
Under review as a conference paper at ICLR 2024

SUPPLEMENTARY MATERIALS: LIGHTWEIGHT IMAGE
SUPER-RESOLUTION VIA FLEXIBLE META PRUNING

Anonymous authors
Paper under double-blind review

1 MORE DISCUSSIONS

1.1 MORE CLARIFICATIONS ABOUT NOVELTY

The idea of combining unstructured pruning and structured pruning for image SR is straightforward.
However, how to design an algorithm to achieve flexible pruning is still worthy of investigation.
Our FMP could automatically allocate parameters and computation budgets for unstructured and
structured pruning.

The introduced technique such as weight indicator extends the usage of hypernetworks from channel
pruning to a wider scope of network (weight and channel) pruning.

1.2 MORE DISCUSSIONS ABOUT INFERENCE TIME

Our FMP also reduces network redundancy and the resulting models are more friendly for on-device
storage and transmission for inference usage. The inference time can be further improved by AI
accelerators, since the computation is reduced. But, the hardware design related to network pruning
is out of the scope of this paper.

1.3 DIFFERENCES BETWEEN FMP AND ASSLN (ZHANG ET AL., 2021)

(1) ASSLN needs a large pre-trained model for pruning, while FMP does not. (2) ASSLN only
prunes channels. FMP prunes both channels and weights flexibly. (3) FMP further reduces network
redundancy, enhances network representation ability, and obtains better reconstruction results.

2 EXPERIMENTAL RESULTS

2.1 ARM ESRB WITH FMP

We give more details about applying our flexible meta pruning (FMP) to the designed efficient
super-resolution baseline (ESRB). We use ESRB-6-256 as the original model and prune it to the
target lightweight one (denoted as FMP for simplicity). ESRB-6-256 consists of 6 basic blocks and
256 channels in the convolutional layer. It should be noted that we do not pretrain ESRB-6-256.
This is different from ASSLN (Zhang et al., 2021), which needs a pretained model.

We provide the parameters (i.e., Params), FLOPs, and prune ratio in Tab. 1. We prune the original
large model ESRB-6-256 by large prune ratio. Namely, the parameter prune ratios are 91.52%,
91.67%, and 91.48% with respect to ×2, ×2, and ×4. The FLOPs prune ratios follow a similar
trend. Our FMP can flexibly prune large models by large prune ratios with more efficient parameters.

2.2 MORE ANALYSES ABOUT CONVERGENCE CRITERIA

We provide results in Tab. 3 to investigate the convergence criteria, which needs to be defined during
the optimization. We define the pruning ratio γC and γW in terms of either the number of parameter
(denoted as Params) or FLOPs, depending on which metric we want to optimize for. Both struc-
tured pruning (i.e., channel pruning) and unstructured pruning (i.e., weight pruning) are conducted
during the optimization. In addition, we defined four convergence criteria: (1) Channel: the pruning
algorithm converges if the channel pruning ratio γC is achieved. (2) Weight: the pruning algorithm
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ESRB-6-256 FMP Prune Ratio (%)Scale Params FLOPs Params FLOPs Params FLOPs
×2 8,180K 1,877.8G 694K 153.7G 91.52 91.81
×3 8,215K 836.8G 684K 67.3G 91.67 91.96
×4 8,264K 474.2G 704K 39.0G 91.48 91.78

Table 1: Model size, FLOPs, and prune ratio before and after pruning. We set output size as
3×1280×720 to calculate FLOPs.

