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ABSTRACT

Graph representation learning embeds nodes in large graphs as low-dimensional
vectors and benefit to many downstream applications. Most embedding frame-
works, however, are inherently transductive and unable to generalize to unseen
nodes or learn representations across different graphs. Inductive approaches, such
as GraphSAGE, neglect different contexts of nodes and cannot learn node em-
beddings dually. In this paper, we present a context-aware unsupervised dual
encoding framework, CADE, to generate representation of nodes by combining
real-time neighborhood structure with neighbor-attentioned representation, and
preserving extra memory of known nodes. Experimently, we exhibit that our ap-
proach is effective by comparing to state-of-the-art methods.

1 INTRODUCTION

The study of real world graphs, such as social network analysis (Hamilton et al. (2017a)), molecule
screening (Duvenaud et al. (2015)), knowledge base reasoning (Trivedi et al. (2017)), and biological
protein-protein networks (Zitnik & Leskovec (2017)), evolves with the development of computing
technologies. Learning vector representations of graphs is effective for a variety of prediction and
graph analysis tasks (Grover & Leskovec (2016); Tang et al. (2015)). High-dimensional informa-
tion about neighbors of nodes are represented by dense vectors, which can be fed to off-the-shelf
approaches to tasks, such as node classification (Wang et al. (2017); Bhagat et al. (2011)), link
prediction (Perozzi et al. (2014); Wei et al. (2017)), node clustering (Nie et al. (2017); Ding et al.
(2001)), recommender systems (Ying et al. (2018a)) and visualization (Maaten & Hinton (2008)).

There are mainly two types of models for graph representation learning. Transductive approaches
(Perozzi et al. (2014); Grover & Leskovec (2016); Tang et al. (2015)) are able to learn representations
of existing nodes but unable to generalize to new nodes. However, in real-world evolving graphs
such as social networks, new users will join and must be represented. Inductive approaches were
proposed to address this issue. GraphSAGE (Hamilton et al. (2017b)), a hierarchical sampling and
aggregating framework, successfully leverages feature information to generate embeddings of the
new nodes. However, GraphSAGE has its own faults. Firstly, it samples all neighborhood nodes
randomly and uniformly; secondly, it treats the output of encoder as the final representation of node.

Based on the hierarchical framework of GraphSAGE, GAT (Velickovic et al. (2017)) uses given
class labels to guide attention over neighborhood so as to aggregate useful feature information.
However, without knowledge of ground-truth class labels, it is difficult for unsupervised approaches
to apply attention. To address this issue, we introduce a dual encoding framework for unsupervised
inductive representation learning of graphs. Instead of learning self-attention over neighborhoods
of nodes, we exploit the bi-attention between representations of two nodes that co-occur in a short
random-walk (which we call a positive pair).

In Figure 1, we illustrate how nodes are embedded into low-dimensional vectors, where each node
v has an optimal embeddings ov . Yet the direct output of encoder zv of GraphSAGE could be
located anywhere. Specifically, given feature input from both sides of a positive pair (v, vp), a neural
network is trained to encode the pair into K different embeddings zkv and zkvp

through different
sampled neighborhoods or different encoding functions. Then, a bi-attention layer is applied to
generate the most adjacent matches zv|vp and zvp|v, which will be referred as dual-representations.
By putting most attention on the pair of embeddings with smallest difference, dual representation of
nodes with less deviation will be generated, which can be visualized as zv|· in Figure 1.
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Figure 1: Visual comparison between representations learnt by current methods and dual encoding.

GraphSAGE naively assumes that unseen graph structure should be (easily) represented by known
graphs data. We combine the ground truth structure and the learned dual-encoder to generate final
representation. Unseen nodes can be represented based on their neighborhood structure. Current
inductive approaches have no direct memory of the training nodes. We combine the idea of both
transductive and inductive approaches via associating an additive global embedding bias to each
node, which can be seen as a memorable global identification of each node in training sets.

