
Under review as a conference paper at ICLR 2020

NEURALUCB: CONTEXTUAL BANDITS WITH NEURAL
NETWORK-BASED EXPLORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the stochastic contextual bandit problem, where the reward is gener-
ated from an unknown bounded function with additive noise. We propose the
NeuralUCB algorithm, which leverages the representation power of deep neural
networks and uses the neural network-based random feature mapping to construct
an upper confidence bound (UCB) of reward for efficient exploration. We prove
that, under mild assumptions, NeuralUCB achieves Õ(

√
T) regret bound, where

T is the number of rounds. To the best of our knowledge, our algorithm is the first
neural network-based contextual bandit algorithm with near-optimal regret guar-
antee. Preliminary experiment results on synthetic data corroborate our theory,
and shed light on potential applications of our algorithm to real-world problems.

1 INTRODUCTION

The stochastic contextual bandit problem has been extensively studied in machine learning: at round
t ∈ {1, 2, . . .}, an agent is presented with a set of K actions, each of which is associated with a d-
dimensional feature vector. After choosing an action, the agent will receive a stochastic reward
generated from some unknown distribution conditioned on the chosen action’s feature vector. The
goal of the agent is to maximize the expected cumulative rewards over total T rounds. Contextual
bandit algorithms have been applied to many real-world applications, such as personalized recom-
mendation, advertising and Web search (e.g., Agarwal et al., 2009; Li et al., 2010).

The most studied model in the literature is linear contextual bandits (Auer, 2002; Abe et al., 2003;
Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010; Chu et al., 2011; Li et al., 2010; Abbasi-
Yadkori et al., 2011), which assumes that the expected reward at each round is a linear function of
the feature vector. Linear bandit algorithms have achieved great success in both theory and practice,
such as news article recommendation (Li et al., 2010). However, the linear-reward assumption often
fails to hold exactly in practice, which motivates the study of nonlinear contextual bandits (e.g.,
Filippi et al., 2010; Srinivas et al., 2010; Bubeck et al., 2011; Valko et al., 2013). However, they still
require fairly strong assumptions on the reward function. For instance, Valko et al. (2013) assume
the reward function is in some predefined Reproducing Kernel Hilbert Space (RKHS), and Bubeck
et al. (2011) require it to have a Lipschitz continuous property. Therefore, these algorithms are not
very practical since the RKHS or the metric space is often unknown.

In order to overcome the above shortcomings, deep neural networks (DNNs) (LeCun et al., 2015)
have been introduced to learn the underlying reward function in contextual bandit problem, thanks
to their strong representation power. Given the fact that DNNs enable the agent to make use of
nonlinear models with less domain knowledge, existing work (Riquelme et al., 2018; Zahavy and
Mannor, 2019) focuses on the idea called neural-linear bandit. More precisely, they use the first
L − 1 layers of a DNN as a feature map, which transforms contexts from the raw input space to a
low-dimensional space, usually with better representation and less frequent update. Then they learn
a linear exploration policy on top of the last hidden layer of the DNN with a more frequent update.
These attempts have achieved great empirical success. However, none of these work has provided a
theoretical guarantee on the regret of the algorithms.

In this paper, we take the first step towards provable efficient contextual bandit algorithms based on
deep neural networks. Specifically, we propose a new algorithm, NeuralUCB, which uses a deep
neural network to learn the underlying reward function. At the core of the algorithm is an upper
confidence bound constructed by deep neural network-based random feature mappings. Our regret

1

Under review as a conference paper at ICLR 2020

analysis of NeuralUCB is built on recent results on optimization and generalization of deep neural
networks (Jacot et al., 2018; Arora et al., 2019; Cao and Gu, 2019a). While the main focus of our
paper is mostly theoretical, we also carry out proof-of-concept experiments on synthetic data to
validate the effectiveness of our proposed algorithm.

Our contributions are summarized as follows:

• We propose a neural contextual bandit algorithm using neural network-based exploration. It can
be regarded as an extension of LinUCB (Li et al., 2010) and OFUL (Abbasi-Yadkori et al., 2011),
from linear reward function to any bounded reward function.

• We prove that, under mild assumptions, our algorithm is able to achieve a Õ(d̃
√
T) regret, where

d̃ is the effective dimension of a neural tangent kernel matrix and T is the number of rounds. Our
regret bound recovers the Õ(d

√
T) regret for linear contextual bandit as a special case (Abbasi-

Yadkori et al., 2011), where d is the dimension of context.

• We provide empirical evidence in several proof-of-concept experiments to demonstrate potential
applications of our algorithm to real-world problems.

Notation: Scalars are denoted by lower case letters, vectors by lower case bold face letters, and
matrices by upper case bold face letters. For a positive integer k, [k] denotes {1, . . . , k}. For a

vector θ ∈ Rd, we denote its `2 norm by ‖θ‖2 =
√∑d

i=1 θ
2
i . For a matrix A ∈ Rd×d, we denote

its spectral norm, Frobenius norm, and (i, j)-th entry by ‖A‖2, ‖A‖F , and [A]i,j , respectively.
We denote a sequence of vectors by {θj}tj=1, and similarly for matrices. For two sequences {an}
and {bn}, we use an = O(bn) to denote that there exists some constant C > 0 such that an ≤
Cbn, an = Ω(bn) to denote that there exists some constant C ′ > 0 such that an ≥ C ′bn. In
addition, we use Õ(·) to hide logarithmic factors. We say a random variable X is ν-sub-Gaussian if
E exp(λ(X − EX)) ≤ exp(λ2ν2/2) for any λ > 0.

2 RELATED WORK

2.1 CONTEXTUAL BANDITS

There is a line of extensive work on linear bandits (e.g., Auer, 2002; Abe et al., 2003; Dani et al.,
2008; Rusmevichientong and Tsitsiklis, 2010; Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al.,
2011). For the setting with finitely many arms, Abe et al. (2003) formalized the linear bandit setting
and analyzed some of the earliest algorithms. Auer (2002) proposed SupLinRel algorithm that
achieves Õ

√
dT regret. Chu et al. (2011) obtained the same regret with SupLinUCB that is based

on LinUCB (Li et al., 2010); the authors also provided an lower bound of Ω(
√
dT). For the other

setting with infinitely many arms, a few authors (Dani et al., 2008; Rusmevichientong and Tsitsiklis,
2010; Abbasi-Yadkori et al., 2011) proposed algorithms that achieve Õ(d

√
T) regret. Dani et al.

