
Under review as a conference paper at ICLR 2020

CONTINUAL DEEP LEARNING BY FUNCTIONAL
REGULARISATION OF MEMORABLE PAST

Anonymous authors
Paper under double-blind review

ABSTRACT

Continually learning new skills without forgetting old ones is an important quality
for an intelligent system, yet most deep learning methods suffer from catastrophic
forgetting of the past. Recent works have addressed this by regularising the net-
work weights, but it is challenging to identify weights crucial to avoid forgetting.
A better approach is to directly regularise the network outputs at past inputs, e.g.,
by using Gaussian processes (GPs), but this is usually computationally challeng-
ing. In this paper, we propose a scalable functional-regularisation approach where
we regularise only over a few memorable past examples that are crucial to avoid
forgetting. Our key idea is to use a GP formulation of deep networks, enabling
us to both identify the memorable past and regularise over them. Our method
achieves state-of-the-art performance on standard benchmarks and opens a new
direction for life-long learning where regularisation methods are naturally com-
bined with memory-based methods.

1 INTRODUCTION

The ability to quickly adapt to changing environments is an important quality of intelligent systems.
For such quick adaptation, it is important to be able to identify, memorise, and recall useful past
experiences when acquiring new ones. Unfortunately, standard deep-learning methods are not good
at maintaining previously acquired skills, and can quickly forget them when learning new skills
(Kirkpatrick et al., 2017). Such catastrophic forgetting presents a big challenge when deploying
deep-learning methods for applications, such as robotics, where new tasks can appear during the
training, and data from the previous tasks might be unavailable for retraining.

In recent years, many methods have been proposed to address catastrophic forgetting in deep learn-
ing. One of the most popular approaches is to regularise the network weights to keep them close
to the weights obtained for the previous tasks (Kirkpatrick et al., 2017; Nguyen et al., 2018; Zenke
et al., 2017). This is challenging due to the difficulty in identifying the weights that are relevant
to past tasks. The exact values of the weights in fact do not matter directly, but rather the network
output (Benjamin et al., 2018). Figuring out which weight affects the output is therefore usually
difficult. Typically, the Fisher information matrix or covariance matrices over weights are used
(Kirkpatrick et al., 2017; Nguyen et al., 2018), but they only partially address the issue.

A better approach is to directly regularise the network outputs, also referred to as functional-
regularisation, that requires a memory of past examples (Benjamin et al., 2018; Lopez-Paz & Ran-
zato, 2017; Rebuffi et al., 2017). However, such methods still lack a mechanism to automatically
weight more relevant past memory in the context of the new task, and also do not take uncertainty
of the output into account. Methods based on Gaussian processes do this automatically (Titsias
et al., 2019), but require optimisation over inducing points and specification of a good kernel, both
of which are difficult tasks. In summary, existing methods fall short in building scalable functional-
regularisation methods for continual learning.

In this paper, we propose a new functional-regularisation method where we regularise over a few
memorable past examples (see Fig. 1). Our approach builds upon a recent method of Khan et al.
(2019) that expresses Bayesian deep networks as Gaussian processes (GPs). We show that the GP
formulation not only enables the identification of examples crucial to avoid forgetting, but also
computes uncertainty over the network output to appropriately weight the past examples in the light
of new ones. Motivated by the Gaussian process perspective, we propose a new loss function for

1

Under review as a conference paper at ICLR 2020

After Task 1 After Task 2 After Task 5

Figure 1: This figure illustrates our method. Leftmost figure shows the result of training on task
1. Examples corresponding to memorable-past, shown with big markers, are chosen using a GP
formulation of the neural network. These points usually are the ones that support the decision
boundary. Middle figure shows the result after task 2 where new network functions are regularised
at memorable-past examples to give the same prediction as the previous ones. The resulting green
decision boundary classifies both task 1 and 2 well. The rightmost figure shows the result along with
memorable-past of each task where the performance over the past tasks is maintained.

function-regularisation with deep networks. A Laplace approximation of this objective enables a
scalable training algorithm. Our work in this paper focuses on avoiding forgetting, but it opens a
new direction for life-long learning methods where regularisation methods are naturally combined
with memory-based methods.

Other related works. Broadly, existing work on continual learning can be split into three ap-
proaches: inference based, memory/rehearsal based, and model based. Inference based approaches
have mostly focused on weight-regularisation, with some recent efforts on functional-regularisation.
Our work falls in the latter category. Memory based approaches either maintain a memory of past
data examples (Rebuffi et al., 2017) or train generative models on previous tasks to rehearse pseudo-
inputs (Shin et al., 2017). An advantage of our method compared to previous ones is that build-
ing memory does not require solving an optimisation problem: the computation simply involves a
forward-pass through the network followed by sorting (see Section 3.2).

Similarly to our work, there have also been some efforts in combining the different flavours of
approaching continual learning, e.g., VCL plus coresets (Nguyen et al., 2018) and Gradient-Episodic
Memory (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018). Benjamin et al. (2018) have proposed
a similar combination for functional regularisation. In these approaches, two separate methods are
usually used for regularisation and memory-building. In contrast, in our approach, both of these are
done within the same GP framework by using the method of Khan et al. (2019).

Finally, model based approaches change the model architecture during training (Rusu et al., 2016)
and this can be combined with other approaches (Schwarz et al., 2018). It is possible to use similar
features in our GP based framework, which is an interesting future direction to be pursued.

