SUPPLEMENTARY MATERIALS: LIGHTWEIGHT IMAGE SUPER-RESOLUTION VIA FLEXIBLE META PRUNING

Anonymous authors

Paper under double-blind review

1 MORE DISCUSSIONS

1.1 MORE CLARIFICATIONS ABOUT NOVELTY

The idea of combining unstructured pruning and structured pruning for image SR is straightforward. However, how to design an algorithm to achieve flexible pruning is still worthy of investigation. Our FMP could automatically allocate parameters and computation budgets for unstructured and structured pruning.

The introduced technique such as weight indicator extends the usage of hypernetworks from channel pruning to a wider scope of network (weight and channel) pruning.

1.2 More Discussions about Inference Time

Our FMP also reduces network redundancy and the resulting models are more friendly for on-device storage and transmission for inference usage. The inference time can be further improved by AI accelerators, since the computation is reduced. But, the hardware design related to network pruning is out of the scope of this paper.

1.3 DIFFERENCES BETWEEN FMP AND ASSLN (ZHANG ET AL., 2021)

(1) ASSLN needs a large pre-trained model for pruning, while FMP **does not**. (2) ASSLN only prunes channels. FMP prunes both channels and weights flexibly. (3) FMP further reduces network redundancy, enhances network representation ability, and obtains better reconstruction results.

2 EXPERIMENTAL RESULTS

2.1 ARM ESRB WITH FMP

We give more details about applying our flexible meta pruning (FMP) to the designed efficient super-resolution baseline (ESRB). We use ESRB-6-256 as the original model and prune it to the target lightweight one (denoted as FMP for simplicity). ESRB-6-256 consists of 6 basic blocks and 256 channels in the convolutional layer. It should be noted that we do not pretrain ESRB-6-256. This is different from ASSLN (Zhang et al., 2021), which needs a pretained model.

We provide the parameters (*i.e.*, Params), FLOPs, and prune ratio in Tab. 1. We prune the original large model ESRB-6-256 by large prune ratio. Namely, the parameter prune ratios are 91.52%, 91.67%, and 91.48% with respect to $\times 2$, $\times 2$, and $\times 4$. The FLOPs prune ratios follow a similar trend. Our FMP can flexibly prune large models by large prune ratios with more efficient parameters.

2.2 More Analyses about Convergence Criteria

We provide results in Tab. 3 to investigate the convergence criteria, which needs to be defined during the optimization. We define the pruning ratio γ_C and γ_W in terms of either the number of parameter (denoted as Params) or FLOPs, depending on which metric we want to optimize for. Both structured pruning (*i.e.*, channel pruning) and unstructured pruning (*i.e.*, weight pruning) are conducted during the optimization. In addition, we defined four convergence criteria: (1) Channel: the pruning algorithm converges if the channel pruning ratio γ_C is achieved. (2) Weight: the pruning algorithm

Scale	ESRE	8-6-256	FN	ЛР	Prune Ratio (%)		
	Params	FLOPs	Params	FLOPs	Params	FLOPs	
$\times 2$	8,180K	1,877.8G	694K	153.7G	91.52	91.81	
$\times 3$	8,215K	836.8G	684K	67.3G	91.67	91.96	
$\times 4$	8,264K	474.2G	704K	39.0G	91.48	91.78	

Table 1: Model size, FLOPs, and prune ratio before and after pruning. We set output size as $3 \times 1280 \times 720$ to calculate FLOPs.

Mathad		$\times 2$		×3	×4		
Method	Params	FLOPs	Params	FLOPs	Params	FLOPs	
SRCNN (Dong et al., 2014)	57K	52.7G	57K	52.7G	57K	52.7G	
FSRCNN (Dong et al., 2016)	12K	6.0G	12K	5.0G	12K	4.6G	
VDSR (Kim et al., 2016a)	665K	612.6G	665K	612.6G	665K	612.6G	
DRCN (Kim et al., 2016b)	1,774K	17,974.3G	1,774K	17,974.3G	1,774K	17,974.3G	
LapSRN (Lai et al., 2017)	813K	29.9G	N/A	N/A	813K	149.4G	
DRRN (Tai et al., 2017a)	297K	6,796.9G	297K	6,796.9G	297K	6,796.9G	
MemNet (Tai et al., 2017b)	677K	2,662.4G	677K	2,662.4G	677K	2,662.4G	
SelNet (Choi & Kim, 2017)	974K	225.7G	1,159K	120.0G	1,417K	83.1G	
CARN (Ahn et al., 2018)	1,592K	222.8G	1,592K	118.8G	1,592K	90.9G	
BSRN (Choi et al., 2018)	594K	1666.7G	779K	761.1G	742K	451.8G	
IMDN (Hui et al., 2019)	694K	158.8G	703K	71.5G	715K	40.9G	
LatticeNet (Luo et al., 2022)	756K	169.5G	765K	76.3G	777K	43.6G	
ASSLN (Zhang et al., 2021)	692K	159.1G	698K	71.2G	708K	40.6G	
FMP (ours)	694K	153.7G	684K	67.3G	704K	39.0G	