(2008) also showed an Ω(d
√
T) lower bound on the regret in this setting.

While most algorithms above are based on the idea of upper confidence bounding, it is also possible
to use proper randomization to achieve strong regret guarantees, such as Thompson sampling and
reward perturbation (Thompson, 1933; Chapelle and Li, 2011; Agrawal and Goyal, 2013; Russo and
Van Roy, 2014; 2016; Kveton et al., 2019).

To deal with nonlinearity, generalized linear bandit has been considered, which assumes that the
reward function can be written as a composition of a linear function and a link function. In particular,
Filippi et al. (2010) proposed a GLM-UCB algorithm, which attains Õ(d

√
T) regret. Li et al. (2017)

proposed SupCB-GLM for generalized contextual bandit problems and showed a Õ(
√
dT) regret

that matches the lower bound. Jun et al. (2017) studied how to scale up algorithms for GLM bandits.

A few authors have also explored more general nonlinear bandits without making strong modeling
assumptions. One line of work is variants of expert learning algorithms (Auer et al., 2002), which
typically has time complexity linear in the number of experts (roughly exponential in number of
parameters). Another approach is to reduce a bandit problem into supervised learning, starting
from the epoch-greedy algorithm (Langford and Zhang, 2008) that has an O(T 2/3) regret. Later,

2

Under review as a conference paper at ICLR 2020

Agarwal et al. (2014) develop an algorithm that yields a near-optimal regret bound, but relies on an
optimization oracle that can be expensive. A third approach uses nonparametric modeling, such as
Gaussian process and kernels (Srinivas et al., 2010; Krause and Ong, 2011; Valko et al., 2013). More
specifically, Srinivas et al. (2010) assumed that the reward function is generated from a Gaussian
process with known mean and covariance functions. They proposed a GP-UCB algorithm which
achieves Õ(

√
TγT) regret, where γT is the maximum information gain. Krause and Ong (2011)

assumed the reward function is defined over the join space of contexts and arms and proposed a
Contextual GP-UCB in this setting. Valko et al. (2013) assumed that the reward function lies in
a RKHS defined by some known kernel function with bounded RKHS norm. They proposed a
SupKernelUCB algorithm and showed a Õ(

√
d̃T) regret, where d̃ is effective dimension of the

kernel that can be seen as an generalized notion of the dimension of contexts. There is also work
focusing on bandit problems in general metric space with Lipschitz continuous property on the
context (Kleinberg et al., 2008; Bubeck et al., 2011).

2.2 NEURAL NETWORKS

Different lines of research have been done to provide theoretical understandings of DNNs from
different aspects. For example, to understand how the expressive power of DNNs are related to
their architecture, Telgarsky (2015; 2016); Liang and Srikant (2016); Yarotsky (2017; 2018); Hanin
(2017) showed that deep neural networks can express more function classes than shallow networks.
Lu et al. (2017); Hanin and Sellke (2017) suggested that the width of neural networks is crucial to
improve the expressive power of neural networks. For the optimization of DNNs, a series of work
have been proposed to show that (stochastic) gradient descent can find the global minima of training
loss (Li and Liang, 2018; Du et al., 2019b; Allen-Zhu et al., 2019; Du et al., 2019a; Zou et al., 2019;
Zou and Gu, 2019). For the generalization of DNNs, a series of work (Daniely, 2017; Cao and Gu,
2019b;a; Arora et al., 2019) have been proposed to show that by using (stochastic) gradient descent,
the parameters of a DNN are located in a particular regime and the generalization bound of DNNs
can be characterized by the best function in the corresponding neural tangent kernel space (Jacot
et al., 2018).

3 PROBLEM SETTING

We consider the stochastic K-armed contextual bandit problem, where the total number of rounds
T is known. At round t ∈ [T], the agent observes the tth context consisting of K feature vectors:
{xt,a ∈ Rd | a ∈ [K]}. The agent selects an action at and receive a reward rt,at

. For simplicity, we
denote {xi}TK

i=1 as the collection of {x1,1,x1,2, . . . ,xT,K}. Our goal is to maximize the following
pseudo regret (Audibert et al., 2009):

RT = E
[T∑

t=1

(rt,a∗
t
− rt,at)

]
, (3.1)

where a∗t is the action which maximizes the expected reward at round t, i.e., a∗t =
argmaxa∈[K] E[rt,a]. In this paper, we simply use regret to refer to the pseudo regret in (3.1).

This work makes the following assumption on reward generation: for any round t,

rt,at
= h(xt,at

) + ξt, (3.2)

where h is some unknown function satisfying 0 ≤ h(x) ≤ 1 for any x, and ξt is ν-sub-Gaussian
noise conditioned on x1,a1

, . . . ,xt−1,at−1
. Note that the ν-sub-Gaussian noise assumption for ξt is

a standard assumption in stochastic bandit literature (Abbasi-Yadkori et al., 2011); in particular, any
bounded noise satisfies such an assumption. It is worth noting that we do not impose any structural
assumption on reward function h(x), unlike those made in the literature for linear bandits, general-
ized linear bandits, RKHS realizability, etc. In other words, our reward function class contains the
function classes of linear, generalized linear, Gaussian process and bounded RKHS norm.

In order to learn the reward function h in (3.2), we propose to use a fully connected deep neural
networks with depth L ≥ 2:

f(x;θ) =
√
m ·WLσ

(
WL−1σ

(
· · ·σ(W1x)

))
, (3.3)

3

Under review as a conference paper at ICLR 2020

where σ(x) = max{x, 0} is the rectified linear unit (ReLU) activation function, W1 ∈
Rm×d,Wi ∈ Rm×m, 2 ≤ i ≤ L− 1,WL ∈ Rm×1, and θ = [vec(W1)>, . . . , vec(WL)>]> ∈ Rp

with p = m+md+m2(L−1). Without loss of generality, we assume that the width of each hidden
layer is the same (i.e., m) for convenience in analysis. We denote the gradient of the neural network
function by g(x;θ) = ∇θf(x;θ) ∈ Rp.

4 THE NEURALUCB ALGORITHM

We present in Algorithm 1 our algorithm, NeuralUCB. The key idea is to use the gradient of the
initial neural network g(x;θ0) as a random feature mapping, together with upper confidence bound-
based exploration used in Li et al. (2010); Chu et al. (2011); Abbasi-Yadkori et al. (2011).