2 CONTINUAL LEARNING WITH WEIGHT/FUNCTIONAL REGULARISATION

In deep learning, we minimise loss functions to estimate network weights. For example, in super-
vised multi-class classification problems, we are given a dataset D of N input-output pairs with
outputs yi , a vector of K classes, and inputs xi , a vector of length D, and our goal is to minimise a
loss which takes the following form: ¯̀(w) + δR(w), where ¯̀(w) := 1

N

∑N
i=1 `(yi, fw(xi)) with deep

neural network fw(x) ∈ RK and its weights w. `(y, ŷ) denotes a differentiable loss function be-
tween an output y and its prediction ŷ, R(w) is a regularisation function (usually an L2-regulariser
R(w) = w>w) and δ > 0 controls the regularisation strength. Standard deep-learning approaches
rely on an unbiased stochastic-gradient of the loss ¯̀, which usually requires access to all of the data
examples for all classes (Bottou, 2010). It is this unbiased, minibatch setting where deep-learning
excels and achieves state-of-the-art performance on many benchmark datasets.

In reality, we do not always have access to all the data at once, and it is not possible to obtain
unbiased stochastic gradients. New classes may appear during training and old classes may never be
seen again. For such settings, vanilla mini-batch stochastic-gradient methods leads to catastrophic

2

Under review as a conference paper at ICLR 2020

forgetting of past information (Kirkpatrick et al., 2017). Our goal in this paper is to design methods
that can avoid such catastrophic forgetting. We focus on a particular setting where the classification
task is divided into several tasks, e.g., a task may consist of a classification problem over a subset of
classes. We assume that the tasks arrive sequentially one after the other. Once the learning is over,
we may never see that task again. Such continual-learning settings have been considered in previous
works (Kirkpatrick et al., 2017; Nguyen et al., 2018; Zenke et al., 2017), and our goal is to avoid
forgetting of old tasks in this setting.

Recent methods have proposed weight-regularisation as a way to combat catastrophic forgetting.
The main idea is to keep the new network weights close to the old ones, e.g., when training a task
t while given network weights wt−1 trained on task t − 1, we can minimise the following loss:
¯̀
t (w) + δ(w −wt−1)

>Ft (w −wt−1), where ¯̀
t (w) is the loss defined over all data examples from task

t and Ft is a preconditioning matrix that favors the weights relevant to the past tasks more than the
rest. The Elastic-Weight Consolidation (EWC) method (Kirkpatrick et al., 2017), for example, uses
the Fisher information matrix as the pre-conditioner, while Ritter et al. (2018) use the Hessian of
the loss, and VCL (Nguyen et al., 2018) essentially employs the precision matrix of the variational
approximation to do the same. Such weight-space methods reduce forgetting but do not produce
satisfactory results.

The challenge in using weight-regularisation lies in the fact that the exact values of the weights do
not really matter due to parametric symmetries (Benjamin et al., 2018; Bishop, 2006). Since only
the network outputs matter, an alternative approach is to directly regularise these. Benjamin et al.
(2018) propose to use an L2 regulariser over the function values on data examples from past tasks:

min
w

¯̀
t (w) + δ

t−1∑
s=1

∑
i∈Ms

‖ fw(xi) − fwt−1 (xi)‖
2
2, (1)

where Ms is the set of small examples for task s stored in the working memory (Lopez-Paz &
Ranzato, 2017; Rebuffi et al., 2017). One major issue with this approach is that the L2 regulariser
weights all the data points equally. In reality, some examples in the memory are more important
than others to learn a given task. In addition, the uncertainty of the prediction is also ignored. As
we will show, working with distributions over functions allows address these two issues.

Gaussian processes (GPs), for example, enable automatic reweighting of old tasks in light of a new
one, which happens by using the posterior covariance. Unfortunately, both scalability of GPs as well
as the necessity to save many instances of the past makes them impractical. A recent approach by
Titsias et al. (2019) attempts to address these issue by employing sparse GP methods with inducing
points and using a neural network feature map. However, the optimisation objective is only tractable
when assuming independence across tasks. This approach heavily depends on a proper choice of
inducing points and is limited by the choice of feature map, i.e. we cannot expect to achieve the
performance of deep learning methods on all tasks.

Ideally, we would want to perform functional regularisation with a deep learning optimiser while
borrowing ideas from the GP methods. Our work in this paper takes a step in this direction. Our
proposal is to use a GP formulation of neural networks to perform functional regularisation that
still allows training with standard deep-learning methods. We also show that the GP view helps in
selecting an informative set of memory points.

3 FUNCTIONAL-REGULARISATION OF MEMORABLE PAST (FROMP)

We will now describe our proposed method. First, we propose a method to use GP formulation of
Khan et al. (2019) to compute GP-like posteriors over functions. Then, we propose a method to iden-
tify a set of memorable past examples for a task. Finally, we describe our functional-regularisation
and discuss approximations used to build a scalable method.

3.1 FROM DEEP NETWORKS TO GAUSSIAN PROCESS POSTERIORS OVER FUNCTIONS

Khan et al. (2019) propose an approach to convert deep networks into Gaussian processes. Their
main result (see Theorem 1 in their paper) states that, at a local minimiser w∗ of ¯̀(w) + δ

2 w>w, a
Laplace approximation of the posterior over w is equivalent to the posterior distribution of a linear

3

Under review as a conference paper at ICLR 2020

model. Specifically, they use the following scalable variant of the Laplace approximation:

p(w|D) ≈ q(w) := N(w|µ,Σ), where µ = w∗ and Σ−1 =

N∑
i=1

J(xi)>ΛiJ(xi) + δIP, (2)

where J(xi) := ∇wfw(xi)> is a K × P Jacobian matrix (P being the number of weights), and Λi :=
∇2
ŷŷ
`(yi, ŷ) is the K × K Hessian of the loss evaluated at ŷ = fw(xi), all evaluated at w = w∗. They

show that q(w) is equal to the posterior of the following linear model:

ỹi = J(xi)w + ε i, with ε i ∼ N(0,Λ−1
i) and w ∼ N(0, δ−1IP), (3)

where the observations are defined as ỹi := J(xi)w∗−Λ−1
i ri with ri := ∇ŷ`(yi, ŷ) being the residuals.