Our contributions can be summarized as follows:

• we introduce a dual encoding framework to produce context-aware representation for
nodes, and conduct experiments to demonstrate its efficiency and effectiveness;

• we apply bi-attention mechanism for graph representation dual learning, managing to learn
dual representation of nodes more precisely;

• we combine the training of transductive global bias with inductive encoding process, as
memory of nodes that are already used for training.

2 RELATED WORK

Following (Cai et al. (2018), Kinderkhedia (2019) and Goyal & Ferrara (2018)), there are mainly
two types of approaches:

2.1 NETWORK EMBEDDING

For unsupervised embedding learning, DeepWalk (Perozzi et al. (2014)) and node2vec (Grover &
Leskovec (2016)) are based on random-walks extending the Skip-Gram model; LINE (Tang et al.
(2015))seeks to preserve first- and second-order proximity and trains the embedding via negative
sampling; SDNE (Wang et al. (2016)) jointly uses unsupervised components to preserve second-
order proximity and expolit first-order proximity in its supervised components; TRIDNR (Pan
et al. (2016)), CENE(Sun et al. (2016)), TADW (Yang et al. (2015)),GraphSAGE (Hamilton et al.
(2017b)) utilize node attributes and potentially node labels. Convolutional neural networks are also
applied to graph-structured data. For instance, GCN (Kipf & Welling (2017)) proposed an simpli-
fied graph convolutional network. These graph convolutional network based approaches are (semi-
)supervised. Recently, inductive graph embedding learning (Hamilton et al. (2017b) Velickovic et al.
(2017) Bojchevski & Günnemann (2017) Derr et al. (2018) Gao et al. (2018), Li et al. (2018), Wang
et al. (2018) and Ying et al. (2018b)) produce impressive performance across several large-scale
benchmarks.

2.2 ATTENTION

Attention mechanism in neural processes have been extensively studied in neuroscience and compu-
tational neuroscience (Itti et al. (1998); Desimone & Duncan (1995)) and frequently applied in deep
learning for speech recognition (Chorowski et al. (2015)), translation (Luong et al. (2015)), question
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answering (Seo et al. (2016)) and visual identification of objects (Xu et al. (2015)). Inspired by (Seo
et al. (2016) and Abu-El-Haija et al. (2018)), we construct a bi-attention layer upon aggregators to
capture useful parts of the neighborhood.

3 MODEL

Let G = {V,E,X} be an undirected graph, where a set of nodes V are connected by a set of edges
E, and X ∈ R|V |×f is the attribute matrix of nodes. A global embedding bias matrix is denoted by
B ∈ R|V |×d, where a row of B represents the d-dimensional global embedding bias of a node. The
hierarchical layer number, the embedding output of the l-th layer and the final output embedding are
denoted by L, hl and z, respectively.

3.1 CONTEXT-AWARE INDUCTIVE EMBEDDING ENCODING

The embedding generation process is described in Algorithm 1. Assume that the dual encoder is
trained and parameters are fixed.

Algorithm 1 Context-Aware Dual-Encoding (CADE)
input: the whole graph G = (V,E); the feature matrix X; the trained DualENC
output: learned embeddings z;

1: Run random walks on G to gain a set of positive pair P;
2: Zv ← ∅, ∀v ∈ V
3: for (v, vp) ∈ P do
4: zv, zvp = DualENC(v, vp,G,X);
5: Zv ← Zv ∪ zv
6: Zvp ← Zvp ∪ zvp

7: end for
8: for v ∈ V do
9: zv = Mean(Zv);

10: end for

After training, positive pairs are collected by random walks on the whole dataset. The features of
each positive pair are passed through a dual-encoder. Embeddings of nodes are generated so that the
components of a pair are related and adjacent to each other.

3.2 DUAL-ENCODER WITH MULTI-SAMPLING

In this subsection, we explain the dual encoder.