In particular, Algorithm 1 first initializes θ0 ∈ Rp by randomly generates each entry of θ0 from
appropriate Gaussian distributions. With θ0, we define a feature mapping through the network
gradient: φ(x) = g(x;θ0)/

√
m. At round t, Algorithm 1 observes the context set for each action

{xt,a}Ka=1. Then, it chooses action at by using upper confidence bound-based exploration in (4.1),
and receives the corresponding reward rt,at

. At the end of round t, it constructs a new confidence
set Ct as in (4.2).
Algorithm 1 NeuralUCB

1: Input: number of rounds T , regularization parameter λ, exploration parameter ν, confidence
parameter δ, norm parameter S, network width m, network depth L

2: Initialization: Generate each entry of Wl independently from N(0, 2/m) for 1 ≤ l ≤ L − 1,
and each entry of WL independently from N(0, 1/m). Define φ(x) = g(x;θ0)/

√
m, where

θ0 = [vec(W1)>, . . . , vec(WL)>]> ∈ Rp

3: Z0 = λI, b0 = 0
4: for t = 1, . . . , T do
5: Observe {xt,a}Ka=1 and compute

(at, θ̃t,at
) = argmax

a∈[K],θ∈Ct−1

〈φ(xt,a),θ − θ0〉 (4.1)

6: Play at and receive reward rt,at

7: Compute

Zt = Zt−1 + φ(xt,at
)φ(xt,at

)> ∈ Rp×p, bt = bt−1 + rt,at
φ(xt,at

) ∈ Rp

8: Compute θt = Z−1t bt + θ0 ∈ Rp

9: Construct Ct as

Ct = {θ : ‖θt − θ‖Zt
≤ γt}, where γt = ν

√
log

det Zt

detλI
− 2 log δ +

√
λS (4.2)

10: end for

Comparison to Existing Algorithms Here we compare NeuralUCB with other neural network
based contextual bandit algorithms. Allesiardo et al. (2014) proposed NeuralBandit which consists
of K neural networks. It uses a committee of networks to compute the score of each action and
choose the action by ε-greedy policy. In contrast, our NeuralUCB uses upper confidence bound
based exploration, which is more effective than ε-greedy. In addition, our algorithm only used one
neural network instead of K neural networks, thus can be computationally more efficient.

Riquelme et al. (2018) proposed NeuralLinear, which uses the first L− 1 layer of a L-layer DNN to
learn a representation, then applies Thompson sampling on the last layer to choose action. Zahavy
and Mannor (2019) proposed a NeuralLinear with limited memory (NeuralLinearLM), which also
uses the first L − 1 layer of a L-layer DNN to learn a representation and applies Thompson sam-
pling on the last layer. Instead of computing the exact mean and variance in Thompson sampling,
NeuralLinearLM only computes their approximation. Unlike NeuralLinear and NeuralLinearLM,
NeuralUCB uses the entire DNN to learn the representation and constructs the upper confidence
bound based on the random feature mapping defined by the neural network gradient.

4

Under review as a conference paper at ICLR 2020

Efficient Implementation Algorithm 1 can be implemented efficiently. At round t, we define

dt,a = Z−1t−1φ(xt,a),

and we will discuss about how to compute dt,a efficiently later in this section. Based on dt,a, we
can update θt by the Sherman-Morrison formula (Golub and Van Loan, 1996):

θt − θ0 = Z−1t bt

=

(
Z−1t−1 −

Z−1t−1φ(xt,at
)φ(xt,at

)>Z−1t−1

1 + φ(xt,at)
>Z−1t−1φ(xt,at)

)
(bt−1 + rt,atφ(xt,at))

= θt−1 − θ0 −
dt(φ(xt,at

)>(θt−1 − θ0))

1 + φ(xt,at)
>dt

+ rt,atdt − rt,at

dt(φ(xt,at
)>dt)

1 + φ(xt,at)
>dt

. (4.3)

We also update det(Zt) by matrix determinant lemma (Golub and Van Loan, 1996):

det(Zt) = det
[
Zt−1 + φ(xt,at)φ(xt,at)

>
]

=
[
1 + φ(xt,at)

>Z−1t−1φ(xt,at)
]

det(Zt−1). (4.4)

Note that both (4.3) and (4.4) only require to compute vector inner products, which only requires
O(p) time. Now we show how to compute dt,a efficiently. By the definition of dt,a, we have

φ(xt,a) = Zt−1dt,a =

(
λI +

t−1∑
i=1

φ(xi,ai
)φ(xi,ai

)>
)

dt,a.

Thus, dt,a is the global minimizer of the following convex optimization problem:

min
d∈Rp

∥∥∥∥(λI +

t−1∑
i=1

φ(xi,ai)φ(xi,ai)
>
)

d− φ(xt,a)

∥∥∥∥2
2

,

and we can use (stochastic) gradient descent to find dt,a efficiently.

5 REGRET ANALYSIS

In this section, we present a regret analysis for Algorithm 1. Recall that {xi}TK
i=1 is the collection of

all {xt,a}. Since our regret analysis is built upon the recently proposed neural tangent kernel matrix
(Jacot et al., 2018), here we provide its formal definition for completeness.
Definition 5.1 (Jacot et al. (2018); Cao and Gu (2019a)). For a set of contexts {xi}TK

i=1, define

H̃
(1)
i,j = Σ

(1)
i,j = 〈xi,xj〉,

A
(l)
i,j =

(
Σ

(l)
i,i Σ

(l)
i,j

Σ
(l)
i,j Σ

(l)
j,j

)
,

Σ
(l)
i,j = 2E

(u,v)∼N(0,A
(l)
i,j)
σ(u)σ(v),

H̃
(l+1)
i,j = 2H̃

(l)
i,jE(u,v)∼N(0,A

(l)
i,j)
σ′(u)σ′(v) + Σ

(l+1)
i,j .

Then, H = (H̃(L) + Σ(L))/2 is called the neural tangent kernel (NTK) matrix on the context set.

Based on Definition 5.1, we first lay out the assumption on the contexts {xi}TK
i=1.

Assumption 5.2. For any 1 ≤ i ≤ TK, ‖xi‖2 ≤ 1. Meanwhile, H � λ0I.

Assumption 5.2 says that the neural tangent kernel matrix is non-singular, which is a very mild
assumption made in the related literature (Du et al., 2019a; Arora et al., 2019; Cao and Gu, 2019a).
It can be satisfied as long as any pair of contexts in {xi}TK

i=1 are not parallel (or identical).

