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Stochastic Context Consistency Reasoning for Domain Adaptive
Object Detection

Anonymous Authors

ABSTRACT
Domain Adaptive Object Detection (DAOD) aims to improve the
adaptation of the detector for the unlabeled target domain by the
labeled source domain. Recent advances leverage a self-training
framework to enable a student model to learn the target domain
knowledge using pseudo labels generated by a teacher model. De-
spite great successes, such category-level consistency supervision
suffers from poor quality of pseudo labels. To mitigate the prob-
lem, we propose a stochastic context consistency reasoning (SOC-
CER) network with the self-training framework. Firstly, we in-
troduce a stochastic complementary masking module (SCM) to
generate complementary masked images thus preventing the net-
work from over-relying on specific visual clues. Secondly, we design
an inter-changeable context consistency reasoning module (Inter-
CCR), which constructs an inter-context consistency paradigm to
capture the texture and contour details in the target domain by
aligning the predictions of the student model for complementary
masked images. Meanwhile, we develop an intra-changeable con-
text consistency reasoning module (Intra-CCR), which constructs
an intra-context consistency paradigm to strengthen the utilization
of context relations by utilizing pseudo labels to supervise the pre-
dictions of the student model. Experimental results on three DAOD
benchmarks demonstrate our method outperforms current state-of-
the-art methods by a large margin. Code is released in supplementary
materials.

CCS CONCEPTS
• Computing methodologies→ Object detection.

KEYWORDS
Domain adaptation, object detection, context consistency learning.

1 INTRODUCTION
Object detection plays a crucial role in applications such as au-
tonomous driving, intelligent surveillance, and industrial automa-
tion. However, the detector trained on the curated dataset (i.e.,
labeled source domain) suffers from severe adaptation degenera-
tion in practical application environments (i.e., unlabeled target
domain). This is caused by the domain shift due to the discrepancy
in the appearance and texture of objects, and the background. To
address this problem, researchers turn their attention to Domain
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Figure 1: (a) Previous self-training DAOD methods heavily
rely on the pseudo label for consistency training. (b) SOCCER
constructs the inter/intra-context consistency from multi-
view by Inter-CCR and Intra-CCR modules, which enhance
the representation and contextual correlation ability of the
network. (c) The example of our pseudo label quality com-
parison with MIC [23]. Benefiting from Inter-CCR and Intra-
CCR modules, the network extracts more discriminative fea-
tures to distinguish confusing categories (i.e., "rider" and
"person") and utilizes more context clues to build relations
between objects (i.e., "rider" and "bicycle").

Adaptive Object Detection (DAOD), intending to design a detector
that can transfer the knowledge learned from the labeled source
domain to the unlabeled target domain [6, 34, 63].

Unlike traditional object detection, the critical challenge of DAOD
is to learn the domain-invariant feature for bridging the domain
gap while preserving the domain-specific characteristic of the tar-
get domain for facilitating detection. The mainstream approaches
try to align feature distributions between source and target do-
mains through pixel-level [24, 30, 63], instance-level [18, 45, 63],
and image-level [6, 31] adversarial learning. Other methods attempt
to mitigate domain shifts by modeling prototypes as category cen-
ters to minimize each distance [48, 53, 59], using graph matching
theory [13, 32, 34, 38, 56], and employing image-to-image trans-
lation to generate target-like images [9, 21, 44, 57]. However, the
above methods focus on extracting domain-invariant features, and
this might ignore domain-specific features that reflect the discrimi-
natory information of objects in the target domain. Additionally,
they neglect the context correlation of 1) between objects and 2)
between objects and the background, which can provide powerful
discriminatory clues for object detection, particularly under a large
domain gap.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Recently, someDAODmethods [9, 21, 23, 27, 39, 50] introduce the
self-training framework and achieve significant adaptation gains.
The teacher model predicts the unlabeled target images to obtain
pseudo labels so as to guide the student model to generate target
features near the support of the source domain. Further, AT [36]
adopts adversarial learning to mitigate the domain shifts toward the
source domain in the student model. CMT [2] integrates contrastive
learning to fully exploit the ability of the teacher model to character-
ize the knowledge of the target domain. The existing self-training
frameworks heavily rely on pseudo labels of the teacher model to
implement the category-level consistency constraint, as illustrated
in Figure 1 (a). However, the quality of pseudo labels is usually
poor, and such single category-level consistency constraint limits
the domain adaptation ability of the student model thus leading to
sub-optimal learning.

To address the above problems, we propose a stochastic context
consistency reasoning (SOCCER) network to learn the context cor-
relation knowledge of the target domain by the multi-view context
consistency (as shown in Figure 1 (b)). Firstly, we introduce a sto-
chastic complementary masking module (SCM) to generate a pair
of complementary interchangeable views by stochastically masking
a part of local visual clues. This complementary masking strategy
prevents the student model from taking shortcuts with overlapping
visual clues to truly learn the relevance of neighboring contextual
regions. Secondly, we design an inter-changeable context consis-
tency reasoning module (Inter-CCR) to model the inter-context
consistency between the student model’s predictions from inter-
changeable views. Enforcing inter-context consistency between two
views enhances bidirectional feature alignment and improves the
representation ability of extracted features for texture and appear-
ance attributes. Meanwhile, we develop an interchangeable context
consistency reasoning module (Intra-CCR) to impose intra-context
consistency for multi-view between pseudo-labels generated by the
teacher model with a complete view and predictions of the student
model for incomplete views. This fully strengthens the potential
of the network for contextual correlation, thereby improving both
the cross-domain adaptability and the quality of pseudo-labels, as
shown in Figure 1 (c). Extensive experiments on three cross-domain
benchmarks demonstrate the extraordinary adaptation ability of
SOCCER and the effectiveness of each component.

The contributions of this paper are summarized as follows:

• We propose a stochastic context consistency reasoning net-
work to learn the context correlation knowledge of the target
domain for modeling the underlying contextual relationship
of the target domain between objects and environments.
• We introduce stochastic complementary masking to exploit
the discriminate visual clues in the target domain, thus pre-
venting the network from over-relying on specific regions
of objects.
• We design Inter-CCR and Intra-CCR modules to construct
two kinds of inter/intra-context consistency, thereby enhanc-
ing feature representation, modeling contextual correlation,
and improving the quality of pseudo labels.
• Extensive experiments demonstrate that SOCCER achieves
state-of-the-art detection performance on three benchmarks
and outperforms existing approaches significantly.