Algorithm 2 DualENC
input: Training graph G(V,E); node attributes X; global embedding bias matrix B; sampling
times K; positive node pair (v, vp);
output: adjacent embeddings zv and zvp ;

1: For node v and vp, generate K embeddings, hv , hvp , using a base encoder SAGB
2: for i, j ∈ {1, ...,K} do
3: Si,j ← α(hvi,hvpj)
4: end for
5: softmax on flattened similarity matrix S: Si,j ← eSi,j∑K,K

0,0 eSi,j

6: calculate attention av and avp :
avi ←

∑K
j=1 Si,j ,avpj ←

∑K
i=1 Si,j

7: zv ←
∑K

t=1 avkh
L
vk

8: zvp ←
∑K

t=1 avpkh
L
vpk

In the hierarchical sampling and aggregating framework (Hamilton et al. (2017b)), it is challenging
and vital to select relevant neighbor with the layer goes deeper and deeper. For example, given
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word ”mouse” and its positive node ”PC”, it is better to sample ”keyboard”, instead of ”cat”, as a
neighbor node. However, to sample the satisfying node according to heuristic rules layer by layer
is very time consuming, and it is difficult to learn attention over neighborhood for unsupervised
embedding learning.

As a matter of fact, these neighbor nodes are considered to be useful because they are more welcome
to be sampled as input so as to produce more relevant output of the dual-encoder. Therefore, instead
of physically sampling these neighbor nodes, in Step 2 to Step 6 in Algorithm 2, we directly apply
a bi-attention layer on the two sets of embedding outputs with different sampled neighborhood
feature as input, so as to locate the most relevant representation match, as a more efficient approach
to exploring the most useful neighborhood.

We use the hierarchical sampling and aggregating framework as a base encoder in our experiments,
but it can also be designed in many other ways.

Given node v, and node vp as a positive node pair, after sampling and aggregating for K times, we
have K different representations hvk/hvpk corresponding to K different sampled neighborhoods,
their similarity matrix can be calculated by

Si,j = α(hvi,hvpj), i, j = 1, ...,K (1)

where α represents an dot-product operation.

our goal is to find the closest neighborhood match between v and vp within K ×K possibilities, so
we apply softmax on the flattened similarity matrix, and sum up by row(column). In this way, we
manage to gain different attention over K neighborhoods of v(vp) with respect to vp(v),

Sij ←
exp(Sij)∑K,K

0,0 exp(Sij)
(2)

avi =
K∑
j=1

Sij (3)

avpj =

K∑
i=1

Sij (4)

and sum up the lth layer representations with attention as the dual-encoder outputs,

zv =
K∑

k=1

avkhvk (5)

zvp =
K∑

k=1

avpkhvpk (6)

To train our encoder before using it to generate final representations of nodes, we apply a typical
pair reconstruction loss function with negative sampling Hamilton et al. (2017b):

JG(zv) = −log(σ(zT
v zvp))−Q · Evn∼Pn(v)log(σ(−z

T
v zvn)) (7)

where node vp co-occurs with v on fixed-length random walk (Perozzi et al. (2014)), σ is the sigmoid
function, Pn is a negative sampling distribution, Q defines the number of negative samples. Note
that zv and zvp are dual representation to each other while zvn represents the direct encoder output
of negative sample vn.

3.3 DUAL-ENCODER WITH MULTI-AGGREGATING

Besides learning dual representation with multiple sampling, we introduce another version of our
dual encoder with multiple aggregator function.The intuition is that through different perspective, a
node can be represented differently corresponding to different kinds of positive nodes.
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In Step 1 in Algorithm 2, for a node v, we sample neighborhood once and aggregate feature with K
sets of parameters, gaining K different representations hvk corresponding to K different character
of v. Given a positive node pair, v and vp, their dual representation are calculated by applying bi-
attention as we described in the last section. There is but one difference that we use a weigh vector
A ∈ R2d as parameter instead of dot-product, to calculate the K×K attention matrix between node
v and node vp,

Sij ←
exp(AT[hvi||hvpj ])∑K,K

0,0 exp(AT[hvi||hvpj ])
(8)

where ·T represents transposition and || is the concatenation operation. The rest of calculation of
dual representation is the same as section 3.2.