Next we define the effective dimension d̃ of the neural tangent kernel matrix on contexts {xi}TK
i=1.

Definition 5.3. The effective dimension d̃ of the neural tangent kernel matrix on contexts {xi}TK
i=1

is defined as

d̃ =
log det(I + H/λ)

log(1 + TK)
. (5.1)

5

Under review as a conference paper at ICLR 2020

Remark 5.4. The notion of effective dimension was introduced by Valko et al. (2013) for analyzing
kernel contextual bandits, which was defined by the eigenvalues of any kernel matrix restricted
on the given contexts. We adopt a similar but different definition from Yang and Wang (2019),
which was used for the analysis of kernel-based Q learning. Suppose the effective dimension of
the reproducing kernel Hilbert space induced by the given kernel is d̂ and the feature mapping ψ
induced by the given kernel satisfies ‖ψ(x)‖2 ≤ 1 for any x ∈ Rd. Then it is easy to verify that if
λ ≥ 1, we always have d̃ ≤ d̂ (See Appendix A.2 for the verification).

Now we are ready to present the main result, which provides the regret bound RT of Algorithm 1.

Theorem 5.5. Let d̃ be the effective dimension defined in Definition 5.3. Let h = [h(xi)]TK
i=1 ∈

RTK . There exists some universal constant C > 0, such that for any δ ∈ (0, 1), if m ≥
CT 4K4L6 log(T 2K2L/δ)/λ40, and S ≥

√
2h>H−1h, then with probability at least 1 − δ over

the random initialization of θ0, the regret of Algorithm 1 satisfies

RT ≤ 8
√
T

(
ν

√
2d̃ log(1 + TK)− 2 log(δ/3) +

√
λS

)√
d̃ log(1 + TK), (5.2)

where ν is the variance of sub-Gaussian noise in the reward model in (3.1).
Remark 5.6. It is worth noting that, simply applying results for linear bandit to our algorithm would
lead to a linear dependence of p or

√
p in the regret. Such a bound is vacuous since in our setting p

would be very large compared with the number of rounds T and the input context dimension d. In
contrast, our regret bound only depends on d̃, which is much smaller than p.

Remark 5.7. Treating ν and λ as constants and taking S =
√

2h>H−1h, then the regret bound in

(5.2) becomesRT = Õ
(√

d̃T

√
max{d̃,h>H−1h}

)
. Specifically, if h belongs to the RKHSH in-

duced by the neural tangent kernel with bounded RKHS norm ‖h‖H, we have ‖h‖H =
√

h>H−1h,

and our regert bound can be further written as RT = Õ
(√

d̃T

√
max{d̃, ‖h‖H}

)
.

The high-probability result in Theorem 5.5 can be used to obtain a bound on the expected regret.

Corollary 5.8. Let d̃ be the effective dimension in Definition 5.3. Let h = [h(xi)]TK
i=1. There exists

some constant C > 0 such that, if m ≥ CT 4K4L6 log(T 2K2L)/λ40 and S ≥
√

2h>H−1h, then

ERT ≤ 8
√
T

(
ν

√
2d̃ log(1 + TK) + 2 log(3T) +

√
λS

)√
d̃ log(1 + TK) + 1.

6 PROOF OF THE MAIN RESULTS

This section provides the proof of Theorem 5.5. We first point out two main technical challenges in
this proof:

• Unlike previous work (Chu et al., 2011; Abbasi-Yadkori et al., 2011; Filippi et al., 2010; Valko
et al., 2013; Srinivas et al., 2010), we do not make any strong assumption on the reward function
h such as linear realizability or belonging to some RKHS, which makes the regret analysis of
NeuralUCB more difficult.

• In practice, the neural network is often overparametrized, which implies m is very big. Thus, we
need to make sure the regret bound is independent of m.

The two challenges above are addressed by the following technical lemmas. Their proofs are found
in the appendix.
Lemma 6.1. There exists some constant C > 0 such that for any δ ∈ (0, 1), if m ≥
CT 4K4L6 log(T 2K2L/δ)/λ40, then with probability at least 1− δ over the random initialization of
θ0, there exists a θ∗ ∈ Rp such that

h(xi) = 〈φ(xi),θ∗ − θ0〉, ‖θ∗ − θ0‖2 ≤
√

2h>H−1h, (6.1)

for all 1 ≤ i ≤ TK.

6

Under review as a conference paper at ICLR 2020

Lemma 6.1 suggests that with high probability, the reward function restricted on {xi}TK
i=1 can be

regarded as a linear function of φ(xi). Equipped with Lemma 6.1, we can utilize existing results
on linear bandits (Abbasi-Yadkori et al., 2011) to show that with high probability, θ∗ lies in the
sequence of confidence sets constructed in our algorithm.

Lemma 6.2. Under the same conditions of Lemma 6.1, with probability at least 1− 2δ, θ∗ ∈ Ct for
all 1 ≤ t ≤ T , where Ct is defined in (4.2).

It is worth noting that γt in (4.2) has a term log |det Zt|1/2. A trivial upper bound of log |det Zt|1/2
would result in an dependence on the neural network width m, since the dimension of Zt is p =
md+m2(L− 2) +m. The next lemma establishes an upper bound which is independent of m, and
is only related to effective dimension d̃.

Lemma 6.3. Under the same conditions of Lemma 6.1, let d̃ be the effective dimension in Definition
5.3. Let φ(·) be as defined in Algorithm 1. Then with probability at least 1− δ, we have

T∑
t=1

γ2t−1 min

{
‖φ(xt,at

)‖2
Z−1

t−1

, 1

}
≤ 4

(
ν

√
2d̃ log(1 + TK)− 2 log δ +

√
λS

)2

d̃ log(1 + TK).

With Lemmas 6.1, 6.2 and 6.3, we are ready to provide a proof for our main result.