They also show that the predictive distribution of this linear model is equivalent to that of a GP
regression model defined with a K × K neural tangent kernel (NTK) (Jacot et al., 2018):

ỹi = fGP(xi) + ε i, with fGP(x) ∼ GP
(
0, δ−1J(x)J(x′)>

)
. (4)

The above result does not directly find the posterior over the network outputs or a related func-
tion space, since fGP(x) is related to all layers. We derive a GP posterior approximation over the
function output, by using a method similar to the one used in generalised linear models (Nelder &
Wedderburn, 1972). For this method, we need to assume that the loss corresponds to a log prob-
ability distribution, i.e., `(y, fw(x)) := − log p(y|g(fw(x))) where g(·) is a link function. Below we
demonstrate the method for a binary classification problem. Extensions to multi-class classification
and other likelihoods can be obtained in a similar fashion (see Appendix A).

To model the output distribution according to a GP, we rewrite Eqs. (4) or (3) in terms of the true label
yi ∈ {0, 1}. Then, we can derive the mean and variance for the function f (xi) which will yield an
approximation to the network output. For a logistic likelihood, the link function is pi := σ(fw∗ (xi))
where σ is the sigmoid function and residuals are ri = pi−yi and Λi := pi(1−pi). Because residuals
directly contain yi , we can rewrite Eq. (3) as a linear model,

yi = pi + J(xi)(w − w∗) + τi, with τi ∼ N(0,Λi) and w ∼ N(0, δ−1IP). (5)

The Laplace approximation (2) is the posterior of this model after observing data D. We can equiv-
alently write the posterior predictive in a GP form (Rasmussen, 2003) with the following mean and
covariance function:

m(xi) := Eq(w) [f (xi)] = pi + Λi J(xi)(µ − w∗) = pi, (6)

k(xi, xj) := Eq(w)
[
(f (xi) − m(xi))

(
f (xj) − m(xj)

)]
(7)

= ΛiJ(xi)Eq(w)
[
(w − w∗)(w − w∗)>

]
J(xj)

>
Λj = ΛiJ(xi)ΣJ(xj)

>
Λj . (8)

A GP defined with the above mean and covariance function can be viewed as an approximation
to the posterior process over network outputs. Throughout the paper, we will denote the process
obtained at a weight w∗ by a distribution qw∗ (f) where f is a vector of f (x) evaluated at many inputs.
We will use this GP posterior predictive for functional regularisation.

3.2 MEMORABLE PAST

In the previous section, we derived a GP posterior approximation over the network outputs. Now,
we propose a method to obtain a small set of examples that are crucial to avoid forgetting. We
first note that the posterior GP mean in (4) corresponds to a kernel Ridge regression that requires
the computation of (δ−1K + Λ−1)−1ỹ where Λ is a block-diagonal matrix containing all Λi and K
is the NTK. The predictions therefore strongly depend on the eigenvalues of the preconditioning
matrix. Selection of important data examples therefore boils down to selecting important columns
of this matrix, such that the predictions remain unchanged. The theory of leverage score sampling
(Alaoui & Mahoney, 2015; Bach, 2013) suggests picking the points proportional to the leverage
score defined to be the diagonal of the following matrix: K(K + δΛ−1)−1. Typically, this matrix is
difficult to compute and methods are employed to approximately obtain the leverage score (Alaoui
& Mahoney, 2015).

4

Under review as a conference paper at ICLR 2020

Algorithm 1: Functional Regularisation of
Memorable Past (FROMP)

InitialiseM = �
for each task t do

for previous task s = 1, 2, ..., t − 1 do
Compute ms,wt−1,K−1

mt−1,s
, Eqs 6 and 8

repeat
g = stochastic ∇wt `(yi, fw(xi))
g += fr grad

(
wt, {ms,wt−1,K−1

mt−1,s
}t−1
s=1

)
wt ← Adam update using g

until convergence
Update Σ, Eq 2
Mt← memorable past (Dt,wt)

M =M∪Mt

def fr grad
(
w, {ms,wt−1,K−1

mt−1,s
}t−1
s=1

)
g = 0
for task s = 1, 2, ..., t − 1 do
g +=
∇w(ms,w −ms,wt−1)

>K−1
wt−1,s(ms,w −ms,wt−1)

return g

def memorable past (Dt,wt)

Calculate Λ (see Sec 3.2)
Mt ← datapoints i from Dt with highest Λi

returnMt

Figure 2: A pseudo-code for our FROMP algorithm. The additional computations above Adam
involve computing {ms,wt−1,K−1

mt−1,s
}t−1
s=1 just before training on a new task, and then adding their

gradient with fr grad(). We also choose memorable past examples after training on a task via Λ,
which only requires a single forward-pass.