Another difference is during training. With K sets of parameter for aggregating, negative sample
vn is now also represented by K different embeddings. As shown in Figure 2, we set K = 5 and
use different shape to represent the embeddings of the positive node pair and the negative sampled
nodes.

support embedding

Figure 2: training support embeddings of node v and its negative sample node vn.

As we can see in Figure 2, to make sure that any embeddings of node vn as far away from any
of node v as possible, it is equal to maximizing the distance between their support embeddings,
which is the closest pair of embeddings of v and vn. The support embedding can be calculated by
the learned dual encoder. In conclusion, our loss function can be modified as follows,

JG(zv) = −log(σ(zT
v zvp))−Q · Evn∼Pn(v)log(σ(−z

′T
v zvn)) (9)

zv, zvp = DualENC(v, vp,A) (10)

z′
v,zvn = DualENC(v, vp,A

∗) (11)
where A∗ representing that we stop the back-propagation through A in dual encoding for negative
sample node, since A are supposed to learn bi-attention between the positive node pair and be reused
only to capture the support embedding of v and its negative sample nodes.

3.4 MEMORABLE GLOBAL BIAS IN HIERARCHICAL ENCODING

In this section, we first explain the base encoder used in our proposed dual encoding framework, and
then we introduce how we apply memorable global bias within this framework.

The general intuition of GraphSAGE is that at each iteration, nodes aggregate information from their
local neighbors, and as this process iterates, nodes incrementally gather more and more information
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from further reaches of the graph. For generating embedding for one specific node u, we describe the
process below. First, we construct a neighborhood tree with node u as the root, Nu, by iteratively
sampling immediate neighborhood of nodes of the last layer as children. Nodes at the lth layer
are represented by symbol Nl

u, N0
u = {u}. Then, at each iteration, each node i aggregates the

representations of its children j, {hl−1
j }, and of itself, hl−1

i , into a single vector hl
i, as representation

of the next layer. After L iterations, we gain the Lth layer representation of v, as the final output.

While this framework generates good representation for nodes, it cannot preserve sufficient embed-
ding informations for known nodes. More specifically, for nodes that are known but trained less
than average, the learned model would have treated them like nodes unmet before. Therefore, we
intuitively apply distinctive and trainable global bias to each node, as follows:

hl−1
S(i) ← AGGREGATEl({hl−1

j , ∀j ∈ S(i)}) (12)

hl
i ← σ(W l · [hl−1

i ||h
l−1
S(i)]) (13)

hl
i ← hl

i + bi, l < L (14)

bi ← one hot(i)TB (15)
(16)

where B ∈ R|V |×d is the trainable global bias matrix, S(i) represents the sampled neighborhood
and also the children nodes of node i in the neighborhood tree, AGGREGATE represents the neigh-
borhood aggregator function, and || is a operator of concatenating vectors.

On one hand, B can be reused to produce embeddings for the known nodes or the unknown con-
nected with the known, as supplement to the neural network encoder. On another hand, the global
bias vectors can partially offset the uncertainty of the encoding brought by the random sampling not
only during the training but also the final generation. Lastly but not least, we use only one set of
global bias for all nodes, which means for any node, its representations of hidden layers are all added
by the same bias vector. As a result of that, we are able to update parameters of aggregator function
in the lowest layer with the global updated bias of nodes, highly increasing the training efficiency.

It is important for us to apply no global bias to the last layer of output, which is also the candidate
of the dual-encoder output of nodes before applied with attention. The reason is that applying extra
bias onto the last layer would directly change the embedding distribution of known nodes, making it
unequal to the embedding distribution of unseen nodes. In general, the implementation of the base
encoder with global bias is shown in Algorithm 3. The * in Step 8 means the children of node i in
the neighborhood tree Nu.