Proof of Theorem 5.5. Denote a∗t = argmaxa∈[K] h(xt,a). First we bound RT as follows:

RT =

T∑
t=1

[
h
(
xt,a∗

t

)
− h
(
xt,at

)]
≤

√√√√T

T∑
t=1

[
h
(
xt,a∗

t

)
− h
(
xt,at

)]2
, (6.2)

where the inequality holds due to Cauchy-Schwarz inequality. By Lemma 6.2, with probability at
least 1 − 2δ, for all 1 ≤ t ≤ T , we have θ∗ ∈ Ct. Thus, h(xt,a∗

t
) − h(xt,at) can be bounded as

follows:

h(xt,a∗
t
)− h(xt,at)

= 〈φ(xt,a∗
t
),θ∗ − θ0〉 − 〈φ(xt,at

),θ∗ − θ0〉

≤ 〈φ(xt,at
), θ̃t,at

− θ0〉 − 〈φ(xt,at
),θ∗ − θ0〉

= 〈φ(xt,at
), θ̃t,at

− θt−1〉 − 〈φ(xt,at
),θ∗ − θt−1〉

≤ ‖θ̃t,at
− θt−1‖Zt−1‖φ(xt,at

)‖Z−1
t−1

+ ‖θ∗ − θt−1‖Zt−1‖φ(xt,at
)‖Z−1

t−1

≤ 2γt−1‖φ(xt,at
)‖Z−1

t−1
, (6.3)

where the first inequality holds due to optimality condition in (4.1), the second inequality is by
Cauchy-Schwarz inequality, and the third inequality holds by the definition of Ct−1. Using the fact
that h(xt,a∗

t
)− h(xt,at

) ≤ 1 and (6.3), we have

h(xt,a∗
t
)− h(xt,at

) ≤ min
{

2γt−1‖φ(xt,at
)‖Z−1

t−1
, 1
}
≤ 2γt−1 min

{
‖φ(xt,at

)‖Z−1
t−1
, 1
}
. (6.4)

Substituting (6.4) into (6.2), we have that, with probability at least 1− 3δ,

RT ≤ 4

√√√√T

T∑
t=1

γ2t−1 min
{
‖φ(xt,at

)‖2
Z−1

t−1

, 1
}

≤ 8
√
T

(
ν

√
2d̃ log(1 + TK)− 2 log δ +

√
λS

)√
d̃ log(1 + TK),

where the last inequality holds due to Lemma 6.3. Finally, by replacing δ with δ/3, we complete the
proof.

7

Under review as a conference paper at ICLR 2020

0 2000 4000 6000 8000 10000
Round

0

10000

20000

30000

40000

50000

Re
gr

et

LinUCB
Neural -Greedy
NeuralUCB

(a) h1(x) = 10(x>a)2

0 2000 4000 6000 8000 10000
Round

0

500

1000

1500

2000

Re
gr

et

LinUCB
Neural -Greedy
NeuralUCB

(b) h2(x) = x>A>Ax

0 2000 4000 6000 8000 10000
Round

0

200

400

600

800

1000

1200

1400

1600

Re
gr

et

LinUCB
Neural -Greedy
NeuralUCB

(c) h3(x) = cos(3x>a)

Figure 1: Comparison of LinUCB, Neural ε-Greedy and NeuralUCB.

7 EXPERIMENTS

While our focus in this work is mostly on theoretical analysis of regret, we present results in proof-
of-concept experiments in simulated problems. We compare it with two representative baselines:
(1) LinUCB, and (2) Neural ε-Greedy, which replaces the UCB based exploration in Algorithm 1 by
ε-greedy based exploration. We use the accumulated regret as the performance metric.

In our simulation, we use contextual bandit problems with context dimension d = 20, the number
of actions K = 4 and the number of rounds T = 10000. The contextual vectors {x1,1, . . . ,xT,K}
are randomly chosen from N(0, I) and then normalized to have unit norm, i.e., ‖xt,a‖2 = 1. For
the reward function h, we investigate the following nonlinear functions:

h1(x) = 10(x>a)2, h2(x) = x>A>Ax, h3(x) = cos(3x>a),

where A ∈ Rd×d and each entry of A is randomly generated from N(0, 1), a is randomly chosen
from N(0, I) and normalized to have ‖θ∗‖2 = 1. For each hi(·), the reward at round t for action a
is generated by rt,a = hi(xt,a) + ξt, where ξt is independently drawn from N(0, 1).

For LinUCB, we follow Li et al. (2010) to implement it with a constant radius α. We do a grid
search for α over {0.01, 0.1, 1, 10} and choose the best α for comparison. For NeuralUCB and
Neural ε-Greedy, we choose a two-layer neural network f(x;θ) =

√
mW2σ(W1x) with network

width m = 20, where θ = [vec(W1)>, vec(W2)>] ∈ Rp and p = md + m. For NeuralUCB, we
choose m = 20, L = 2, ν = 1, λ = 1, δ = 0.1, so p = 420. For hyper-parameter S, we do a
grid search over {0.01, 0.1, 1, 10} and choose the best S for comparison. For Neural ε-Greedy, we
do a grid search for ε over {0.001, 0.01, 0.1, 0.2} and choose the best ε for comparison. For all the
algorithms, we repeat the experiment for 10 runs and report the averaged results for comparison.

We plot the accumulative regret of LinUCB, Neural ε-Greedy and NeuralUCB in Figure 1, for
reward function h ∈ {h1, h2, h3}. We can see that due to the nonlinearity of reward function h, Lin-
UCB fails to learn the true reward function and hence achieve an almost linear regret, as expected. In
contrast, thanks to the neural network representation and efficient exploration, NeuralUCB achieves
a sublinear regret which is much lower than that of LinUCB. The performance of Neural ε-Greedy is
in-between. This suggests that while Neural ε-greedy can capture the nonlinearity of the underlying
reward function, ε-Greedy based exploration is not as effective as UCB based exploration. This con-
firms the effectiveness of NeuralUCB for contextual bandit problems with any bounded (nonlinear)
reward function. It is interesting to note that although the network width m in the experiment is
not as large as our theory suggests, NeuralUCB still achieves a sublinear regret for nonlinear reward
functions. We leave it as a future work to investigate the impact of m on regret.

8 CONCLUSIONS AND FUTURE WORK

In this work, we proposed a new algorithm NeuralUCB for stochastic contextual bandit problems
based on neural networks. We show that for arbitrary bounded reward function, our algorithm
achieves Õ(d̃

√
T) regret bound. Our preliminary experiment results on synthetic data corroborate

our theoretical findings. In the future, we are interested in a systematic empirical evaluation of
NeuralUCB on real world datasets, and compare it with the state-of-the-art neural network based
contextual bandit algorithms (without provable guarantee in regret) (Riquelme et al., 2018; Zahavy
and Mannor, 2019). Another interesting direction is provably efficient exploration with neural net-
work using other strategies like Thompson sampling.

8

Under review as a conference paper at ICLR 2020

REFERENCES

ABBASI-YADKORI, Y., PÁL, D. and SZEPESVÁRI, C. (2011). Improved algorithms for linear
stochastic bandits. In Advances in Neural Information Processing Systems.