2 RELATEDWORK
Object detection. Object detection can be divided into two cat-
egories: one-stage (e.g., YOLO [40], FCOS [47] and Deformable
DETR [64]) and two-stage detectors (e.g., Faster RCNN [41] and
Fast RCNN [14]). One-stage detectors directly predict object bound-
ing boxes and their associated class probabilities for the entire image
without the need for explicit region proposals. The two-stage detec-
tors first generate some candidate proposals by the region proposal
network (RPN) [41] and then refine these candidates to give the
final bounding boxes and categories. We employ Faster RCNN as
the base detector for its outstanding performance and expansibility.
Domain adaptive object detection. DAOD aims to train a detec-
tor with labeled source domain data and unlabeled target domain
data, in order to achieve satisfactory adaptive performance on the
target domain. The earliest DAOD is based on adversarial feature
learning. Domain Adaptive Faster RCNN [6] applies domain adap-
tation to object detection, which proposes adversarial-based feature
alignment for Faster RCNN at image and instance level to mitigate
the domain shift. It leads a series of methods [3, 7, 22, 30, 52, 63]
to explore different aspects of feature alignment. For example,
context-aware alignment [3], multi-level alignment [22, 24, 52, 63],
token/query-based alignment [50, 56],andmulti-scale alignment [7].
Recently, the idea of Mean Teacher [46] is extended from semi-
supervised object detection to DAOD by MTOR [1] and achieves
many remarkable works [10, 23, 29, 36, 39, 56].
Consistency learning forDAOD.Consistency learning for DAOD
aims to train a robust detector by making similar predictions about
different perturbations. Jeong et al. [26] propose CSD to constrain
the prediction consistency of the model by feeding the original
image and the horizontally flipped image. Xie et al. [51] propose
a pretext task for pixel-level consistency. Recently, researchers
combine consistency learning with the self-training framework to
address domain adaptation in object detection. Kennerley et al. [29]
introduce a two-phase consistency network to enhance the con-
sistency of prediction between the teacher and the student model.
Hoyer et al. [23] propose MIC to strengthen the reasoning ability
for context by constraining the consistency of the prediction be-
tween the original image and the mask image. Different from the
above approaches: firstly, our method models both teacher-student
and student-student consistency constraints, while previous works
only focus on the consistency of the teacher-student aspect and
thus heavily rely on pseudo labels. Secondly, our proposed context
consistency reasoning enforces constraints from both classifica-
tion and localization perspectives, ensuring the model learns both
contextual semantic information and spatial information.

3 PRELIMINARIES
3.1 Problem Formulation
Given a labeled source domain D𝑠 = (𝑋𝑠 , 𝐵𝑠 ,𝐶𝑠 ) and an unlabeled
target domain D𝑡 = (𝑋𝑡 ), where 𝑋𝑠 and 𝑋𝑡 present 𝑁𝑠 source
images and 𝑁𝑡 target images, 𝐵𝑠 = {𝑏𝑖𝑠 }

𝑁𝑠

𝑖=1 denotes the bounding
box annotations and 𝐶𝑠 = {𝑐𝑖𝑠 }

𝑁𝑠

𝑖=1 denotes corresponding class
labels. We train a domain adaptive detector with D𝑠 and D𝑡 , and
the ultimate goal is to design a detector that performs effectively
within the target domain.
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Figure 2: Overview of the proposed SOCCER, which comprises three modules: 1) Stochastic complementary masking (SCM)
generates pairs of interchangeable views of target images. 2) Inter-changeable context consistency reasoning (Inter-CCR)
models the inter-context consistency by aligning predictions of the student model for two views to enhance the representation
of features. 3) Intra-changeable context consistency reasoning (Intra-CCR) conducts intra-context consistency between pseudo
labels and student model’s predictions from interchangeable views to learn contextual semantic and spatial information.

3.2 Self-training Framework
We use SADA [7] as the student model S, which is a two-stage
Faster RCNN [41] object detector combined with image-level and
instance-level adversarial learning. Domain discriminators D are
placed after the student module to predict the domain label of the
features. The adversarial optimization function is formulated:

L𝑎𝑑𝑣 = max
S

min
D
L𝐵𝐶𝐸 , (1)

where L𝐵𝐶𝐸 denotes the BCE loss of domain classification at the
image/instance-level and we use Gradient Reverse Layers(GRL) [12]
for min-max optimization.

The teacher model and the student model share the same struc-
ture in the self-training framework. The student model acquires the
source domain knowledge from source data by supervised training:

L𝑠𝑢𝑝 (𝑋𝑠 , 𝐵𝑠 ,𝐶𝑠 ) = L𝑐𝑙𝑠𝑠𝑢𝑝 (𝐶′𝑠 ,𝐶𝑠 ) + L
𝑟𝑒𝑔
𝑠𝑢𝑝 (𝐵′𝑠 , 𝐵𝑠 ) , (2)

where 𝐶′𝑠 and 𝐵′𝑠 denote categories and bounding boxes in 𝑋𝑠 pre-
dicted by the student model. By forcing the student model to imitate
the deep representations of the teacher model, the student model
can learn the knowledge of the target domain from the pseudo
labels (�̂�,𝐶):

L𝑢𝑛𝑠𝑢𝑝 (𝑋𝑡 , �̂�,𝐶) = L𝑐𝑙𝑠𝑢𝑛𝑠𝑢𝑝 (𝐶′𝑡 ,𝐶) + L
𝑟𝑒𝑔
𝑢𝑛𝑠𝑢𝑝 (𝐵′𝑡 , �̂�) , (3)

where 𝐶′𝑡 and 𝐵
′
𝑡 denote categories and bounding boxes in 𝑋𝑡 pre-

dicted by the student model, 𝐶 and �̂� denote the categories and
bounding boxes of objects in a pseudo label. In addition, to filter
out the noisy pseudo labels generated by the teacher model, we
apply a confidence threshold 𝛿 to filter low-confidence bounding
boxes and remove duplicate bounding boxes using non-maximum

suppression (NMS) [15] for each class. The teacher model is updated
by Exponential Moving Average (EMA) from the weights of the
student model without gradient accumulation:

𝜃𝑡 ← 𝛼𝜃𝑡 + (1 − 𝛼)𝜃𝑠 , (4)

where 𝜃𝑡 and 𝜃𝑠 denote themodel parameters of teacher and student
respectively, and 𝛼 is an update hyper-parameter.

4 METHODOLOGY
4.1 Overview
We propose the SOCCER network for DAOD, which is composed
of SCM, Inter-CCR, and Intra-CCR, as illustrated in Figure 2. SOC-
CER is built on the self-training framework as introduced in Sec-
tion 3.2. Concretely, SCM generates a pair of interchangeable views
{V1,V2} by stochastically masking a part of local visual features in
target images. Then, Inter-CCR is designed to conduct consistency
reasoning between predictions of {V1,V2} from the student model,
thus representing more domain-specific clues (i.e., appearance, tex-
ture). Simultaneously, in Intra-CCR, the teacher model generates
pseudo labels from the original view V0 (target image 𝑋𝑡 ) with
complete context information and supervises the reasoning of the
student model for interchangeable views {V1,V2} with the incom-
plete complementary context information. Therefore, both teacher
and student models in this network acquire a powerful ability of
contextual correlation.