Table 2: Model size and FLOPs comparisons.

converges if the channel pruning ratio γ_W is achieved. (3) Total Fixed: both the pruning ratio γ_C and γ_W should be met individually. (4) Total: the joint pruning ratio $\gamma_C + \gamma_W$ is achieved. The percentage of weight pruning and channel pruning is determined automatically.

In Tab. 3, we use Params and FLOPs as metrics in the pruning process. For each metric, we further use four criteria: 'Channel', 'Weight', 'Total Fixed', and 'Total' for convergence. The term 'Total Ratio (%)' means the remaining ratio in terms of FLOPs or Params after pruning. The terms 'Channel Prune Ratio (%)' and 'Weight Prune Ratio (%)' mean the amount ratio pruned with respect to channel and weight. We can learn that pruning channel and weight jointly (*i.e.*, Total Fixed and Total cases) reduces more parameters and obtains comparable performance as channel pruning alone. We take 'Total' in the experiments.

2.3 MAIN COMPARISONS

We compare our lightweight network FMP with representative lightweight SR networks: SRCNN (Dong et al., 2014), FSRCNN (Dong et al., 2016), VDSR (Kim et al., 2016a), DRCN (Kim et al., 2016b), CNF (Ren et al., 2017), LapSRN (Lai et al., 2017), DRRN (Tai et al., 2017a), MemNet (Tai et al., 2017b), SelNet (Choi & Kim, 2017), CARN (Ahn et al., 2018), BSRN (Choi et al., 2018), IMDN (Hui et al., 2019), LatticeNet (Luo et al., 2022), and ASSLN (Zhang et al., 2021).

Quantitative Results. Table 4 shows PSNR/SSIM comparisons for $\times 2$, $\times 3$, and $\times 4$ SR. ASSLN (Zhang et al., 2021) ranks the second best. When compared to all other methods, our FMP performs the best on all the datasets and scaling factors. Specifically, let's take $\times 2$ SR as an example. FMP obtains about 0.30 dB on Urban100 PSNR gains over ASSLN. These comparisons show the effectiveness of FMP, which prunes the network channels and weights flexibly.

Visual Results. We further provide visual comparisons (×4) in Figs. 1, 2, 3, and 4 for challenging cases. For example, in img_072, we can observe that most of the compared methods suffer from heavy blurring artifacts in the challenging cases (*e.g.*., img_033 and img_059). They can hardly reconstruct structural details with proper directions (*e.g.*., img_061 and img_073). While, our FMP can better alleviate the blurring artifacts and recover more structural and texture details (*e.g.*, img_091). Similar observations can be found in other images. These visual comparisons are consistent with the quantitative comparisons, demonstrating the effectiveness of our method.

Metric	Critorio	Total Ratio (%)		Channel Prune Ratio (%)		Weight	Prune Ratio (%)	PSNR (dB) of EDSR-8-128 + FMP				
	Ciliciia	FLOPs	Params	FLOPs	Params	FLOPs	Params	Set5	Set14	B100	Urban100	Manga109
Params	Channel	72.88	70.61	18.34	18.51	8.78	10.88	32.00	28.51	28.51	25.94	30.05
	Weight	48.55	41.49	33.24	33.39	18.21	25.12	31.90	28.45	27.46	25.76	29.87
	Total Fixed	62.23	55.59	19.65	19.78	18.11	24.63	31.98	28.50	27.51	25.85	30.04
	Total	61.95	59.98	31.11	31.49	6.94	8.53	32.03	28.53	27.52	25.90	30.10
FLOPs	Channel	72.93	70.70	18.34	18.51	8.73	10.78	32.04	28.56	27.53	25.96	30.15
	Weight	59.19	54.39	27.19	27.60	13.63	18.01	31.97	28.49	27.50	25.90	30.02
	Total Fixed	67.46	62.70	18.64	18.95	13.90	18.35	31.97	28.54	27.53	25.91	30.07
	Total	65.39	61.57	23.15	23.60	11.45	14.83	32.04	28.55	27.53	25.94	30.11

Table 3: Convergence criteria in FMP for image SR (\times 4). We apply FMP to EDSR-8-128.