For deep-learning applications too, exact computation of leverage score is very difficult. We instead
propose a simple solution. Since the eigenvalues of the previous matrix heavily depend on δΛ−1

i ,
we can pick the data examples by simply sorting Λi . For the inverse of K + δΛ−1 to have high
eigenvalues, we should favor examples with smaller values of Λ−1

i , i.e., with the highest variance
or the lowest precision. Therefore, we simply sort the Λi and pick the top M examples as the
most relevant ones. This simple solution is very effective for our particular problem because Λi

are noise variances for the data examples, obtained by using an already trained network. These are
second derivatives of the loss for data examples, and so also reflect the sensitivity of the decision
boundaries if a particular data point is perturbed. Therefore, they tend to reflect the relevance of
data examples. An example is shown in Figure 1 where we clearly see that our solution picks the
examples lying close to decision boundary. Computation of Λi requires us to run the forward pass
to get the `(yi, ŷi) and then compute its second derivative with respect to ŷi , both of which are cheap
operations. Throughout the paper, examples chosen by this method are referred to as the memorable
past examples, and denotedMt for task t.

3.3 FUNCTIONAL-REGULARISATION

So far, we described the construction of the GP posterior predictive over the function space, as well
as the construction of a set of memorable-past examples. We are now ready to describe our objective
function where we employ these two to perform functional regularisation.

Suppose that we are given network weights wt−1 that are obtained by training over data examples
from task t − 1. Our goal then is to train a network with weights w such that its performance on
memorable pastM1:t−1 is unchanged. We denote the vector of function outputs over these examples
by a1:t−1.A straightforward idea is to directly optimise the weights w such that the predictions using
qw(ft) are good on current tasks while the predictive distribution qw(a1:t−1) is close to qwt−1 (a1:t−1).
Since the number of tasks can be very large, we choose to regularise each task separately, i.e., we
will match qw(as)with qwt−1 (as) separately for all tasks s < t in line with Titsias et al. (2019). These
choices give us the following objective function with trade-off parameter τ:

min
w

τEqw (ft)

[∑
i∈D t

`(yi, f (xi))
]
+

t−1∑
s=1
DKL[qw(as) ‖ qwt−1 (as)]. (9)

A major issue with this objective is that computing gradients wrt. the posterior predictive qw will
be computationally heavy as it involves gradients of the Jacobian and Λi , which involve higher
order derivatives. During training on a task, we have no distribution on parameters (cf. Laplace
approximation) and can treat it as fixed. Therefore, taking the gradient wrt. parameter w of above

5

Under review as a conference paper at ICLR 2020

Table 1: Train accuracy of FROMP and batch-trained Adam (upper bound on performance) on
variations of a toy 2D binary classification dataset, with mean and standard deviations over 10 runs
(3 runs for Adam). FROMP performs well across variations. See Appendix B.2 for visualisations.

Dataset variation FROMP Batch Adam
10x less data (400 per task) 99.9% ± 0.0 99.7% ± 0.2
10x more data (40000 per task) 96.9% ± 3.0 99.7% ± 0.0
Introduced 6th task 97.8% ± 3.3 99.6% ± 0.1
Increased std dev of each class distribution 96.0% ± 2.4 96.9% ± 0.4
2 tasks have overlapping data 90.1% ± 0.8 91.1% ± 0.3

objective will only involve differentiating the mean function m(xi) formed by the neural network
and we have equivalence to the following objective:

min
w

τ
∑
i∈D t

`(yi, fw(xi)) +
1
2

t−1∑
s=1
(ms,w −ms,wt−1)

>K−1
wt−1,s(ms,w −ms,wt−1), (10)

where ms,wt−1 and Kwt−1,s are the vector and matrices containing corresponding the mean and co-
variance function of the network weights wt−1 evaluated at the memorable past for task s. Eqs 6 and
8 are used to calculate ms,wt−1 and Kwt−1,s respectively. Essentially, this gives us something similar
to Eq. 1 but instead of the L2 distance a kernel is used to improve weighting of examples. The final
FROMP algorithm is summarised in Algorithm 1. Please see App. A.3 for details on scaling to the
multi-class setting. Note that it is possible to be stochastic in sampling a subset of previous tasks’
memory during every update, ensuring the algorithm does not get slower as more tasks are trained.

4 EXPERIMENTS

We run the proposed method FROMP on toy datasets, permuted and split MNIST (LeCun et al.,
1998; Goodfellow et al., 2013), and a split version of CIFAR-10 and CIFAR-100 (Krizhevsky et al.,
2009). We optimise the objective in Eq. (10) using Adam (Kingma & Ba, 2015) with parameter
β1 = 0.99 and further use gradient clipping to speed up training. To identify the individual benefits
of the kernel in loss (10) as well as the selection of data points, we compare the following four
methods: FROMP uses kernel and the proposed example selection, FRORP instead uses randomly
chosen examples. Further, we replace the kernel by an identity matrix leading to functional L2
regularisation and call the corresponding methods with and without our example selection technique
FROMP-L2 and FRORP-L2.

4.1 TOY DATASET

In this section, we test FROMP on many variations of the dataset. We want to test its performance
when exposed to different datasets of varying difficulty. We use a 2-hidden layer MLP (with 20
hidden units in each layer) for all experiments. Appendix B.3 details hyperparameter selection.
In Appendix B.1 we show the brittleness and inconsistent behaviour of weight-space regularisation
methods on a toy 2D binary classification dataset like that in Figure 1. In contrast, FROMP performs
extremely well across many variations of the dataset, showing consistently good results (see Table 1
and Appendix B.2 for visualisations).