4.2 Stochastic Complementary Masking
To enhance the context correlation ability of the network on the
target domain, we employ stochastic complementary mask pairs
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{M,M} to mask patches of the target image stochastically and
generate interchangeable views {V1,V2}. The network is encour-
aged to utilize local clues in remaining visible regions to reason
masked regions. Concretely, a stochastic maskM is generated by:

Mℎ𝑏:(ℎ+1)𝑏,𝑤𝑏:(𝑤+1)𝑏 =

{
1, if 𝑢 > 𝑟

0, otherwise
, (5)

where 𝑢 is sampled from a uniform distribution U(0, 1), 𝑏 is the
spatial size of a masked patch, 𝑟 is the mask ratio in (0, 1), ℎ ∈
[0, . . . , 𝐻

𝑏
− 1], 𝑤 ∈ [0, . . . , 𝑊

𝑏
− 1] are the masked patch indices,

and H, W are the height and width of the input image. Then, the
complementary maskM is obtained as:

M = 1 −M , (6)

where 1 represents a all-ones matrix with the same dimensions as
M. The interchangeable target views are obtained by element-wise
multiplication between the complementary masks and the target
domain images:

V1 =M ⊙ 𝑋𝑡 ,

V2 =M ⊙ 𝑋𝑡 .
(7)

SCM explicitly constructs views {V1,V2} with inter-context rela-
tionships, and forms intra-context relationships with the original
view V0. It also achieves a better balance between deletion and
preservation of regional information in images compared to other
methods [5, 11, 61].

4.3 Inter-changeable Context Consistency
Reasoning

Previous self-training methods mainly construct the category-level
consistency constraint but suffer from the poor quality of pseudo
labels. To mitigate the reliance on pseudo-labels, we design the
Inter-CCR module, which leverages self-supervision signals from
the student model to bidirectionally align features, thereby enhanc-
ing features’ representation capability without the supervision of
pseudo-labels. Specifically, the interchangeable views {V1,V2} are
first fed into the student model to generate corresponding predic-
tions. Subsequently, the classification consistency reasoning L𝑐𝑙𝑠

𝐼𝑛𝑡𝑒𝑟

and regression consistency reasoning L𝑟𝑒𝑔
𝐼𝑛𝑡𝑒𝑟

are conducted to the
predictions of interchangeable views. To avoid mismatched con-
sistency reasoning, we set a large IoU matching threshold 𝜏 as
0.75. Here, we calculate the IoU matrix for 𝐵𝑀𝑡 and 𝐵𝑀𝑡 , and se-
lect the maximum value along the longest side as their matching
score. If this score exceeds the 𝜏 , the bounding boxes are considered
successfully matched. More details in Section 5.4 and Appendix.

For the classification consistency reasoning, we bidirectionally
align the category distribution between category probability vectors
𝑃M and 𝑃M of interchangeable views {V1,V2}:

L𝑐𝑙𝑠𝐼𝑛𝑡𝑒𝑟 (𝑃
M , 𝑃M ) = − 1

2𝐾

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=1
[𝑤 𝑗𝑐M𝑗 𝑙𝑜𝑔(𝑝

M
𝑖 )

+𝑤𝑖𝑐M𝑖 𝑙𝑜𝑔(𝑝M𝑗 )] ,

(8)

where𝐾 is the number of matched bounding box pairs between 𝐵M𝑡
and 𝐵M𝑡 , 𝑝M

𝑖
is the category probability vector of the 𝑖𝑡ℎ bounding

box in 𝐵M𝑡 , 𝑐M
𝑗

denotes the corresponding category prediction in

𝐵M𝑡 , and𝑤 𝑗 is the confidence of 𝑐M𝑗 in (0, 1). For the regression con-
sistency reasoning, we introduce the Huber loss to bidirectionally
align the matched bounding boxes in 𝐵M𝑡 and 𝐵M𝑡 :

L𝑟𝑒𝑔
𝐼𝑛𝑡𝑒𝑟
(𝐵M𝑡 , 𝐵M𝑡 ) = −

1
𝐾

𝐾∑︁
𝑛=1

𝐻𝜎 (𝑏M𝑛 − 𝑏M𝑛 ) , (9)

where 𝐵M𝑡 , 𝐵M𝑡 denote the predicted bounding boxes and the Huber
loss is defined as:

𝐻𝜎 (𝑥) =
{
1
2 (𝑥)

2, if |𝑥 | ≤ 𝜎
𝜎 |𝑥 | − 1

2𝜎
2, otherwise

, (10)

to select a more appropriate transition point 𝜎 , instead of using a
hard threshold, we dynamically adjust 𝜎 , which is set to the average
difference between 𝑏M𝑛 and 𝑏M𝑛 during training, and locks below
a certain value. It reduces the sensitivity of the model to outliers
during initial training and adaptively increases the punishment.
More details are discussed in Section 5.4.

The total Inter-CCR loss is defined as:

L𝐼𝑛𝑡𝑒𝑟𝑐𝑜𝑛𝑠𝑖𝑠 = L
𝑐𝑙𝑠
𝐼𝑛𝑡𝑒𝑟 + L

𝑟𝑒𝑔

𝐼𝑛𝑡𝑒𝑟
. (11)

4.4 Intra-changeable Context Consistency
Reasoning

We introduce the Intra-CCR to construct a self-training framework
with intra-context consistency, in which the teacher model encour-
ages the student model to explore extra target contextual correla-
tion thus reasoning the masked regions. During the teacher-student
mutual learning phase, this contextual correlation ability can be
updated to the teacher model through EMA, thereby improving
the quality of pseudo-labels and creating a virtuous cycle. Con-
cretely, the teacher model obtains the complete information of the
original viewV0 to generate pseudo labels (�̂�,𝐶). Afterward, we
utilize pseudo labels to supervise predictions of the student model
from {V1,V2} by classification and regression context consistency
reasoning losses: L𝑐𝑙𝑠

𝐼𝑛𝑡𝑟𝑎
and L𝑟𝑒𝑔

𝐼𝑛𝑡𝑟𝑎
.