×2 ×3 ×4Method Params FLOPs Params FLOPs Params FLOPs

SRCNN (Dong et al., 2014) 57K 52.7G 57K 52.7G 57K 52.7G
FSRCNN (Dong et al., 2016) 12K 6.0G 12K 5.0G 12K 4.6G
VDSR (Kim et al., 2016a) 665K 612.6G 665K 612.6G 665K 612.6G
DRCN (Kim et al., 2016b) 1,774K 17,974.3G 1,774K 17,974.3G 1,774K 17,974.3G
LapSRN (Lai et al., 2017) 813K 29.9G N/A N/A 813K 149.4G
DRRN (Tai et al., 2017a) 297K 6,796.9G 297K 6,796.9G 297K 6,796.9G
MemNet (Tai et al., 2017b) 677K 2,662.4G 677K 2,662.4G 677K 2,662.4G
SelNet (Choi & Kim, 2017) 974K 225.7G 1,159K 120.0G 1,417K 83.1G
CARN (Ahn et al., 2018) 1,592K 222.8G 1,592K 118.8G 1,592K 90.9G
BSRN (Choi et al., 2018) 594K 1666.7G 779K 761.1G 742K 451.8G
IMDN (Hui et al., 2019) 694K 158.8G 703K 71.5G 715K 40.9G
LatticeNet (Luo et al., 2022) 756K 169.5G 765K 76.3G 777K 43.6G
ASSLN (Zhang et al., 2021) 692K 159.1G 698K 71.2G 708K 40.6G
FMP (ours) 694K 153.7G 684K 67.3G 704K 39.0G

Table 2: Model size and FLOPs comparisons.

converges if the channel pruning ratio γW is achieved. (3) Total Fixed: both the pruning ratio γC
and γW should be met individually. (4) Total: the joint pruning ratio γC + γW is achieved. The
percentage of weight pruning and channel pruning is determined automatically.

In Tab. 3, we use Params and FLOPs as metrics in the pruning process. For each metric, we further
use four criteria: ‘Channel’, ‘Weight’, ‘Total Fixed’, and ‘Total’ for convergence. The term ‘Total
Ratio (%)’ means the remaining ratio in terms of FLOPs or Params after pruning. The terms ‘Chan-
nel Prune Ratio (%)’ and ‘Weight Prune Ratio (%)’ mean the amount ratio pruned with respect to
channel and weight. We can learn that pruning channel and weight jointly (i.e., Total Fixed and Total
cases) reduces more parameters and obtains comparable performance as channel pruning alone. We
take ‘Total’ in the experiments.

2.3 MAIN COMPARISONS

We compare our lightweight network FMP with representative lightweight SR networks: SRCNN
(Dong et al., 2014), FSRCNN (Dong et al., 2016), VDSR (Kim et al., 2016a), DRCN (Kim et al.,
2016b), CNF (Ren et al., 2017), LapSRN (Lai et al., 2017), DRRN (Tai et al., 2017a), MemNet (Tai
et al., 2017b), SelNet (Choi & Kim, 2017), CARN (Ahn et al., 2018), BSRN (Choi et al., 2018),
IMDN (Hui et al., 2019), LatticeNet (Luo et al., 2022), and ASSLN (Zhang et al., 2021).

Quantitative Results. Table 4 shows PSNR/SSIM comparisons for ×2, ×3, and ×4 SR.
ASSLN (Zhang et al., 2021) ranks the second best. When compared to all other methods, our
FMP performs the best on all the datasets and scaling factors. Specifically, let’s take ×2 SR as an
example. FMP obtains about 0.30 dB on Urban100 PSNR gains over ASSLN. These comparisons
show the effectiveness of FMP, which prunes the network channels and weights flexibly.

Visual Results. We further provide visual comparisons (×4) in Figs. 1, 2, 3, and 4 for challenging
cases. For example, in img 072, we can observe that most of the compared methods suffer from
heavy blurring artifacts in the challenging cases (e.g.., img 033 and img 059). They can hardly re-
construct structural details with proper directions (e.g.., img 061 and img 073). While, our FMP can
better alleviate the blurring artifacts and recover more structural and texture details (e.g., img 091).
Similar observations can be found in other images. These visual comparisons are consistent with
the quantitative comparisons, demonstrating the effectiveness of our method.
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Total Ratio (%) Channel Prune Ratio (%) Weight Prune Ratio (%) PSNR (dB) of EDSR-8-128 + FMPMetric Criteria FLOPs Params FLOPs Params FLOPs Params Set5 Set14 B100 Urban100 Manga109