4.2 PERMUTED AND SPLIT MNIST

Permuted MNIST consists of a series of tasks where each task is a fixed permutation of pixels to the
entire labelled MNIST dataset. Like in previous work (Nguyen et al., 2018; Kirkpatrick et al., 2017;
Zenke et al., 2017; Titsias et al., 2019), we implement a fully connected single-head network with
two hidden layers. Each hidden layer consists of 100 hidden units and ReLU activation functions.
We set the learning rate to 0.001, batch size to 128, and learn each task for 10 epochs.

The Split MNIST experiment was introduced by Zenke et al. (2017) and consists of five binary
classification tasks built from MNIST: 0/1, 2/3, 4/5, 6/7, and 8/9. We use a fully connected multi-
head neural network with two hidden layers of each 256 hidden units and ReLU activation function.

6

Under review as a conference paper at ICLR 2020

Table 2: The average validation accuracy on Permuted-MNIST and Split-MNIST. “200p/t” denotes
that 200 examples are selected for each task. We report mean and standard deviations over 5 runs,
and use results from Nguyen et al. (2018) for baselines. FROMP is state-of-the-art with 200p/t.
Additionally, as we reduce the number of points (see Figure 3), FROMP gracefully reduces accuracy,
due to clever choice of memory past and the use of kernels in the functional regularisation.

Method Permuted MNIST Split MNIST
DLP (Smola et al., 2003) 82% 61.2%
EWC (Kirkpatrick et al., 2017) 84% 63.1%
SI (Zenke et al., 2017) 86% 98.9%
Improved VCL (Swaroop et al., 2019) 93% ± 1 98.4% ± 0.4

+ random Coreset 94.6% ± 0.3 (200 p/t) 98.2% ± 0.4 (40 p/t)
FRCL-RND (Titsias et al., 2019) 94.2% ± 0.1 (200 p/t) 96.7% ± 1.0 (40 p/t)
FRCL-TR (Titsias et al., 2019) 94.3% ± 0.1 (200 p/t) 97.4% ± 0.6 (40 p/t)
FRORP-L2 87.9% ± 0.7 (200 p/t) 98.5% ± 0.2 (40 p/t)
FROMP-L2 94.6% ± 0.1 (200 p/t) 98.7% ± 0.1 (40 p/t)
FRORP 94.6% ± 0.1 (200 p/t) 99.0% ± 0.1 (40 p/t)
FROMP 94.9% ± 0.1 (200 p/t) 99.0% ± 0.1 (40 p/t)

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9

0

20

40

60

80

(a) random example kernel

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9

0

2

4

6

8

10

12

(b) memorable past kernel

10 40 70 100 200
Number of examples

0.5

0.7

0.9

V
al

id
at

io
n

ac
cu

ra
cy

FRORP-L2

FROMP-L2

FRORP

FROMP

(c) accuracy vs. memory size

Figure 3: Permuted MNIST: added kernels across classes (with subtracted diagonal for visualisation
purposes), and performance as a function of memory size. Memorable past examples lead to a more
uniform kernel structure that prevents weighting previously overfit examples too highly, e.g. task
one in the random selection exhibits strong correlation and low variance. As we reduce the number
of examples in memory, FROMP gracefully reduces validation accuracy.

Following the settings of previous work, we select 40 inducing points per task. The learning rate is
set to 0.0001, batch size to 128, and we learn each task for 15 epochs.

We report the final average accuracy for both benchmarks across all the tasks in Table 2 after tuning
the hyperparameters of all algorithms. In particular, the proposed method achieves better perfor-
mance than the weight-space methods EWC and VCL, as well as compared to the function-space
method FRCL that is based on a GP formulation. Further, the benchmarks show superior perfor-
mance of both the approach to select important examples (Sec. 3.2) and the functional regularisation
using the kernel (Sec. 3.3). Memorable examples improve performance of the naive and efficient
FRORP-L2 method by more than 6% on permuted MNIST and by 0.2% on the split MNIST. Stan-
dard deviation is also reduced in both cases. FROMP does not profit much from memorable ex-
amples compared to FRORP, probably because the performance is already close to the maximum
achievable. Furthermore, Fig. 3c shows that our selection method greatly reduces the number of
memorable points required: the L2 algorithm with random points requires nearly 100 points to match
the performance when using 20 carefully selected points, and 200 points to match performance with
40, respectively. When combined with kernel-based functional regularisation, we obtain the best-
performing method, particularly when memory size is small.

Figs. 3a and 3b show the summed kernels across all the classes in permuted MNIST for a random
and memorable set of points. For visualisation purposes, the diagonal is suppressed. Note that ran-
dom points lead to less uniform weighting in the kernel, making it even more important in functional

7

Under review as a conference paper at ICLR 2020

Task1 Task2 Task3 Task4 Task5 Task6

0.6

0.7

0.8

V
al

id
at

io
n

ac
cu

ra
cy

FROMP

FROMP-L2

SI

EWC

VCL+Coreset

From Scratch

(a) final performance on individual tasks

10 20 40 70 100
Number of examples

0.6

0.7

V
al

id
at

io
n

ac
cu

ra
cy

FRORP-L2

FROMP-L2

FRORP

FROMP

(b) accuracy vs. memory size

Figure 4: Split CIFAR: performance for each task, and performance variation as function of memory
size. We run all the proposed methods 5 times and report the mean and standard derivation. The
left figure reports results for 200 memory examples per task. The final average validation accuracy
of FROMP is 76.2% ± 0.2, FROMP-L2 is 74.6% ± 0.3, SI is 73.5%, EWC is 71.6% ± 1.5, VCL +
random coreset is 67.4% ± 2.4. FROMP outperforms all other methods. Additionally, as we reduce
the memory size, FROMP still performs well, even with only 10 examples per task.

regularisation, leading to better performance (FRORP vs FROMP). All memorable points are im-
portant and the kernel is more uniform. In Fig. 3a, the kernel’s weighting of task 1 is very different
from other tasks, leading to different magnitudes in the functional regularisation among tasks and
therefore to eventual forgetting. The kernel further tells us that the tasks are correlated, as expected.