Algorithm 3 SAGB:sampling and aggregating with global bias
input: node u; hierarchical depth L; weight matrices W l; non-linearity σ; differentiable neighbor
aggregator AGGREGATEl; fixed-size uniform sampler S : v → 2V

output: embedding zu;
1: N0

u = {u};
2: for l = 1...L do
3: Nl

u ← {S(i), ∀i ∈ Nl−1
u };

4: end for
5: for l=1...L do
6: for i ∈ N0

u

∪
N1

u

∪
...
∪
NL−l

u do
7: hl−1

S∗(i) ← AGGREGATEl({hl−1
j , ∀j ∈ S∗(i)})

8: hl
i ← σ(W l · [hl−1

i ||h
l−1
S∗(i)])

9: if l < L: hl
i ← hl

i + one hot(i)TB
10: end for
11: end for
12: return zu ← hL

u
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4 EXPERIMENTS

In this section, we compare CADE against two strong baselines in an inductive and unsupervised
setting, on challenging benchmark tasks of node classification and link prediction. We also perform
further studies of the proposed model in section 4.5.

4.1 DATASETS

The following graph datasets are used in experiments and statistics are summarized in Table1:

• Pubmed: The PubMed Diabetes (Sen et al. (2008))1 dataset is a citation dataset which
consists of scientific publications from Pubemd database pertaining to diabetes classified
into one of three classes. Each publication in the dataset is described by a TF/IDF (Salton
& Yu (1973)) weighted word vector from a dictionary.

• Blogcatalog: BlogCatalog2 is a social blog directory which manages bloggers and their
blogs, where bloggers following each others forms the network dataset.

• Reddit: Reddit3 is an internet forum where users can post or comment on any content. We
use the exact dataset conducted by (Hamilton et al. (2017b)), where each link connects two
posts if the same user comments on both of them.

• PPI: The protein-protein-interaction (PPI) networks dataset contains 24 graphs correspond-
ing to different human tissues(Zitnik & Leskovec (2017)). We use the preprocessed data
also provided by (Hamilton et al. (2017b)).

Table 1: Dataset Statistics

Dataset Nodes Edges Classes Features Avg Degree
Pubmed 19717 44324 3 500 4.47

Blogcatalog 5196 171743 6 8189 66.11
Reddit 232,965 11,606,919 41 602 100.30

PPI 56944 818716 1214 50 28.76

4.2 EXPERIMENTAL SETTINGS

We compare CADE against the following approaches in a fully unsupervised and inductive setting:

• GraphSAGE: In our proposed model, CADE, the base encoder mainly originates from
GraphSAGE, a hierarchical neighbor sampling and aggregating encoder for inductive learn-
ing. Three alternative aggregators are used in Graphsage and CADE: (1) Mean aggregator,
which simply takes the elementwise mean of the vectors in hk−1

u∈N(v); (2) LSTM aggrega-
tor, which adapts LSTMs to encode a random permutation of a node’s neighbors’ hk−1;
(3) Maxpool aggregator, which apply an elementwise maxpooling operation to aggregate
information across the neighbor nodes.

• Graph2Gauss (Bojchevski & Günnemann (2017)): Unlike GraphSAGE and my method,
G2G only uses the attributes of nodes to learn their representations, with no need for link
information. Here we compare against G2G to prove that certain trade-off between sam-
pling granularity control and embedding effectiveness does exists in inductive learning
scenario.

Beside the above two models, we also include experiment results of raw features as baselines. In
comparison, we call the version of dual-encoder with multiple sampling as CADE-MS, while the
version with multiple aggregator function as CADE-MA.

1Available at https://linqs.soe.ucsc.edu/data.
2http://www.blogcatalog.com/
3http://www.reddit.com/
4PPI is a multi-label dataset.
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For CADE-MS, CADE-MA and GraphSAGE, we set the depth of hierarchical aggregating as L = 2,
the neighbor sampling sizes as s1 = 20, s2 = 10, and the number of random-walks for each node
as 100 and the walk length as 4. The sampling time in CADE-MS or the number of aggregator in
CADE-MA is set as K = 10. And for all emedding learning models, the dimension of embeddings is
set to 256, as for raw feature, we use all the dimensions. Our approach is impemented in Tensorflow
(Abadi et al. (2016)) and trained with the Adam optimizer (Kingma & Ba (2014)) at an initial
learning rate of 0.0001.