Params

Channel 72.88 70.61 18.34 18.51 8.78 10.88 32.00 28.51 28.51 25.94 30.05
Weight 48.55 41.49 33.24 33.39 18.21 25.12 31.90 28.45 27.46 25.76 29.87

Total Fixed 62.23 55.59 19.65 19.78 18.11 24.63 31.98 28.50 27.51 25.85 30.04
Total 61.95 59.98 31.11 31.49 6.94 8.53 32.03 28.53 27.52 25.90 30.10

FLOPs

Channel 72.93 70.70 18.34 18.51 8.73 10.78 32.04 28.56 27.53 25.96 30.15
Weight 59.19 54.39 27.19 27.60 13.63 18.01 31.97 28.49 27.50 25.90 30.02

Total Fixed 67.46 62.70 18.64 18.95 13.90 18.35 31.97 28.54 27.53 25.91 30.07
Total 65.39 61.57 23.15 23.60 11.45 14.83 32.04 28.55 27.53 25.94 30.11

Table 3: Convergence criteria in FMP for image SR (×4). We apply FMP to EDSR-8-128.

Model Complexity. We provide parameter number and FLOPs comparison in Tab. 2. Although
some previous lightweight SR models (e.g., SRCNN and FSRCNN) cost very small model sizes
and FLOPs, they have limited performance. Compared with recent popular works (e.g., MemNet,
CARN, IMDN, LatticeNet, and ASSLN), our FMP has the least parameter number. The FLOPs
comparison also follow similar trend. Our FMP operates least F LOPs than most recent methods.
When we consider Tabs. 4 and 2 together, we find that our FMP achieves a better trade-off between
performance and resource consumption and reduces parameters and operations efficiently.
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Set5 Set14 B100 Urban100 Manga109Method Scale PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
SRCNN ×2 36.66 0.9542 32.42 0.9063 31.36 0.8879 29.50 0.8946 35.60 0.9663
FSRCNN ×2 37.00 0.9558 32.63 0.9088 31.53 0.8920 29.88 0.9020 36.67 0.9710
VDSR ×2 37.53 0.9587 33.03 0.9124 31.90 0.8960 30.76 0.9140 37.22 0.9750
DRCN ×2 37.63 0.9588 33.04 0.9118 31.85 0.8942 30.75 0.9133 37.63 0.9740
CNF ×2 37.66 0.9590 33.38 0.9136 31.91 0.8962 N/A N/A N/A N/A
LapSRN ×2 37.52 0.9590 33.08 0.9130 31.80 0.8950 30.41 0.9100 37.27 0.9740
DRRN ×2 37.74 0.9591 33.23 0.9136 32.05 0.8973 31.23 0.9188 37.92 0.9760
MemNet ×2 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195 37.72 0.9740
SelNet ×2 37.89 0.9598 33.61 0.9160 32.08 0.8984 N/A N/A N/A N/A
CARN ×2 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9764
BSRN ×2 37.78 0.9591 33.43 0.9155 32.11 0.8983 31.92 0.9261 N/A N/A
FALSR-A ×2 37.82 0.9595 33.55 0.9168 32.12 0.8987 31.93 0.9256 N/A N/A
IMDN ×2 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.87 0.9773
LatticeNet ×2 38.06 0.9607 33.70 0.9187 32.20 0.8999 32.25 0.9288 N/A N/A
ASSLN ×2 38.12 0.9608 33.77 0.9194 32.27 0.9007 32.41 0.9309 39.12 0.9781
FMP (ours) ×2 38.17 0.9615 33.81 0.9215 32.32 0.9022 32.71 0.9360 39.17 0.9783
SRCNN ×3 32.75 0.9090 29.28 0.8209 28.41 0.7863 26.24 0.7989 30.48 0.9117
FSRCNN ×3 33.16 0.9140 29.43 0.8242 28.53 0.7910 26.43 0.8080 31.10 0.9210
VDSR ×3 33.66 0.9213 29.77 0.8314 28.82 0.7976 27.14 0.8279 32.01 0.9340
DRCN ×3 33.82 0.9226 29.76 0.8311 28.80 0.7963 27.15 0.8276 32.31 0.9360
DRRN ×3 34.03 0.9244 29.96 0.8349 28.95 0.8004 27.53 0.8378 32.74 0.9390
MemNet ×3 34.09 0.9248 30.00 0.8350 28.96 0.8001 27.56 0.8376 32.51 0.9369
SelNet ×3 34.27 0.9257 30.30 0.8399 28.97 0.8025 N/A N/A N/A N/A
CARN ×3 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9539
IMDN ×3 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9444
BSRN ×3 34.32 0.9255 30.25 0.8404 29.07 0.8039 28.04 0.8497 N/A N/A
LatticeNet ×3 34.40 0.9272 30.32 0.8416 29.10 0.8049 28.19 0.8513 N/A N/A