4.3 SPLIT CIFAR

We now test the proposed method on a more complex problem. Split CIFAR consists of 6 tasks. The
first task is the full CIFAR-10 dataset, followed by 5 tasks, each corresponding to 10 consecutive
classes from CIFAR-100. We follow the SI paper (Zenke et al., 2017) for our model architecture,
using a multi-head CNN with 4 convolutional layers, followed by 2 dense layers with dropout. We
use learning rate 0.0001 and batch size 256. All tasks are learned for 80 epochs, and hyperparameters
tuned as before. In addition to continual learning baselines, we show the performance of networks
trained from scratch on each task. These cannot profit from forward/backward transfer.

The experimental results in Figure 4a show that FROMP outperforms other methods by a notable
margin. The weight-space methods employed as baselines either cannot learn later tasks to a high
accuracy (EWC, SI), or forget previous tasks (VCL). Interestingly, over all tasks, FROMP also out-
performs ‘from scratch’ training. Although we only focussed on preventing catastrophic forgetting,
we find evidence of forward/backward transfer, a key requirement in continual learning.

In contrast to the rather simple MNIST benchmarks, both the benefit of selecting memorable points
as well as using the kernel are clearly visible in Fig. 4b. If we only memorise few examples, the per-
formance gap due to using the kernel is around 4%. The selection of memorable points according to
our metric leads to an increase in performance of around 7%. Applying both kernel and memorable
point selection increases the performance by up to 11%. Additionally, standard deviation is reduced
when using memorable points or the kernel. It is clear that both parts of the proposed algorithm are
vital in achieving state-of-the-art performance on this benchmark.

5 DISCUSSION

We propose FROMP, a scalable function-regularisation approach for continual learning. FROMP
uses a GP formulation of neural networks to select memorable past examples, regularising them
using a kernel, and achieving state-of-the-art performance across benchmarks. This work enables
a new way of combining regularisation methods and memory-based methods in continual learning.
Future research could investigate other ways of selecting a memorable past (e.g. fixed memory size),
more efficient ways of calculating kernel matrices, and consider the case where data does not arrive
in tasks.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge regression with statistical
guarantees. In Advances in Neural Information Processing Systems, pp. 775–783, 2015.

Francis Bach. Sharp analysis of low-rank kernel matrix approximations. In Conference on Learning
Theory, pp. 185–209, 2013.

Ari S Benjamin, David Rolnick, and Konrad Kording. Measuring and regularizing networks in
function space. arXiv preprint arXiv:1805.08289, 2018.

Christopher M Bishop. Pattern recognition and machine learning. Springer, 2006.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pp. 177–186. Springer, 2010.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. ArXiv, abs/1812.00420, 2018.

Sebastian Farquhar and Yarin Gal. A unifying bayesian view of continual learning. ArXiv,
abs/1902.06494, 2019.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empiri-
cal investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In Advances in neural information processing systems, pp. 8571–
8580, 2018.

Mohammad Emtiyaz Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. Approximate
inference turns deep networks into gaussian processes. NeurIPS, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2015.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Yann LeCun, Corinna Cortes, and Christopher JC. Burges. The mnist database of handwritten digits.
1998.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems, pp. 6467–6476, 2017.

John Ashworth Nelder and Robert WM Wedderburn. Generalized linear models. Journal of the
Royal Statistical Society: Series A (General), 135(3):370–384, 1972.

Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual learning.
ICLR, 2018.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School on Machine
Learning, pp. 63–71. Springer, 2003.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured laplace approximations for
overcoming catastrophic forgetting. In Advances in Neural Information Processing Systems, pp.
3738–3748, 2018.

9

Under review as a conference paper at ICLR 2020

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. ArXiv,
abs/1606.04671, 2016.

Jonathan Schwarz, Jelena Luketina, Wojciech Marian Czarnecki, Agnieszka Grabska-Barwiska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable frame-
work for continual learning. ArXiv, abs/1805.06370, 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In NIPS, 2017.

Alexander J Smola, Vishy Vishwanathan, and Eleazar Eskin. Laplace propagation. In NIPS, pp.
441–448, 2003.

Siddharth Swaroop, Cuong V Nguyen, Thang D Bui, and Richard E Turner. Improving and under-
standing variational continual learning. arXiv preprint arXiv:1905.02099, 2019.

Michalis K Titsias, Jonathan Schwarz, Alexander G de G Matthews, Razvan Pascanu, and Yee Whye
Teh. Functional regularisation for continual learning using gaussian processes. arXiv preprint
arXiv:1901.11356, 2019.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In ICML, pp. 3987–3995. JMLR. org, 2017.