4.3 INDUCTIVE NODE CLASSIFICATION

We evaluate the node classification performance of methods on the four datasets. On Reddit and PPI,
we follow the same training/validation/testing split used in GraphSAGE. On Pubmed and Blogcat-
alog, we randomly selected 10%/20%/30% nodes for training while the rest remain unseen. We
report the averaged results over 10 random split.

After spliting the graph dataset, the model is trained in an unsupervised manner, then the learnt
model computes the embeddings for all nodes, a node classifier is trained with the embeddings of
training nodes and finally the learnt classifier is evaluated with the learnt embeddings of the testing
nodes, i.e the unseen nodes.

Table 2: Prediction results for Pubmed/Blogcatalog w.r.t different unseen ratio

Methods Pubmed Blogcatalog
unseen-ratio 10% 30% 50% 10% 30% 50%

RawFeats 79.22 77.66 77.74 90.00 89.05 87.08
G2G 80.70 76.67 76.31 62.35 56.19 48.46

GraphSAGE 82.05 81.32 79.68 71.48 69.33 64.92
CADE-MS 84.25 83.40 81.74 77.35 73.71 70.88
CADE-MA 84.56 83.03 82.40 84.33 82.21 79.04

Comparation on node classification performance on Pubmed and Blogcatalog dataset with respect to
varying ratios of unseen nodes, are reported in Table 2. CADE-MS and CADE-MA outperform other
approaches on Pubmed. On Blogcatalog dataset, however, RawFeats performs best mainly because
that, in Blogcatalog dataset, node features are not only directly extracted from a set of user-defined
tags, but also are of very high dimensionality (up to 8,189). Hence extra neighborhood information is
not needed. As shown in Table 2, CADE-MA performs better than CADE-MS, and both outperform
GraphSAGE and G2G. CADE-MA is capable of reducing high dimensionality while losing less
information than CADE-MS, CADE-MA is more likely to search for the best aggregator function
that can focus on those important features of nodes. As a result, the 256-dimensional embedding
learnt by CADE-MA shows the cloest node classification performance to the 8k-dimensional raw
features.

Comparasion among GraphSAGE, CADE and other aggregator functions is reported in Figure3.
Each dataset contains 30% unseen nodes. In general, the model CADE shows significant advance
to the other two state-of-art embedding learning models in node classification on four different
challenging graph datasets.

4.4 INDUCTIVE LINK PREDICTION

Link prediction task evaluates how much network structural information is preserved by embed-
dings. We preform the following steps: (1) mark some nodes as unseen from the training of em-
bedding learning models. For Pubmed 20% nodes are marked as unseen; (2) randomly hide certain
percentage of edges and equal-number of non-edges as testing edge set for link prediction, and make
sure not to produced any dangling node; (3) the rest of edges are then used to form the input graph
for embedding learning and with equal number of non-edges form the training edge set for link pre-
dictor; (4) after training and inductively generation of embeddings, the training edge set and their
corresponding embeddings will help to train a link predictor; (5) finally evaluate the performance on
the testing edges by the area under the ROC curve (AUC) and the average precision (AP) scores.
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(a) Reddit (b) PPI

(c) Pubmed (d) Blogcatalog

Figure 3: Classification results (micro-averaged F1 scores) w.r.t different aggregators on four datasets

Table 3: Link prediction results for Pubmed/PPI w.r.t different percentage of hidden-edges

Dataset Methods 90%:10% 80%:20% 60%:40% 40%:60%
AUC AP AUC AP AUC AP AUC AP

Pubmed

RawFeats 57.61 54.72 58.51 56.19 54.47 52.82 52.41 50.77
G2G 64.13 68.60 63.52 65.15 60.03 66.16 58.97 61.17