ASSLN ×3 34.51 0.9280 30.45 0.8439 29.19 0.8069 28.35 0.8562 34.00 0.9468
FMP (ours) ×3 34.55 0.9291 30.48 0.8456 29.20 0.8101 28.40 0.8597 34.06 0.9473
SRCNN ×4 30.48 0.8628 27.49 0.7503 26.90 0.7101 24.52 0.7221 27.58 0.8555
FSRCNN ×4 30.71 0.8657 27.59 0.7535 26.98 0.7150 24.62 0.7280 27.90 0.8610
VDSR ×4 31.35 0.8838 28.01 0.7674 27.29 0.7251 25.18 0.7524 28.83 0.8870
DRCN ×4 31.53 0.8854 28.02 0.7670 27.23 0.7233 25.14 0.7510 28.98 0.8870
CNF ×4 31.55 0.8856 28.15 0.7680 27.32 0.7253 N/A N/A N/A N/A
LapSRN ×4 31.54 0.8850 28.19 0.7720 27.32 0.7280 25.21 0.7560 29.09 0.8900
DRRN ×4 31.68 0.8888 28.21 0.7720 27.38 0.7284 25.44 0.7638 29.46 0.8960
MemNet ×4 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630 29.42 0.8942
SelNet ×4 32.00 0.8931 28.49 0.7783 27.44 0.7325 N/A N/A N/A N/A
CARN ×4 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.46 0.9083
BSRN ×4 32.14 0.8937 28.56 0.7803 27.57 0.7353 26.03 0.7835 N/A N/A
IMDN ×4 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075
LatticeNet ×4 32.18 0.8943 28.61 0.7812 27.57 0.7355 26.14 0.7844 N/A N/A
ASSLN ×4 32.29 0.8964 28.69 0.7844 27.66 0.7384 26.27 0.7907 30.84 0.9119
FMP (ours) ×4 32.34 0.8979 28.71 0.7878 27.67 0.7425 26.35 0.7954 30.90 0.9132

Table 4: PSNR/SSIM comparisons about lightweight image SR. Best and second best results are
colored with red and blue.
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Urban100: img 003 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 005 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 009 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 011 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 012 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 019 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Figure 1: Visual comparison (×4) with lightweight SR networks on Urban100 dataset.
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Urban100: img 024 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 033 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 039 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 042 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 047 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 048 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Figure 2: Visual comparison (×4) with lightweight SR networks on Urban100 dataset.
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Urban100: img 056 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 058 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 059 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 061 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 067 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 072 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Figure 3: Visual comparison (×4) with lightweight SR networks on Urban100 dataset.
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Urban100: img 073 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 074 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 076 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 091 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 092 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 093 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Figure 4: Visual comparison (×4) with lightweight SR networks on Urban100 dataset.
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