The classification consistency reasoning optimizes the student
model to reason contextual semantic information from masked
views with:

L𝑐𝑙𝑠𝐼𝑛𝑡𝑟𝑎 (𝑃
M , 𝑃M ,𝐶) = −[ 𝜆

𝑁

𝑁∑︁
𝑖=1

𝑤𝑖𝑐𝑖𝑙𝑜𝑔(𝑝M𝑖 )

+ 𝜇
𝑀

𝑀∑︁
𝑗=1

𝑤 𝑗𝑐 𝑗 𝑙𝑜𝑔(𝑝M𝑗 )] ,
(12)

where 𝑁 and 𝑀 represent the number of objects detected by the
student model while reasoning V1 and V2, 𝑐𝑖 denotes the corre-
sponding category prediction in the 𝑖𝑡ℎ bounding box 𝐵M𝑡 , and𝑤𝑖 =
𝑚𝑎𝑥 (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑝M

𝑖
)) is the confidence of 𝑐𝑖 . As the actual number

of objects in {V1,V2} is different, we set 𝜆 = 𝑁
𝑁+𝑀 , 𝜇 = 𝑀

𝑁+𝑀 to
balance the contributions of two loss branches of Intra-CCR. We
also discuss another weight setting in Appendix. Meanwhile, the
regression consistency reasoning enhances the space perception ca-
pability of the student by reasoning the location of masked objects
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in {V1,V2}:

L𝑟𝑒𝑔
𝐼𝑛𝑡𝑟𝑎

(𝐵M𝑡 , 𝐵M𝑡 , �̂�) = −[ 𝜆
𝑁

𝑁∑︁
𝑖=1

𝐻𝜎 (𝑏M𝑖 − 𝑏𝑖 )

+ 𝜇
𝑀

𝑀∑︁
𝑗=1

𝐻𝜎 (𝑏M𝑗 − 𝑏 𝑗 )] .
(13)

The total Intra-CCR loss is defined as:

L𝐼𝑛𝑡𝑟𝑎𝑐𝑜𝑛𝑠𝑖𝑠 = L
𝑐𝑙𝑠
𝐼𝑛𝑡𝑟𝑎 + L

𝑟𝑒𝑔

𝐼𝑛𝑡𝑟𝑎
. (14)

4.5 Overall Optimization Objective
The overall objective of SOCCER is:

L = 𝜆0 · L𝑠𝑢𝑝 + 𝜆1 · L𝐼𝑛𝑡𝑒𝑟𝑐𝑜𝑛𝑠𝑖𝑠 + 𝜆2 · L
𝐼𝑛𝑡𝑟𝑎
𝑐𝑜𝑛𝑠𝑖𝑠 + 𝜆3 · L𝑎𝑑𝑣 , (15)

where L𝑠𝑢𝑝 is the supervised loss from Eq. 2, L𝐼𝑛𝑡𝑒𝑟
𝑐𝑜𝑛𝑠𝑖𝑠

is Inter-CCR
loss, L𝐼𝑛𝑡𝑟𝑎

𝑐𝑜𝑛𝑠𝑖𝑠
is Intra-CCR loss, and L𝑎𝑑𝑣 is adversarial loss given

by Eq. 1, 𝜆0−4 are weights of different loss. We present the detailed
pseudo-code of the training pipeline in Appendix.

5 EXPERIMENTS
5.1 Datasets
We use the mean Average Precision (mAP) with a threshold of 0.5 to
evaluate the detection performance on target domains and evaluate
the effectiveness of the SOCCER on four public datasets, including
BDD100k [55] (B), Sim10k [28] (S), Cityscapes [8] (C), and Foggy
Cityscapes [42] (F).
Cityscapes to BDD100k: BDD100k [55] is a large-scale driving
dataset. Following methods [10, 20, 35, 52], we extract the daytime
subset of BDD100k as the target domain, containing 36, 728 training
images and 5, 258 validation images. The subset of Cityscapes with
seven shared categories is adopted as the source domain.
Sim10k to Cityscapes: Sim10k [28] is a synthetic dataset from
GTA-V game engine containing 10,000 images with 58,071 annota-
tions of the car. We use Sim10k as the source domain and a subset
of Cityscapes with only the "car" category as the target domain.
Cityscapes to Foggy Cityscapes: Cityscapes [8] is collected from
50 urban scenes of normal weather and contains 2,975 images for
training and 500 images for validation. Foggy Cityscapes [42] is
synthesized from the Cityscapes to simulate foggy weather. We use
Cityscapes as the source domain and Foggy Cityscapes with the
most dense fog (0.02) as the target domain.

5.2 Implementation Details
For a fair comparison with SOTA methods, we adopt the Faster
RCNN object detector [41] with the ResNet-50 backbone [19] and
FPN [37] as the detection model. We scale all images by resizing
the shorter side of the image to 800 pixels while maintaining the
image ratios. We set the size of masked patches 𝑏 = 32, the mask
ratio 𝑟 = 0.5, the EMA update ratio 𝛼 = 0.9, and the confidence
threshold 𝛿 = 0.8. We copy the weight of the student model to the
teacher model from the start without a burn-in stage, and mutual
learning for 60k iterations with an initial learning rate of 0.0025,
and a weight decay of 0.0001. All experiments are implemented
using Detectron [16] and conducted on a single RTX 4090 GPU
with a batch size of 2 (i.e., 1 source image and 1 target image).

5.3 Comparison with SOTA
In this section, we compare the SOCCER with other SOTA in three
DAOD benchmarks, including Cityscapes to BDD100k ( Table 1),
Sim10k to Cityscapes (Table 2), and Cityscapes to Foggy Cityscapes
(Table 3). "Source" denotes the base Faster RCNN only trained by
source data as the performance lower bound.
Cityscapes to BDD100k: In Table 1, SOCCER achieves 41.8%mAP,
surpassing all comparison models by an average significant mar-
gin of 6.4% mAP over the best-performing Faster RCNN detector
MIC [23], the FCOS detector SIGMA [34], and the Deformable DETR
detector MTM [50]. And SOCCER achieves the best performance in
almost all categories, especially in rare categories such as "truck",
"mcycle" and "bicycle", as well as confusing categories like "person"
and "rider", which are also reflected in Figure 7. Benefiting from
the Inter/Intra-CCR to enforce context consistency between multi-
view, SOCCER gains an average 7.2% mAP than other self-training
methods, such as PT [4], MIC, and MTTrans [56].
Sim10k to Cityscapes: Table 2 validates the adaptation ability of
SOCCER from synthetic to natural images with a large domain gap.
SOCCER achieves 63.8%AP, outperforming the second-best method
OADA [54] by 4.6% AP. We also notice that SOCCER exceeds the
SOTA consistency learning based method MIC with 4.9% AP, which
demonstrates the advantage of the stochastic complementary mask-
ing strategy.
Cityscapes to Foggy Cityscapes: In Table 3, SOCCER achieves
51.1%mAP, the best performance of all other SOTA. The comparison
with the latest self-training methods CMT [2], MIC, and MTM
demonstrates the effectiveness of SOCCER. The detection results of
"car", "rider”, "mcycle", and "bicycle" is higher than other methods,
which demonstrates that SOCCER enhances the ability of context
reasoning in correlated categories (as exampled in the detection
results of "rider” and "bicycle" in Figure 1 (c) and Figure 5 𝑟𝑜𝑤1 )
and intensive categories (as shown in Figure 5 𝑟𝑜𝑤2).