ABE, N., BIERMANN, A. W. and LONG, P. M. (2003). Reinforcement learning with immediate
rewards and linear hypotheses. Algorithmica 37 263–293.

AGARWAL, A., HSU, D., KALE, S., LANGFORD, J., LI, L. and SCHAPIRE, R. E. (2014). Taming
the monster: A fast and simple algorithm for contextual bandits. In Proceedings of the 31st
International Conference on Machine Learning (ICML).

AGARWAL, D., CHEN, B.-C., ELANGO, P., MOTGI, N., PARK, S.-T., RAMAKRISHNAN, R., ROY,
S. and ZACHARIAH, J. (2009). Online models for content optimization. In Advances in Neural
Information Processing Systems.

AGRAWAL, S. and GOYAL, N. (2013). Thompson sampling for contextual bandits with linear
payoffs. In International Conference on Machine Learning.

ALLEN-ZHU, Z., LI, Y. and SONG, Z. (2019). A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning.

ALLESIARDO, R., FÉRAUD, R. and BOUNEFFOUF, D. (2014). A neural networks committee for
the contextual bandit problem. In International Conference on Neural Information Processing.
Springer.

ARORA, S., DU, S. S., HU, W., LI, Z., SALAKHUTDINOV, R. and WANG, R. (2019). On exact
computation with an infinitely wide neural net. In Advances in Neural Information Processing
Systems.

AUDIBERT, J.-Y., MUNOS, R. and SZEPESVÁRI, C. (2009). Exploration–exploitation tradeoff
using variance estimates in multi-armed bandits. Theoretical Computer Science 410 1876–1902.

AUER, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of
Machine Learning Research 3 397–422.

AUER, P., CESA-BIANCHI, N., FREUND, Y. and SCHAPIRE, R. E. (2002). The nonstochastic
multiarmed bandit problem. SIAM Journal on Computing 32 48–77.

BUBECK, S., MUNOS, R., STOLTZ, G. and SZEPESVÁRI, C. (2011). X-armed bandits. Journal of
Machine Learning Research 12 1655–1695.

CAO, Y. and GU, Q. (2019a). Generalization bounds of stochastic gradient descent for wide and
deep neural networks. In Advances in Neural Information Processing Systems.

CAO, Y. and GU, Q. (2019b). A generalization theory of gradient descent for learning over-
parameterized deep relu networks. arXiv preprint arXiv:1902.01384 .

CHAPELLE, O. and LI, L. (2011). An empirical evaluation of thompson sampling. In Advances in
neural information processing systems.

CHU, W., LI, L., REYZIN, L. and SCHAPIRE, R. (2011). Contextual bandits with linear payoff
functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics.

DANI, V., HAYES, T. P. and KAKADE, S. M. (2008). Stochastic linear optimization under bandit
feedback .

DANIELY, A. (2017). Sgd learns the conjugate kernel class of the network. In Advances in Neural
Information Processing Systems.

DU, S., LEE, J., LI, H., WANG, L. and ZHAI, X. (2019a). Gradient descent finds global minima
of deep neural networks. In International Conference on Machine Learning.

9

Under review as a conference paper at ICLR 2020

DU, S. S., ZHAI, X., POCZOS, B. and SINGH, A. (2019b). Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations.
URL https://openreview.net/forum?id=S1eK3i09YQ

FILIPPI, S., CAPPE, O., GARIVIER, A. and SZEPESVÁRI, C. (2010). Parametric bandits: The
generalized linear case. In Advances in Neural Information Processing Systems.

GOLUB, G. H. and VAN LOAN, C. F. (1996). Matrix Computations (3rd Ed.). Johns Hopkins
University Press, Baltimore, MD, USA.

HANIN, B. (2017). Universal function approximation by deep neural nets with bounded width and
ReLU activations. arXiv preprint arXiv:1708.02691 .

HANIN, B. and SELLKE, M. (2017). Approximating continuous functions by ReLU nets of minimal
width. arXiv preprint arXiv:1710.11278 .

JACOT, A., GABRIEL, F. and HONGLER, C. (2018). Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems.

JUN, K.-S., BHARGAVA, A., NOWAK, R. D. and WILLETT, R. (2017). Scalable generalized linear
bandits: Online computation and hashing. In Advances in Neural Information Processing Systems
30 (NIPS).

KLEINBERG, R., SLIVKINS, A. and UPFAL, E. (2008). Multi-armed bandits in metric spaces. In
Proceedings of the fortieth annual ACM symposium on Theory of computing. ACM.

KRAUSE, A. and ONG, C. S. (2011). Contextual gaussian process bandit optimization. In Advances
in neural information processing systems.

KVETON, B., SZEPESVÁRI, C., GHAVAMZADEH, M. and BOUTILIER, C. (2019). Perturbed-
history exploration in stochastic linear bandits. In Proceedings of the 35th Conference on Uncer-
tainty in Artificial Intelligence (UAI).

LANGFORD, J. and ZHANG, T. (2008). The epoch-greedy algorithm for contextual multi-armed
bandits. In Advances in Neural Information Processing Systems 20 (NIPS).

LECUN, Y., BENGIO, Y. and HINTON, G. (2015). Deep learning. nature 521 436.

LI, L., CHU, W., LANGFORD, J. and SCHAPIRE, R. E. (2010). A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web. ACM.

LI, L., LU, Y. and ZHOU, D. (2017). Provably optimal algorithms for generalized linear contextual
bandits. In Proceedings of the 34th International Conference on Machine Learning-Volume 70.
JMLR. org.

LI, Y. and LIANG, Y. (2018). Learning overparameterized neural networks via stochastic gradient
descent on structured data. In Advances in Neural Information Processing Systems.

LIANG, S. and SRIKANT, R. (2016). Why deep neural networks for function approximation? arXiv
preprint arXiv:1610.04161 .

LU, Z., PU, H., WANG, F., HU, Z. and WANG, L. (2017). The expressive power of neural networks:
A view from the width. In Advances in neural information processing systems.

RIQUELME, C., TUCKER, G. and SNOEK, J. (2018). Deep bayesian bandits showdown. In Inter-
national Conference on Learning Representations.

RUSMEVICHIENTONG, P. and TSITSIKLIS, J. N. (2010). Linearly parameterized bandits. Mathe-
matics of Operations Research 35 395–411.