Model Complexity. We provide parameter number and FLOPs comparison in Tab. 2. Although some previous lightweight SR models (*e.g.*, SRCNN and FSRCNN) cost very small model sizes and FLOPs, they have limited performance. Compared with recent popular works (*e.g.*, MemNet, CARN, IMDN, LatticeNet, and ASSLN), our FMP has the least parameter number. The FLOPs comparison also follow similar trend. Our FMP operates least F LOPs than most recent methods. When we consider Tabs. 4 and 2 together, we find that our FMP achieves a better trade-off between performance and resource consumption and reduces parameters and operations efficiently.

REFERENCES

- Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast, accurate, and lightweight superresolution with cascading residual network. In *ECCV*, 2018. 2
- Jae-Seok Choi and Munchurl Kim. A deep convolutional neural network with selection units for super-resolution. In *CVPRW*, 2017. 2
- Jun-Ho Choi, Jun-Hyuk Kim, Manri Cheon, and Jong-Seok Lee. Lightweight and efficient image super-resolution with block state-based recursive network. arXiv preprint arXiv:1811.12546, 2018. 2
- Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional network for image super-resolution. In *ECCV*, 2014. 2
- Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerating the super-resolution convolutional neural network. In *ECCV*, 2016. 2
- Zheng Hui, Xinbo Gao, Yunchu Yang, and Xiumei Wang. Lightweight image super-resolution with information multi-distillation network. In ACM MM, 2019. 2
- Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep convolutional networks. In *CVPR*, 2016a. 2
- Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-recursive convolutional network for image super-resolution. In *CVPR*, 2016b. 2
- Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Deep laplacian pyramid networks for fast and accurate super-resolution. In *CVPR*, 2017. 2
- Xiaotong Luo, Yanyun Qu, Yuan Xie, Yulun Zhang, Cuihua Li, and Yun Fu. Lattice network for lightweight image restoration. *TPAMI*, 2022. 2
- Haoyu Ren, Mostafa El-Khamy, and Jungwon Lee. Image super resolution based on fusing multiple convolution neural networks. In *CVPRW*, 2017. 2
- Ying Tai, Jian Yang, and Xiaoming Liu. Image super-resolution via deep recursive residual network. In *CVPR*, 2017a. 2
- Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Memnet: A persistent memory network for image restoration. In *ICCV*, 2017b. 2
- Yulun Zhang, Huan Wang, Can Qin, and Yun Fu. Aligned structured sparsity learning for efficient image super-resolution. In *NeurIPS*, 2021. 1, 2

