network architecture impacts SGD. In general, it is not tractable to prove the concentration results in
section 4 using the covariance matrix of the gradients alone without further unrealistic assumptions,
such as infinitely wide networks (Schoenholz et al., 2016). A key contribution of this paper is to
identify a suitable surrogate (i.e., the gradient confusion bound) to help us study this relationship
using new tight and clean bounds.

H ADDITIONAL DISCUSSION OF SOME RELATED WORK

The convergence of SGD on over-parameterized models has received a lot of attention. The authors
of Arora et al. (2018b) study the behavior of SGD on over-parameterized problems, and show that
SGD on over-parameterized linear neural nets is similar to applying a certain preconditioner while
optimizing. This can sometimes lead to acceleration when overparameterizing by increasing the
depth of linear neural networks. In this paper, we show that this property does not hold in general (as
mentioned briefly in Arora et al. (2018b)), and that convergence typically slows down because of
gradient confusion when training very deep networks.

The behavior of SGD on over-parameterized problems was also studied in Ma et al. (2017); Bassily
et al. (2018); Vaswani et al. (2018); Schmidt & Roux (2013), using an overfitting condition observed
for some overparameterized neural nets (particularly for convnets), where the minimizer returned
by the optimizer simultaneously minimizes each individual data sample, to show fast convergence
of SGD. In contrast, we aim to establish a more direct relationship between width, depth, problem
dimensionality, and the error floor of SGD convergence.

Other works have studied the impact of structured gradients on SGD. Balduzzi et al. (2017) study the
effects of shattered gradients at initialization for ReLU networks, which is when stochastic gradients
at initialization become negatively correlated. The authors show how gradients get increasingly
shattered with depth in ReLU networks.

Hanin (2018) show that the variance of gradients in fully connected networks with ReL.U activations
is exponential in the sum of the reciprocals of the hidden layer widths at initialization. Further, Hanin
& Rolnick (2018) show that this sum of the reciprocals of the hidden layer widths determines the
variance of the sizes of the activations at each layer during initialization. When this sum of reciprocals
is too large, early training dynamics are very slow, suggesting the difficulties of starting training on
deeper networks, as well as the benefits of increased width.

In Yin et al. (2017), the authors define a property called gradient diversity. This quantity is related
to gradient confusion, but with important differences. Gradient diversity also measures the degree
to which individual gradients at different data samples are different from each other. This measure
gets larger as the individual gradients become orthogonal to each other, and further increases as the
gradients start pointing in opposite directions. In a large batch, higher gradient diversity is desirable,
and this leads to improved convergence rates in distributed settings, as shown in Yin et al. (2017). On
the other hand, gradient confusion between two individual gradients is zero unless the inner product
between them is negative. This is useful for studying convergence rates of small minibatch SGD
since possible gradient updates do not conflict unless they are negatively correlated with each other.
The choice of the definition of gradient diversity in Yin et al. (2017) also has important implications
when its behavior is studied in over-parameterized settings. Chen et al. (2018) extends the work
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of Yin et al. (2017), where the authors prove on 2-layer neural nets (and multi-layer linear neural
nets) that gradient diversity increases with increased width and decreased depth. This does not
however distinguish between the cases where gradients become more orthogonal vs. more negatively
correlated. In this paper, we show that this can have very different effects on the convergence of SGD
in overparameterized settings, and we view our works as complementary.

There has recently also been interest in analyzing conditions under which SGD converges to global
minimizers of overparameterized linear and non-linear neural networks. Arora et al. (2018a) shows
SGD converges linearly to global minimizers for linear neural nets under certain conditions. Du et al.
(2018); Allen-Zhu et al. (2018); Zou et al. (2018); Brutzkus et al. (2017) also show convergence to
global minimizers of SGD for non-linear neural nets. While all these results require the network
to be sufficiently wide, they represent an important step in the direction of better understanding
optimization on neural nets. This paper complements these recent results by studying how one
property, low gradient confusion, contributes to SGD’s success on overparameterized neural nets.
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