GraphSAGE 85.49 82.79 87.64 83.35 81.07 77.47 79.34 74.92
CADE-MS 89.95 88.79 90.36 86.67 87.14 83.77 84.76 79.53
CADE-MA 89.73 89.76 90.94 88.90 90.54 87.89 85.27 80.15

PPI

RawFeats 57.46 56.99 57.34 56.86 57.35 56.75 56.83 56.36
G2G 60.62 58.98 60.99 59.38 61.05 59.54 60.93 59.49

GraphSAGE 82.74 81.20 82.21 80.66 82.11 80.51 82.07 80.70
CADE-MS 85.87 85.08 84.21 83.48 84.46 82.84 83.61 82.39
CADE-MA 86.33 85.32 85.85 84.63 84.15 82.15 81.98 79.54

Comparation on performance with respect to varying percentage of hidden edges are reported in
Table3. CADE shows best link prediction performance on both datasets.

4.5 MODEL STUDY

4.5.1 SAMPLING COMPLEXITY IN CADE-MS

Our proposed CADE-MS requires multiple neighborhood sampling, which increases the complexity
of embedding learning. Yet by comparing CADE-MS against GraphSAGE with the same quantity
of sampled neighborhood per node, the superiority of CADE model over existing models is still
vast. In practice, we set the sampling layer L = 2 and the first-layer sampling size as 20. For
the second layer, denote by s′2 the sampling size in GraphSAGE, and by s2 and T the sampling
size and sampling time in CADE-MS. We compare the two methods with s′2 = s2 ∗K. A variant
of CADE, called CADE-gb, applies only memorable global bias and no dual-encoding framework,
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Figure 4: node classification performance (micro-f1 score) w.r.t varying sampling sizes

has the same sampling complexity as GraphSAGE. For the efficiency of experiment, we conduct
experiments of node classification on a small subset of PPI, denoted by subPPI, which includes 3
training graphs plus one validation graph and one test graph. Results are reported in Figure 4. With
much smaller sampling width, CADE-MS still outperforms the original framework significantly.

It implicates that searching for the best representation match through multiple sampling and bi-
attention is efficient to filtering userful neighbor nodes without supervision from any node labels, and
that the context-aware dual-encoding framework is capable of improving the inductive embedding
learning ability without increasing sampling complexity. We aslo observe that CADE-gb, the variant
simply adding the memorable global bias, continually shows advance in different sampling sizes.

4.5.2 THE NECESSARITY OF HIDDEN MEMORY

It is necessary not to apply global bias to the encoder output. We compare the original framework
GraphSAGE, CADE with the variants of our method: applying global bias only to the last layer, and
only to the former layers. As Table 4 shows, CADE-gl performs poorly, while CADE-gb demon-
strates the effect of keeping memory of the hidden representation for each node.

Table 4: node classification performance (f1-micro score) with different way of applying global bias

method F1-micro
GraphSAGE 50.22

CADE-gl 39.24
CADE-gb 54.13

CADE 58.22

5 CONCLUSION

In this paper, we proposed CADE, an unsupervised and inductive network embedding approach
which is capable of preserving local connectiveness distinctively , as well as learning and memoriz-
ing global identities for seen nodes while generalizing to unseen nodes. We applied a bi-attention
architeture upon hierarchical aggregating layers to capture the most relevant representations dually
for any positive pair. We also present an effective way of combining inductive and transductive ideas
by allowing trainable global embedding bias to be retrieved in hidden layers within the hierarchi-
cal aggregating framework. Experiments demonstrate the superiority of CADE over the state-of-art
baselines on unsupervised and inductive tasks. In the future, we would explore several possibili-
ties, such as expanding dual encoding from pair-wise to n-wise, or using dual encoding framework
in supervised embedding learning, or combing dual encoding with G2G by learning distribution
representations dually for positive pairs.
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3-8 December 2018, Montréal, Canada., pp. 9198–9208, 2018.

Smriti Bhagat, Graham Cormode, and S. Muthukrishnan. Node classification in social networks. In
Social Network Data Analytics, pp. 115–148. Springer, 2011.
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