5.4 Ablation Studies and Analysis
Ablation Studies:We conduct experiments on different variants
of our model to evaluate the effectiveness of each component, and
all ablation studies are performed on three benchmarks, as shown
in Table 4. Comparison between row A (baseline) and row B shows
that self-training and masking strategy in SCM bring obvious im-
provement. With our SCM (row C), adopting the dual branches
strategy can achieve an average gain of 0.4% mAP compared to
the single branch (row B). Compared with row C, L𝑟𝑒𝑔

𝐼𝑛𝑡𝑟𝑎
(row D)

enhances the localization ability, obtaining an average gain of 2.0%
mAP, especially a gain of 4.1% mAP on C→ B. With L𝑟𝑒𝑔

𝐼𝑛𝑡𝑒𝑟
and

L𝑐𝑙𝑠
𝐼𝑛𝑡𝑒𝑟

(row E), the performance on average increase by 2.0% than
row C, which proves the effectiveness of Inter-CCR. The variant
in row E is boosted by L𝑟𝑒𝑔

𝐼𝑛𝑡𝑟𝑎
(row H ) with a performance aver-

age gain of 2.2% mAP on three benchmarks, which indicates that
Intra-CCR can benefit from localization ability. Further, we remove
L𝑟𝑒𝑔
𝐼𝑛𝑡𝑒𝑟

(row F ) and L𝑐𝑙𝑠
𝐼𝑛𝑡𝑒𝑟

(row G) separately resulting in a perfor-
mance decline over all three benchmarks, which proves that the
single type of context consistency reasoning cannot align features
well, thus reducing representation ability of features for spatial and
semantic information. Note that, since L𝑐𝑙𝑠

𝐼𝑛𝑡𝑟𝑎
is the basic loss of

the self-training framework, we don’t remove this.
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Table 1: Results of Cityscapes to BDD100k (daytime).The average precision (AP, %) on all classes is presented. FRCNN denotes
Faster RCNN and DefDETR denotes Deformable DETR.

Method Venues Detector person rider car truck bus mcycle bicycle mAP
Source [41] NeurIPS’15 FRCNN 48.2 32.6 63.4 9.3 6.6 14.5 23.2 28.3
SADA [7] IJCV’21 FRCNN 40.5 30.8 65.1 16.8 18.3 14.1 25.1 30.1
TDD [21] CVPR’22 FRCNN 39.6 38.9 53.9 24.1 25.5 24.5 28.8 33.6
PT [4] ICML’22 FRCNN 40.5 39.9 52.7 25.8 33.8 23.0 28.8 34.9

MIC [23] CVPR’23 FRCNN 49.8 36.8 68.1 24.0 25.6 18.7 30.7 36.2
EPM [24] ECCV’20 FCOS 39.6 26.8 55.8 18.8 19.1 14.5 20.1 27.8

SIGMA [34] CVPR’22 FCOS 46.9 29.6 64.1 20.2 23.6 17.9 26.3 32.7
SFA [49] ACM MM’21 DefDETR 40.2 27.6 57.5 19.1 23.4 15.4 19.2 28.9
AQT [25] IJCAI’22 DefDETR 38.2 33.0 58.4 17.3 18.4 16.9 23.5 29.4
O2net [17] ACM MM’22 DefDETR 40.4 31.2 58.6 20.4 25.0 14.9 22.7 30.5

MTTrans [56] ECCV’22 DefDETR 44.1 30.1 61.5 25.1 26.9 17.1 23.0 32.6
BiADT [20] ICCV’23 DefDETR 42.0 34.5 59.9 17.2 19.2 17.8 24.4 32.7
MTM [50] AAAI’24 DefDETR 53.7 35.1 68.8 23.0 28.8 23.8 28.0 37.3

SOCCER(ours) - FRCNN 56.8 42.2 73.1 31.0 29.5 26.1 33.8 41.8

Table 2: Results of Sim10k to Cityscapes (car).

Method Venues Detector AP𝑐𝑎𝑟
Source [41] NeurIPS’15 FRCNN 34.5
SADA [7] IJCV’21 FRCNN 55.8
TDD [21] CVPR’22 FRCNN 53.4
MGA [63] CVPR’22 FRCNN 54.6
PT [4] ICML’22 FRCNN 55.1

SAD [62] T-PAMI’23 FRCNN 49.2
MIC [23] CVPR’23 FRCNN 58.9
SCAN [33] AAAI’22 FCOS 52.6
SIGMA [34] CVPR’22 FCOS 53.7
OADA[54] ECCV’22 FCOS 59.2
CSDA [13] ICCV’23 FCOS 57.8
IGG [32] ACM MM’23 FCOS 58.4

CIGAR [38] CVPR’23 FCOS 58.5
AQT [25] IJCAI’22 DefDETR 53.4
O2net [17] ACM MM’22 DefDETR 54.1

MTTrans[56] ECCV’22 DefDETR 57.9
DA-DETR [58] CVPR’23 DefDETR 54.7
BiADT [20] ICCV’23 DefDETR 55.8
MTM [50] AAAI’24 DefDETR 58.1

SOCCER(ours) - FRCNN 63.8

Parameter Sensitivity:
(1) Masked patch size: Figure 3 (a) demonstrates the influence
of different masked patch sizes 𝑏 for SOCCER. From the results,
we find that the medium value (b=32 and b=40) achieves superior
performance, and the too small and large patches with the same
mask ratio (𝑟 = 0.5) achieve inferior results, especially in C→ F.
The small patches can not mask sufficient regions, and the student
model can get the correct detection result only by simple reason-
ing. In contrast, the large patches mask too many regions, even
the whole object, thus the student model is difficult to reason the
masked visual clues and gets caught in the sub-optimal solution.
(2) Transition point: In Figure 3 (b), we draw the results of SOC-
CER under different hyper-parameter 𝜎 in Eq. 10. Note that when
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Figure 3: Parameter sensitivity experiment of 𝑏, 𝜎, 𝜏 , and 𝑟 .
When adjusting one parameter, the other three parameters
in < · > remain unchanged.