10

Under review as a conference paper at ICLR 2020

A CONVERTING THE GP OF KHAN ET AL. (2019) INTO OBSERVATION SPACE

A.1 NOTATION AND PROBLEM SETUP

We denote by D := {(xi, yi)}Ni=1 a dataset of N examples with xi ∈ RD and output yi ∈ RK .
The complex parametric function, e.g. a neural network, is denoted by f(x; w) : RD × RP →

RK with P−dimensional parameter vector w. Finally, we have a twice differentiable loss function
`(y, f(x; w)), e.g. squared loss or cross-entropy. We write ỹ in place of f(x; w).

To optimize above parametric model, gradient-based approaches are used. The relevant quantities
∇w`(yi, ỹi) = J(xi; w)>ri, (11)

∇2
w`(yi, ỹi) = J(xi; w)>ΛiJ(xi; w) +

[
∇2

wf(xi; w)
]

ri (12)
denote the gradient and Hessian of the loss wrt. the parameter. In particular, we have written the
Jacobian J(xi; w) := ∇wf(xi; w) and Hessian ∇2

wf(xi; w) of the model. Further, ri := ∇ỹ`(yi, ỹi)
and Λi := ∇2

ỹ`(yi, ỹi) are gradient and Hessian of the loss.

A.2 CONVERSION TO OBSERVATION SPACE

The difference between Thm. 1 and 2 in (Khan et al., 2019) is that in the latter a sampled parameter
vector ws is used and in the first the mean w∗. We will simply write w∗ for either a sample or the
mean and focus on the single-sample case. It is easy to extend to multiple samples. Both Theorems
give rise to the following linear model with observations ŷi = J(xi; w∗)w∗ − Λ−1

i ri:
ŷi = J(xi; w∗)w + εi with w ∼ N(0, δ−1I) and εi ∼ N(0,Λ−1

i). (13)

Least-squares regression: recall ri = σ−2(f(xi; w∗) − yi) and Λi = σ−2IK . We can plug in and
re-arrange this to

yi = f(xi; w∗) + J(xi; w∗)(w − w∗) + εi, (14)
which is a linear model with the original models noise variance σ2 and prior on w. The poste-
rior distribution of this linear model after observation the original data set D is equivalent to the
one in Thms. 1 and 2 as we only did simple transformations. However, it is a model of the form∏N

i=1 p(yi |xi,w)p(w) in the observation space.

Logistic regression: we write pi := σ(f (xi; w∗)). Recall that ri = pi − yi and Λi = pi(1 − pi).
Writing εi ∼ N(0, 1) for standard noise, the Theorems provide the linear model

J(xi; w∗)w∗ −
pi − yi
Λi

= J(xi; w∗)w + Λ
− 1

2
i εi, (15)

which can be re-arranged and simplified with τi ∼ N(0,Λi):
yi = pi + ΛiJ(xi; w∗)(w − w∗) + τi . (16)

Softmax regression: we write pi := S(f(xi; w∗)) and have targets yi that are standard basis vectors,
i.e. have a single 1 at some position and otherwise 0s. Then we have ri = pi − yi and Λi =
diag(pi) − pip>i . This covariance is in fact rank K − 1 so it cannot be inverted posing a problem
for our original Theorems. However, we can give another linear model that has the posterior that is
equal to the approximate posterior of our original model at convergence. With τi ∼ N(0,Λi):

yi = pi + ΛiJ(xi; w∗)(w − w∗) + τi . (17)

Conversion to GP: All the above models work directly in the data domain and preserve the con-
dition that their posterior distribution co-incides with the approximate posterior due to Laplace/VI
combined with GGN. The regression problems can be written in parameter or function-space. To
convert above formulations into function space, one has to take expectation and covariance of f. The
linear problem in Eq. (20), e.g., can be written in function space as

yi = f(xi) + τi with f(x) ∼ GP(p − ΛJ(x; w∗)w∗, δ−1
ΛJ(x; w∗)J(x′; w∗)>Λ′). (18)

Writing the approximate posterior or exact posterior in for this model gives us distributionN(µ,Σ).
Consequently, we can specify the posterior GP as

f(x) ∼ GP(p + ΛJ(x; w∗)(µ − w∗),ΛJ(x; w∗)ΣJ(x′; w∗)>Λ′), (19)
where µ − w∗ cancels out for the Laplace approximation, which we use in this work.

11

Under review as a conference paper at ICLR 2020

A.3 REDUCING COMPLEXITY IN THE MULTICLASS SETTING

For the softmax regression with K classes, we will build an individual GP for each class. We utilize
y(k)i to denote the k-th item of yi in Eq. (17). Then y(k)i will be:

y(k)i = p(k)i + Λ
(k)
i J(xi; w∗)(w − w∗) + τ(k)i . (20)

Here Λ(k)i denotes the k-th row of the hessian matrix. The above linear problem can be similarly
written in the function space as:

y(k)i = f(k)(xi) + τ(k)i with f(k)(x) ∼ GP(p(k) − Λ(k)J(x; w∗)w∗, δ−1Λ(k)J(x; w∗)J(x′; w∗)>[Λ(k)]′).
(21)

Given the Laplace approximation N(w∗,Σ), we can write the mean and covariance function of
posterior GP as:

m(k)(xi) = p(k)i + Λ
(k)J(xi; w∗)(w∗ − w∗) = p(k)i (22)

D(k)(xi, xj) = Λ
(k)
i J(xi; w∗)ΣJ(x′j ; w∗)>[Λ(k)j]

′. (23)

The final objective function is:

min
w

τ
∑
i∈D t

`(yi, fw(xi)) +
1
2

t−1∑
s=1

K∑
k=1
(m(k)s,w −m(k)s,wt−1)

>[D(k)wt−1,s]
−1(m(k)s,w −m(k)s,wt−1), (24)

B FURTHER TOY DATA EXPERIMENTS

This section provides further information and visualisations of toy 2D datasets, as well as hyperpa-
rameter settings for VCL.