RUSSO, D. and VAN ROY, B. (2014). Learning to optimize via posterior sampling. Mathematics of
Operations Research 39 1221–1243.

10

https://openreview.net/forum?id=S1eK3i09YQ

Under review as a conference paper at ICLR 2020

RUSSO, D. and VAN ROY, B. (2016). An information-theoretic analysis of thompson sampling.
The Journal of Machine Learning Research 17 2442–2471.

SRINIVAS, N., KRAUSE, A., KAKADE, S. and SEEGER, M. (2010). Gaussian process optimization
in the bandit setting: no regret and experimental design. In Proceedings of the 27th International
Conference on International Conference on Machine Learning. Omnipress.

TELGARSKY, M. (2015). Representation benefits of deep feedforward networks. arXiv preprint
arXiv:1509.08101 .

TELGARSKY, M. (2016). Benefits of depth in neural networks. arXiv preprint arXiv:1602.04485 .

THOMPSON, W. R. (1933). On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika 25 285–294.

VALKO, M., KORDA, N., MUNOS, R., FLAOUNAS, I. and CRISTIANINI, N. (2013). Finite-time
analysis of kernelised contextual bandits. arXiv preprint arXiv:1309.6869 .

YANG, L. F. and WANG, M. (2019). Reinforcement leaning in feature space: Matrix bandit, kernels,
and regret bound. arXiv preprint arXiv:1905.10389 .

YAROTSKY, D. (2017). Error bounds for approximations with deep ReLU networks. Neural Net-
works 94 103–114.

YAROTSKY, D. (2018). Optimal approximation of continuous functions by very deep ReLU net-
works. arXiv preprint arXiv:1802.03620 .

ZAHAVY, T. and MANNOR, S. (2019). Deep neural linear bandits: Overcoming catastrophic for-
getting through likelihood matching. arXiv preprint arXiv:1901.08612 .

ZOU, D., CAO, Y., ZHOU, D. and GU, Q. (2019). Stochastic gradient descent optimizes over-
parameterized deep relu networks. Machine Learning .

ZOU, D. and GU, Q. (2019). An improved analysis of training over-parameterized deep neural
networks. In Advances in Neural Information Processing Systems.

11

Under review as a conference paper at ICLR 2020

A PROOF OF MAIN THEOREM

A.1 PROOF OF COROLLARY 5.8

Proof of Corollary 5.8. Notice that RT ≤ T since 0 ≤ h(x) ≤ 1. Thus, with the fact that with
probability at least 1− δ, (5.2) holds, we can bound ERT as

ERT ≤ (1− δ)
(

8
√
T

(
ν

√
2d̃ log(1 + TK)− 2 log δ/2 +

√
λS

)√
d̃ log(1 + TK)

)
+ δT.

(A.1)

Taking δ = 1/T , our statement holds.

A.2 VERIFICATION OF THE CLAIM IN REMARK 5.4

Suppose there exists a mapping ψ : Rd → Rd̂ satisfying ‖ψ(x)‖2 ≤ 1 which maps any context
x ∈ Rd to the Hilbert space H associated with the Gram matrix H ∈ RTK×TK over contexts
{xi}TK

i=1. Then H = Ψ>Ψ, where Ψ = [ψ(x1), . . . ,ψ(xTK)] ∈ Rd̂×TK . Thus, we can bound the
effective dimension d̃ as follows

d̃ =
log det[I + H/λ]

log(1 + TK)
=

log det
[
I + ΨΨ>/λ

]
log(1 + TK)

≤ d̂ ·
log
∥∥I + ΨΨ>/λ

∥∥
2

log(1 + TK)
≤ d̂,

where the second equality holds due to the fact that det(I+A>A/λ) = det(I+AA>/λ) holds for
any matrix A, the first inequality holds since det A ≤ ‖A‖d̂2 for any A ∈ Rd̂×d̂, the last inequality
holds because∥∥I + ΨΨ>/λ

∥∥
2
≤ 1 +

∥∥ΨΨ>
∥∥
2
≤ 1 +

TK∑
i=1

∥∥ψ(xi)ψ(xi)>
∥∥
2
≤ 1 + TK.

Here the first inequality is due to triangle inequality and the fact λ ≥ 1, the second inequality holds
due to the definition of Ψ and triangle inequality, and the last inequality is by ‖ψ(xi)‖2 ≤ 1 for any
1 ≤ i ≤ TK.

B PROOF OF TECHNICAL LEMMAS

B.1 PROOF OF LEMMA 6.1

In order to prove Lemma 6.1, we need the following lemma:
Lemma B.1. Let G = [φ(x1), . . . ,φ(xTK)] ∈ Rp×(TK). We denote the neural tangent kernel
matrix H the same as Definition 5.1. For any δ ∈ (0, 1), if

m = Ω

(
T 4K4L6 log(T 2K2L/δ)

λ40

)
,

then with probability at least 1− δ over the random initialization of θ0, we have

‖G>G−H‖F ≤ λ0/3.

Proof of Lemma 6.1. By Assumption 5.2, we know that λ0 > 0. By the choice of m and Lemma
B.1, with probability at least 1 − δ, G>G � 2λ0I/3 � 0. Thus, suppose the singular value
decomposition of G is G = PAQ>, P ∈ Rp×TK ,A ∈ RTK×TK ,Q ∈ RTK×TK , we have
A � 0 and θ∗ = θ0 + PA−1Qh satisfies (6.1). To validate that θ∗ satisfies (6.1), first we have

G>(θ∗ − θ0) = QAP>PA−1Q>h = h,

which suggests that for any i, 〈φ(xi),θ∗ − θ0〉 = h(xi). We also have

‖θ∗ − θ0‖22 = h>Q>A−2Qh = h>G>Gh = h>Hh + h>(G>G−H)h ≤ 2h>Hh,

where the last inequality holds because G>G−H � H, since

G>G−H � ‖G>G−H‖F I � λ0I � H,

where the second inequality holds due to Lemma B.1. Thus, our statement holds.

12

Under review as a conference paper at ICLR 2020

B.2 PROOF OF LEMMA 6.2

Proof of Lemma 6.2. By Lemma 6.1, with probability at least 1−δ, there exists θ∗ such that for any
1 ≤ t ≤ T ,

h(xt,at) = 〈φ(xt,at),θ
∗ − θ0〉, ‖θ∗ − θ0‖2 ≤

√
2h>Hh ≤ S.

Thus, by Theorem 2 in Abbasi-Yadkori et al. (2011), with probability at least 1 − 2δ, θ∗ ∈ Ct for
any 1 ≤ t ≤ T .