𝜎 ≥ 1, it is fixed directly without dynamic adjustment, and avg
denotes the average difference of bounding boxes is not fixed. Over-
all, the mAP of all hyper-parameter settings floats within 1.5% and
the best performance is achieved when 𝜎 = 0.6. We set 𝜎 = 0.6 for
balancing the penalty strength.
(3) IoU matching threshold: In Figure 3 (c), we explore the effect
of different matching thresholds 𝜏 in Inter-CCR on the performance.
We set four groups 𝜏 on three benchmarks, and find that either too
harsh or too loose matching thresholds are detrimental to Inter-
CCR training. Too small 𝜏 leads to incorrect matches, while too
large 𝜏 overlooks the intended matches. It is optimal only if 𝜏 = 0.75
to avoid inconsistent matching objects.
(4) Mask ratio: In Figure 3 (d), we adjust the mask ratio 𝑟 in Eq. 5 to
explore the influence of a pair of mask images with complementary
mask degrees on SOCCER (i.e., whenV1’ mask ratio is 𝑟 ,V2’ mask
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Table 3: Results of Cityscapes to Foggy Cityscapes (0.02, dense fog). The average precision (AP, %) on all classes is presented.

Method Venues Detector person rider car truck bus train mcycle bicycle mAP
Source [41] NeurIPS’15 FRCNN 39.1 22.1 42.2 20.1 30.0 6.6 28.5 35.4 30.2
SADA [7] IJCV’21 FRCNN 50.3 45.4 62.1 32.4 48.5 52.6 31.5 29.5 44.0
TIA [60] CVPR’22 FRCNN 34.8 46.3 49.7 31.1 52.1 48.6 37.7 38.1 42.3
PT [4] ICML’22 FRCNN 40.2 48.8 59.7 30.7 51.8 30.6 35.4 44.5 42.7

TDD [21] CVPR’22 FRCNN 39.6 47.5 55.7 33.8 47.6 42.1 37.0 41.4 43.1
MGA [63] CVPR’22 FRCNN 45.7 47.5 60.6 31.0 52.9 44.5 29.0 38.0 43.6
SAD [62] T-PAMI’23 FRCNN 38.3 47.2 58.8 34.9 57.7 48.3 35.7 42.0 45.2
MIC [23] CVPR’23 FRCNN 52.4 47.5 67.0 40.6 50.9 55.3 33.7 33.9 47.6
CMT [2] CVPR’23 FRCNN 45.9 55.7 63.7 39.6 66.0 38.8 41.4 51.2 50.3
SCAN [33] AAAI’22 FCOS 41.7 43.9 57.3 28.7 48.6 48.7 31.0 37.3 42.1
SIGMA [34] CVPR’22 FCOS 44.0 43.9 60.3 31.6 50.4 51.5 31.7 40.6 44.2
OADA [54] ECCV’22 FCOS 47.8 46.5 62.9 32.1 48.5 50.9 34.3 39.8 45.4
CIGAR [38] CVPR’23 FCOS 46.1 47.3 62.1 27.8 56.6 44.3 33.7 41.3 44.9
CSDA [13] ICCV’23 FCOS 46.6 46.3 63.1 28.1 56.3 53.7 33.1 39.1 45.8
IGG [32] ACM MM’23 FCOS 44.3 44.8 62.2 35.8 54.2 50.7 38.2 38.7 46.1

MTTrans [56] ECCV’22 DefDETR 47.7 49.9 65.2 25.8 45.9 33.8 32.6 46.5 43.4
O2net [17] ACM MM’22 DefDETR 48.7 51.5 63.6 31.1 47.6 47.8 38.0 45.9 46.8
AQT [25] IJCAI’22 DefDETR 49.3 52.3 64.4 27.7 53.7 46.5 36.0 46.4 47.1

DA-DETR [58] CVPR’23 DefDETR 49.9 50.0 63.1 24.0 45.8 37.5 31.6 46.3 43.5
BiADT [20] ICCV’23 DefDETR 50.7 56.3 67.1 28.8 53.7 49.5 38.8 50.1 49.4
MTM [50] AAAI’24 DefDETR 51.0 53.4 67.2 37.2 54.4 41.6 38.4 47.7 48.9

SOCCER(ours) - FRCNN 51.7 57.7 68.6 38.2 51.6 47.5 41.6 51.7 51.1

Table 4: Ablation studies of SOCCER on three groups of do-
main adaptation experiments. We report mean average preci-
sion (mAP, %) on each of the combinations. The first column
is marks of different variants. † denotes the classification
loss of a single mask branch.

L𝑐𝑙𝑠
𝐼𝑛𝑡𝑟𝑎

L𝑟𝑒𝑔
𝐼𝑛𝑡𝑟𝑎

L𝑐𝑙𝑠
𝐼𝑛𝑡𝑒𝑟

L𝑟𝑒𝑔
𝐼𝑛𝑡𝑒𝑟

C→ F C→ B S→ C
A - - - - 44.0 30.7 55.8
B† ✓ - - - 47.6 36.2 58.9
C ✓ 48.0 36.6 59.4
D ✓ ✓ 48.9 40.7 60.3
E ✓ ✓ ✓ 48.8 40.1 61.1
F ✓ ✓ ✓ 49.3 41.3 62.3
G ✓ ✓ ✓ 49.5 41.5 62.1
H ✓ ✓ ✓ ✓ 51.1 41.8 63.8

ratio is 1− 𝑟 ). We find that when the mask ratio difference between
a pair of mask images is too large, the performance of the network
will be more unfavorable. Only when 𝑟 = 0.5 can it provide a fairer
context consistency reasoning training for Inter/Intra-CCR.
Different Masking Mode: Although we find the optimal value
of 𝑏, we wonder if random mask patch sizes are more beneficial
to the performance of SOCCER. As illustrated in Figure 4 (a), we
conduct two group experiments, one selects random sizes from the
entire range (blue bars), and another selects random sizes from
(24,32,40) (dark blue bars), which is empirically validated as the
optimal values in Figure 3 (a). The latter is significantly better than
the former but still averages 1.2% lower than the fixed size of 𝑏 = 32.
We also explore more possibilities for mask image pairs in SCM
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Figure 4: Further study of different masking modes and the
quality of pseudo labels in our SOCCER.

module. Specifically, we turn the stochastic complementary mask-
ing strategy into a dual stochastic masking strategy (i.e., the masks
ofV1 andV2 are generated respectively). But the result (red bars)
is still lower than the complementary strategy. This mainly results
from that: 1) Random masking brings some overlap of vision clues,
so it is easier for the student model to make consistent reasoning
based on shortcuts to the same visible regions. 2) Stochastic com-
plementary masking provides greater challenges for student model
training, which improves the model’s ability to distinguish subtle
differences between confusing categories in the target domain.
Localization Quality of Pseudo Labels:We further explore the
IoU between pseudo labels and ground truth in comparison to base-
line1, MIC, and ours in Figure 4 (b). SOCCER has more accurate
localization than other methods. SOCCER∗ denotes the removal of
L𝑟𝑒𝑔
𝐼𝑛𝑡𝑟𝑎

, which is lower than SOCCER thus explaining the perfor-
mance difference between row E and row H in Table 4.
1Since there is no teacher model in the baseline, for a fair comparison, we take the
baseline’s output with a confidence threshold 𝛿 = 0.8 to filter unreliable predictions.