B.1 WEIGHT-SPACE REGULARISATION’S INCONSISTENT BEHAVIOUR

Table 3: Train accuracy of FROMP, VCL (no coresets), VCL+coresets and batch-trained Adam
(an upper bound on performance) on a toy 2D binary classification dataset, with mean and standard
deviations over 5 runs for VCL and batch Adam, and 10 runs for FROMP. ‘VCL’ is without coresets.
VCL-RP and FRORP have the same (random) coreset selections. VCL-MP is provided with ‘ideal’
coreset points as chosen by an independent run of FROMP. VCL (no coreset) does very poorly,
forgetting previous tasks. VCL+coresets is brittle with high standard deviations, while FROMP is
stable.

FROMP FRORP VCL-RP VCL-MP VCL Batch Adam
99.6% ± 0.2 98.5% ± 0.6 92% ± 10 85% ± 14 68% ± 8 99.70% ± 0.03

Table 3 summarises the performance (measured by train accuracy) of FROMP and VCL+coresets
on a toy dataset similar to that in Figure 1. FROMP is very consistent, while VCL (with coresets)
is extremely brittle: it can perform well sometimes (1 run out of 5), but usually does not (4 runs
out of 5). This is regardless of coreset points chosen for VCL. Without coresets, VCL forgets many
past tasks, with very low performance. Previous work (Farquhar & Gal, 2019) has argued that this
is inevitable for weight-regularisation-only methods such as VCL and EWC.

We now 3 runs with different random seeds of VCL-MP from Table 3: the coreset is chosen from
an independent run of FROMP, with datapoints all on the task boundary. This selection of coreset
is intuitively better than a random coreset selection. Please note that the results we show here are
not specific to coreset selection. Any coreset selection (whether random or otherwise) all show the
same inconsistency when VCL is run on them. This behaviour is not specific to coreset choice.

12

Under review as a conference paper at ICLR 2020

After Task 5 After Task 5

After Task 5

Figure 5: Three runs of VCL-MP on toy 2D data. These are the middle performing 3 runs out of 5
runs with different random seeds. VCL’s inconsistent behaviour is clear.

B.2 DATASET VARIATIONS

This section visualises the different dataset variations presented in Table 1. We pick the middle
performing FROMP run (out of 5) and batch Adam run to show.

0.0 0.5 1.0 1.5 2.0 2.5

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25
FR-CL

0.0 0.5 1.0 1.5 2.0 2.5

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25
Adam, batch learning

Figure 6: FROMP (middle performing of 5 runs) and batch Adam on a dataset 10x smaller (400
points per task).

13

Under review as a conference paper at ICLR 2020

Figure 7: FROMP (middle performing of 5 runs), left, and batch Adam, right, on a dataset 10x larger
(40,000 points per task).

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25
FR-CL

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25
Adam, batch learning

Figure 8: FROMP (middle performing of 5 runs), left, and batch Adam, right, on a dataset with a
new, easy, 6th task.

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.5

0.0

0.5

1.0

FR-CL

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.5

0.0

0.5

1.0

Adam, batch learning

Figure 9: FROMP (middle performing of 5 runs), left, and batch Adam, right, on a dataset with
increased standard deviations of each class’ points, making classification tougher.

14

Under review as a conference paper at ICLR 2020

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FR-CL

0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Adam, batch learning

Figure 10: FROMP (middle performing of 5 runs), left, and batch Adam, right, on a dataset with 2
tasks having overlapping data, which is not separable.

B.3 VCL AND FROMP HYPERPARAMETER SETTINGS FOR TOY DATASETS

FROMP. We optimised the number of epochs, Adam learning rate, and batch size. We optimised
by running various settings for 5 runs and picking the settings with largest mean train accuracy on
the toy dataset in Figure 1. We found the best settings were: number of epochs=50, batch size=20,
learning rate=0.01. The hyperparameters were then fixed across all toy data experimental runs,
including across dataset variations (number of epochs was appropriately scaled by 10 if dataset size
was scaled by 10).

VCL+coresets. We optimised the number of epochs, the number of coreset epochs (because
VCL+coresets trains on non-coreset data first, then on coreset data just before test-time: see (Nguyen
et al., 2018)), learning rate (we use Adam to optimise the means and standard deviations of each pa-
rameter), batch size, and prior variance. We optimised by running various settings for 5 runs and
picking the settings with largest mean train accuracy. We found the best settings were: number of
epochs=200, number of coreset epochs=200, a standard normal prior (variance=1), batch size=40,
learning rate=0.01. VCL is slow to run (an order of magnitude longer) compared to all other methods
(FROMP and batch Adam).

15

	Introduction
	Continual Learning with Weight/Functional Regularisation
	Functional-Regularisation of Memorable Past (FROMP)
	From Deep Networks to Gaussian Process Posteriors over Functions
	Memorable past
	Functional-Regularisation

	Experiments
	Toy dataset
	Permuted and Split MNIST
	Split CIFAR

	Discussion
	Converting the GP of nn2gp into Observation Space
	Notation and Problem Setup
	Conversion to Observation Space
	Reducing Complexity in the Multiclass Setting

	Further toy data experiments
	Weight-space regularisation's inconsistent behaviour
	Dataset variations
	VCL and FROMP hyperparameter settings for toy datasets