B.3 PROOF OF LEMMA 6.3

To prove Lemma 6.3, we need the following lemma from Abbasi-Yadkori et al. (2011).

Lemma B.2 (Lemma 11, Abbasi-Yadkori et al. (2011)). We have the following inequality:

T∑
t=1

min

{
‖φ(xt,at

)‖2
Z−1

t−1

, 1

}
≤ 2 log

det Zt

detλI
. (B.1)

Proof of Lemma 6.3. First by the definition of γt, we know that γt is a monotonic function w.r.t.
det Zt. By the definition of Zt, we know that ZT � Zt, which implies that det ZT ≤ det Zt. Thus,
γt ≤ γT . Second, by Lemma B.2 we know that

T∑
t=1

min

{
‖φ(xt,at)‖2Z−1

t−1

, 1

}
≤ 2 log

det ZT

detλI
. (B.2)

Next we are going to bound log det Zt. Denote G = [φ(x1), . . . ,φ(xTK)] ∈ Rp×(TK), then we
have

log
det ZT

detλI
= log

det(λI +
∑T

t=1 φ(xt,at))

λp

= log det

(
I +

T∑
t=1

φ(xt,at)φ(xt,at)
>/λ

)

≤ log det

(
I +

TK∑
i=1

φ(xi)φ(xi)>/λ

)
= log det

(
I + GG>/λ

)
= log det

(
I + G>G/λ

)
, (B.3)

where the fourth equality holds since for any matrix A ∈ Rp×TK , we have det(I + AA>) =
det(I + A>A). We can can be further bound (B.3) by the follows:

log det

(
I + G>G/λ

)
= log det

(
I + H/λ+ (G>G−H)/λ

)
≤ log det

(
I + H/λ

)
+ 〈(I + H/λ)−1, (G>G−H)/λ〉

≤ log det

(
I + H/λ

)
+ ‖(I + H/λ)−1‖2‖G>G−H‖F /λ

≤ log det

(
I + H/λ

)
+ λ · λ0‖G>G−H‖F /λ

≤ d̃ log(1 + TK) + 1

≤ 2d̃ log(1 + TK), (B.4)

13

Under review as a conference paper at ICLR 2020

where the first inequality holds due to the concavity of log det(·), the third inequality holds due to
the fact that I + H/λ � H/λ. The fourth inequality holds by Lemma B.1 and the definition of
effective dimension in Definition 5.3. Finally, substituting (B.4) into (B.3) and using (B.2), we have

T∑
t=1

γ2t−1 min

{
‖φ(xt,at

)‖2
Z−1

t−1

, 1

}
≤ 2γ2T log det ZT

= 2

(
ν

√
log

det Zt

δ2
+
√
λS

)2

log det ZT

≤ 4

(
ν

√
2d̃ log(1 + TK)− 2 log δ +

√
λS

)2

d̃ log(1 + TK).

C PROOFS OF THE LEMMAS IN APPENDIX B

C.1 PROOF OF LEMMA B.1

To prove Lemma B.1, we need the following lemma from Arora et al. (2019):
Lemma C.1 (Theorem 3.1, Arora et al. (2019)). Fix ε > 0 and δ ∈ (0, 1). Suppose that

m = Ω

(
L6 log(L/δ)

ε4

)
,

then for any i, j ∈ [TK], with probability at least 1− δ over random initialization of θ0, we have

|〈g(xi;θ0),g(xj ;θ0)〉/m−Hi,j | ≤ ε. (C.1)

Proof of Lemma B.1. Taking union bound over i, j ∈ [TK], we have that if

m = Ω

(
L6 log(T 2K2L/δ)

ε4

)
,

then with probability at least 1− δ, (C.1) holds for all (i, j) ∈ [TK]× [TK]. Therefore, we have

‖G>G−H‖F =

√√√√TK∑
i=1

TK∑
j=1

|〈g(xi;θ0),g(xj ;θ0)〉/m−Hi,j |2 ≤ TKε.

Taking ε = λ0/(3TK), if

m = Ω

(
T 4K4L6 log(T 2K2L/δ)

λ40

)
,

we have ‖G>G/m−H‖F ≤ λ0/3.

D EQUIVALENT VERSION OF ALGORITHM 1

In this section, we present an equivalent version of Algorithm 1, which is written in the style of
LinUCB (Li et al., 2010; Chu et al., 2011). Our regret analysis in Section 5 is directly applicable to
Algorithm 2.

14

Under review as a conference paper at ICLR 2020

Algorithm 2 NeuralUCB
1: Input: Number of rounds T , regularization parameter λ, exploration parameter ν, confidence

parameter δ, norm parameter S, network width m, network depth L.
2: Initialization: Generate each entry of Wl independently from N(0, 2/m) for 1 ≤ l ≤ L − 1,

and each entry of WL independently from N(0, 1/m), define φ(x) = g(x;θ0)/
√
m, where

θ0 = [vec(W1)>, . . . , vec(WL)>]> ∈ Rp

3: Initialize Z0 = λI,b0 = 0
4: for t = 1, . . . , T do
5: Observe {xt,a}Ka=1
6: for a = 1, . . . ,K do
7: Compute

pt,a = (θt−1 − θ0)>φ(xt,a) + γt−1

√
φ(xt,a)>Z−1t−1φ(xt,a)

8: Let at = argmaxa∈[K] pt,a
9: end for

10: Play at and observe reward rt,at

11: Compute

Zt = Zt−1 + φ(xt,at
)φ(xt,at

)> ∈ Rp×p, bt = bt−1 + rt,at
φ(xt,at

) ∈ Rp

12: Compute θt = Z−1t bt + θ0 ∈ Rp

13: Compute

γt = ν

√
log

det Zt

detλI
− 2 log δ +

√
λS

14: end for

15

	Introduction
	Related Work
	Contextual Bandits
	Neural Networks

	Problem Setting
	The NeuralUCB Algorithm
	Regret Analysis
	Proof of the Main Results
	Experiments
	Conclusions and Future Work
	Proof of Main Theorem
	Proof of Corollary 5.8
	Verification of the Claim in Remark 5.4

	Proof of Technical Lemmas
	Proof of Lemma 6.1
	Proof of Lemma 6.2
	Proof of Lemma 6.3

	Proofs of the Lemmas in Appendix B
	Proof of Lemma B.1

	Equivalent Version of Algorithm 1