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

person rider car truck bus train motorcycle bicycle

(a) Source-only                            (b) MIC                                  (c) CMT                          (d)  SOCCER(ours)                 (e) Ground truth    

Figure 5: Qualitative results comparison on Cityscapes to Foggy Cityscapes for (a) Source Only [41], SOTA: (b) MIC [23] and (c)
CMT [2], (d) Ours, and (e) Ground truth. We provide more comparison results in Appendix.

Image/Masked Image            (a) SOCCER (ours)               (b) baseline (SADA)

Figure 6: Class-Activation-Map (CAM) visualization. From
top to bottom, this is the CAM of SOCCER and baseline for
the original image and the masked image.

ComparewithDifferentMaskingOutAugmentation:Masking
out augmentation [5, 11, 61] is widely employed for its effectiveness
and efficiency. By deleting parts of regions, networks can learn orig-
inally less sensitive but important information thus increasing the
perception field. Since the similarity, we further compare them with
our SCMasking strategy. Note that we conduct the above mask-
ing out augmentation in dual branches of SCM respectively, same
with the setting of DSMasking. In Table 5, the single mask region
methods Cutout and Random Erasing are unfavorable for context
consistency training, reducing 11.1% and 10.6% mAP compared to
SCMasking. While GridMask uses structured discard regions, ran-
dom mask sizes introduce more uncertainty (we prove in Figure 4
(a) that random mask sizes are adverse to performance), and regu-
larly visible regions reduce the initiative of the network to learn
context information.

Table 5: Results on Cityscapes→ BDD100k with different
masking out methods in SCMmodule. DSMasking denotes
the dual stochastic masking and SCMasking denotes our sto-
chastic complementarymasking.We compare threemethods:
Cutout [11], Random Erasing [61], and GridMask [5].

Selected Method mAP0.5 mAP0.75 mAP0.5:0.95
Cutout [11] 30.7 11.2 12.1

Random Erasing [61] 31.2 11.5 14.5
GridMask [5] 33.5 13.9 16.2
DSMasking 40.9 18.2 20.9
SCMasking 41.8 18.7 21.1

●source 
●target

(a) baseline                   (b) ours                         (c) baseline                      (d) ours       

●source 
●target

●source rider 
●target  rider
●source person
●target  person

●source rider 
●target  rider
●source person
●target  person

Figure 7: T-SNE visualization. (a), (b) and (c), (d) are domain-
level features and category-level features from two domains.

5.5 Quantitative Visualization Analysis
Qualitative Results Visualization: Figure 5 visualizes some de-
tection results of Source-only [41], MIC [23], CMT [2] and SOCCER,
along with the ground truth for comparison. Our SOCCER can ac-
curately localize and classify most objects indicating that Inter-CCR
enhances the feature’s representation to distinguish confused cate-
gories (such as "person" and "rider" in 𝑟𝑜𝑤1) and Intra-CCR models
the context correlation to detect objects in dense scenes (𝑟𝑜𝑤2).
CAM Visualization: We further conduct Class-Activation-Map
(CAM) [43] for a visual explanation of how our network uses con-
textual information to reason. As observed in Figure 6 (a), SOCCER
can still use visible contextual clues to reason the occluded target
even when the object is occluded (red boxes). Comparison Figure 6
(b), the baseline model without masking strategy only focuses on
visible areas and lacks context reasoning capability (blue boxes).
T-SNE Visualization: As illustrated in Figure 7 (a) and (b), our
SOCCER aligns the distribution of two domains (C & B) better than
the baseline showing excellent adaptation. Figure 7 (c) and (d) show
that SOCCER extracts more discriminative features to distinguish
the confusion categories: "rider" and "person" and aligns the same
category of two domains well, while baseline mixes them up.

6 CONCLUSIONS
In this paper, we propose a stochastic context consistency reasoning
(SOCCER) network to model the underlying contextual correlation
of the target domain for domain adaptive object detection. Sto-
chastic complementary masking introduces visual diversity and
prevents the model from heavily relying on specific visual features.
Intra-CCR and Inter-CCR modules model the context correlation
of the target domain and enhance the representation ability of ex-
tracted features. Experiments on three benchmark cross-domain
experiments demonstrate that our network dramatically learns
spatial and semantic knowledge in the target domain.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Stochastic Context Consistency Reasoning for Domain Adaptive Object Detection ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Qi Cai, Yingwei Pan, Chong-Wah Ngo, Xinmei Tian, Lingyu Duan, and Ting Yao.

2019. Exploring object relation in mean teacher for cross-domain detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
11457–11466.

[2] Shengcao Cao, Dhiraj Joshi, Liang-Yan Gui, and Yu-Xiong Wang. 2023. Con-
trastive Mean Teacher for Domain Adaptive Object Detectors. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 23839–
23848.

[3] Chaoqi Chen, Zebiao Zheng, Xinghao Ding, Yue Huang, and Qi Dou. 2020. Har-
monizing transferability and discriminability for adapting object detectors. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. 8869–8878.

[4] Meilin Chen, Weijie Chen, Shicai Yang, Jie Song, Xinchao Wang, Lei Zhang, Yun-
feng Yan, Donglian Qi, Yueting Zhuang, Di Xie, et al. 2022. Learning domain adap-
tive object detection with probabilistic teacher. arXiv preprint arXiv:2206.06293
(2022).

[5] Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. 2020. Gridmask data
augmentation. arXiv preprint arXiv:2001.04086 (2020).

[6] Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and Luc Van Gool. 2018.
Domain adaptive faster r-cnn for object detection in the wild. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 3339–3348.

[7] Yuhua Chen, Haoran Wang, Wen Li, Christos Sakaridis, Dengxin Dai, and Luc
Van Gool. 2021. Scale-aware domain adaptive faster r-cnn. International Journal
of Computer Vision 129, 7 (2021), 2223–2243.

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-
zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. 2016.
The cityscapes dataset for semantic urban scene understanding. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 3213–3223.

[9] Jinhong Deng,Wen Li, Yuhua Chen, and Lixin Duan. 2021. Unbiasedmean teacher
for cross-domain object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 4091–4101.