Method	Scale	Set5		Set14		B100		Urban100		Manga109	
Method	Scale	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
SRCNN	$\times 2$	36.66	0.9542	32.42	0.9063	31.36	0.8879	29.50	0.8946	35.60	0.9663
FSRCNN	$\times 2$	37.00	0.9558	32.63	0.9088	31.53	0.8920	29.88	0.9020	36.67	0.9710
VDSR	$\times 2$	37.53	0.9587	33.03	0.9124	31.90	0.8960	30.76	0.9140	37.22	0.9750
DRCN	$\times 2$	37.63	0.9588	33.04	0.9118	31.85	0.8942	30.75	0.9133	37.63	0.9740
CNF	$\times 2$	37.66	0.9590	33.38	0.9136	31.91	0.8962	N/A	N/A	N/A	N/A
LapSRN	$\times 2$	37.52	0.9590	33.08	0.9130	31.80	0.8950	30.41	0.9100	37.27	0.9740
DRRN	$\times 2$	37.74	0.9591	33.23	0.9136	32.05	0.8973	31.23	0.9188	37.92	0.9760
MemNet	$\times 2$	37.78	0.9597	33.28	0.9142	32.08	0.8978	31.31	0.9195	37.72	0.9740
SelNet	$\times 2$	37.89	0.9598	33.61	0.9160	32.08	0.8984	N/A	N/A	N/A	N/A
CARN	$\times 2$	37.76	0.9590	33.52	0.9166	32.09	0.8978	31.92	0.9256	38.36	0.9764
BSRN	$\times 2$	37.78	0.9591	33.43	0.9155	32.11	0.8983	31.92	0.9261	N/A	N/A
FALSR-A	$\times 2$	37.82	0.9595	33.55	0.9168	32.12	0.8987	31.93	0.9256	N/A	N/A
IMDN	$\times 2$	38.00	0.9605	33.63	0.9177	32.19	0.8996	32.17	0.9283	38.87	0.9773
LatticeNet	$\times 2$	38.06	0.9607	33.70	0.9187	32.20	0.8999	32.25	0.9288	N/A	N/A
ASSLN	$\times 2$	38.12	0.9608	33.77	0.9194	32.27	0.9007	32.41	0.9309	39.12	0.9781
FMP (ours)	$\times 2$	38.17	0.9615	33.81	0.9215	32.32	0.9022	32.71	0.9360	39.17	0.9783
SRCNN	×3	32.75	0.9090	29.28	0.8209	28.41	0.7863	26.24	0.7989	30.48	0.9117
FSRCNN	×3	33.16	0.9140	29.43	0.8242	28.53	0.7910	26.43	0.8080	31.10	0.9210
VDSR	×3	33.66	0.9213	29.77	0.8314	28.82	0.7976	27.14	0.8279	32.01	0.9340
DRCN	×3	33.82	0.9226	29.76	0.8311	28.80	0.7963	27.15	0.8276	32.31	0.9360
DRRN	×3	34.03	0.9244	29.96	0.8349	28.95	0.8004	27.53	0.8378	32.74	0.9390
MemNet	×3	34.09	0.9248	30.00	0.8350	28.96	0.8001	27.56	0.8376	32.51	0.9369
SelNet	×3	34.27	0.9257	30.30	0.8399	28.97	0.8025	N/A	N/A	N/A	N/A
CARN	×3	34.29	0.9255	30.29	0.8407	29.06	0.8034	28.06	0.8493	33.50	0.9539
IMDN	×3	34.36	0.9270	30.32	0.8417	29.09	0.8046	28.17	0.8519	33.61	0.9444
BSRN	×3	34.32	0.9255	30.25	0.8404	29.07	0.8039	28.04	0.8497	N/A	N/A
LatticeNet	×3	34.40	0.9272	30.32	0.8416	29.10	0.8049	28.19	0.8513	N/A	N/A
ASSLN	×3	34.51	0.9280	30.45	0.8439	29.19	0.8069	28.35	0.8562	34.00	0.9468
FMP (ours)	×3	34.55	0.9291	30.48	0.8456	29.20	0.8101	28.40	0.8597	34.06	0.9473
SRCNN	$\times 4$	30.48	0.8628	27.49	0 7503	26.90	0 7101	24 52	0 7221	27 58	0.8555
ESECNN	$\times 4$	30.71	0.8657	27.19	0.7535	26.98	0.7150	24.62	0.7280	27.90	0.8610
VDSR	$\times 4$	31 35	0.8838	28.01	0.7674	27 29	0.7251	25.18	0.7524	28.83	0.8870
DRCN	$\times 4$	31 53	0.8854	28.02	0.7670	27.23	0.7233	25.10	0.7510	28.98	0.8870
CNF	$\times 4$	31 55	0.8856	28.15	0.7680	27.32	0.7253	N/A	N/A	N/A	N/A
LanSRN	$\times 4$	31.55	0.8850	28.19	0.7720	27.32	0.7280	25 21	0.7560	29.09	0.8900
DRRN	$\times 4$	31.68	0.8888	28 21	0.7720	27.38	0.7284	25.44	0.7638	29.46	0.8960
MemNet	$\times 4$	31 74	0.8893	28.26	0.7723	27.40	0.7281	25 50	0.7630	29.42	0.8942
SelNet	$\times 4$	32.00	0.8931	28.49	0.7783	27.44	0.7325	N/A	N/A	N/A	N/A
CARN	$\times 4$	32.13	0.8937	28.60	0 7806	27 58	0 7349	26.07	0 7837	30.46	0 9083
BSRN	$\times 4$	32.13	0.8937	28.56	0 7803	27.50	0 7353	26.03	0 7835	N/A	N/A
IMDN	$\times 4$	32.11	0.8948	28 58	0 7811	27.56	0 7353	26.03	0 7838	30.45	0 9075
LatticeNet	$\times 4$	32.21	0.8943	28.61	0 7812	27.50	0 7355	26.04	0 7844	N/A	N/A
ASSIN	\mathbf{x}_{4}	32.10	0.8964	28.69	0 7844	27.66	0 7384	26.27	0 7907	30.84	0 91 1 9
FMP (ours)	$\begin{pmatrix} & & \\ & \times & 4 \end{pmatrix}$	32.29	0.8979	28.71	0 7878	27.67	0.7425	26.35	0 7954	30.90	0.9132
Lini (ouis)		52.54	0.0717		0.1010	21.01	0.1120	20.55	0.1704	0.00	0.7154

Table 4: PSNR/SSIM comparisons about lightweight image SR. Best and second best results are colored with red and blue.

Figure 1: Visual comparison (\times 4) with lightweight SR networks on Urban100 dataset.

Urban100: img_048 (×4)LapSRNCARNIMDNASSLNFMP (ours)Figure 2: Visual comparison (×4) with lightweight SR networks on Urban100 dataset.

Figure 3: Visual comparison (×4) with lightweight SR networks on Urban100 dataset.

Figure 4: Visual comparison (\times 4) with lightweight SR networks on Urban100 dataset.