[10] Jinhong Deng, Dongli Xu, Wen Li, and Lixin Duan. 2023. Harmonious Teacher
for Cross-Domain Object Detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 23829–23838.

[11] Terrance DeVries and Graham W Taylor. 2017. Improved regularization of
convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552
(2017).

[12] Yaroslav Ganin and Victor Lempitsky. 2015. Unsupervised domain adaptation by
backpropagation. In International conference on machine learning. PMLR, 1180–
1189.

[13] Changlong Gao, Chengxu Liu, Yujie Dun, and Xueming Qian. 2023. CSDA:
Learning Category-Scale Joint Feature for Domain Adaptive Object Detection. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 11421–
11430.

[14] Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision. 1440–1448.

[15] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich
feature hierarchies for accurate object detection and semantic segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
580–587.

[16] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr Dollár, and Kaiming He.
2018. Detectron. https://github.com/facebookresearch/detectron.

[17] Kaixiong Gong, Shuang Li, Shugang Li, Rui Zhang, Chi Harold Liu, and Qiang
Chen. 2022. Improving transferability for domain adaptive detection transformers.
In Proceedings of the 30th ACM International Conference on Multimedia. 1543–
1551.

[18] Dayan Guan, Jiaxing Huang, Aoran Xiao, Shijian Lu, and Yanpeng Cao. 2021.
Uncertainty-aware unsupervised domain adaptation in object detection. IEEE
Transactions on Multimedia 24 (2021), 2502–2514.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[20] Liqiang He, Wei Wang, Albert Chen, Min Sun, Cheng-Hao Kuo, and Sinisa Todor-
ovic. 2023. Bidirectional Alignment for Domain Adaptive Detection with Trans-
formers. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 18775–18785.

[21] Mengzhe He, Yali Wang, Jiaxi Wu, Yiru Wang, Hanqing Li, Bo Li, Weihao Gan,
Wei Wu, and Yu Qiao. 2022. Cross domain object detection by target-perceived
dual branch distillation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 9570–9580.

[22] Zhenwei He and Lei Zhang. 2019. Multi-adversarial faster-rcnn for unrestricted
object detection. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. 6668–6677.

[23] Lukas Hoyer, Dengxin Dai, Haoran Wang, and Luc Van Gool. 2023. MIC: Masked
image consistency for context-enhanced domain adaptation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11721–11732.

[24] Cheng-Chun Hsu, Yi-Hsuan Tsai, Yen-Yu Lin, and Ming-Hsuan Yang. 2020. Ev-
ery pixel matters: Center-aware feature alignment for domain adaptive object
detector. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part IX 16. Springer, 733–748.

[25] Wei-Jie Huang, Yu-Lin Lu, Shih-Yao Lin, Yusheng Xie, and Yen-Yu Lin. 2022. AQT:
Adversarial Query Transformers for Domain Adaptive Object Detection. In 31st
International Joint Conference on Artificial Intelligence, IJCAI 2022. International
Joint Conferences on Artificial Intelligence, 972–979.

[26] Jisoo Jeong, Seungeui Lee, Jeesoo Kim, and Nojun Kwak. 2019. Consistency-based
semi-supervised learning for object detection. Advances in neural information
processing systems 32 (2019).

[27] Peidong Jia, Jiaming Liu, Senqiao Yang, Jiarui Wu, Xiaodong Xie, and Shanghang
Zhang. 2023. PM-DETR: Domain Adaptive Prompt Memory for Object Detection
with Transformers. arXiv preprint arXiv:2307.00313 (2023).

[28] Matthew Johnson-Roberson, Charles Barto, Rounak Mehta, Sharath Nittur Srid-
har, Karl Rosaen, and Ram Vasudevan. 2016. Driving in the matrix: Can virtual
worlds replace human-generated annotations for real world tasks? arXiv preprint
arXiv:1610.01983 (2016).

[29] Mikhail Kennerley, Jian-Gang Wang, Bharadwaj Veeravalli, and Robby T Tan.
2023. 2PCNet: Two-Phase Consistency Training for Day-to-Night Unsupervised
Domain Adaptive Object Detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 11484–11493.

[30] Taekyung Kim, Minki Jeong, Seunghyeon Kim, Seokeon Choi, and Changick Kim.
2019. Diversify and match: A domain adaptive representation learning paradigm
for object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 12456–12465.

[31] Congcong Li, Dawei Du, Libo Zhang, Longyin Wen, Tiejian Luo, Yanjun Wu, and
Pengfei Zhu. 2020. Spatial attention pyramid network for unsupervised domain
adaptation. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XIII 16. Springer, 481–497.

[32] Pengteng Li, Ying He, F. Richard Yu, Pinhao Song, Dongfu Yin, and Guang Zhou.
2023. IGG: Improved Graph Generation for Domain Adaptive Object Detection. In
Proceedings of the 31st ACM International Conference on Multimedia. 1314–1324.

[33] Wuyang Li, Xinyu Liu, Xiwen Yao, and Yixuan Yuan. 2022. Scan: Cross domain
object detection with semantic conditioned adaptation. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 36. 1421–1428.

[34] Wuyang Li, Xinyu Liu, and Yixuan Yuan. 2022. Sigma: Semantic-complete graph
matching for domain adaptive object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 5291–5300.

[35] Xianfeng Li, Weijie Chen, Di Xie, Shicai Yang, Peng Yuan, Shiliang Pu, and
Yueting Zhuang. 2021. A free lunch for unsupervised domain adaptive object
detection without source data. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 35. 8474–8481.

[36] Yu-Jhe Li, Xiaoliang Dai, Chih-Yao Ma, Yen-Cheng Liu, Kan Chen, Bichen Wu,
Zijian He, Kris Kitani, and Peter Vajda. 2022. Cross-domain adaptive teacher for
object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 7581–7590.

[37] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. 2017. Feature pyramid networks for object detection. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2117–2125.

[38] Yabo Liu, Jinghua Wang, Chao Huang, Yaowei Wang, and Yong Xu. 2023. CIGAR:
Cross-Modality Graph Reasoning for Domain Adaptive Object Detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
23776–23786.

[39] Dinh Phat Do, TaehoonKim, JaeminNa, JiwonKim, Keonho Lee, KyunghwanCho,
and Wonjun Hwang. 2024. D3T: Distinctive Dual-Domain Teacher Zigzagging
Across RGB-Thermal Gap for Domain-Adaptive Object Detection. arXiv e-prints
(2024), arXiv–2403.

[40] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 779–788.

[41] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. Advances in
neural information processing systems 28 (2015).

[42] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. 2018. Semantic foggy scene
understanding with synthetic data. International Journal of Computer Vision 126
(2018), 973–992.

[43] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from
deep networks via gradient-based localization. In Proceedings of the IEEE interna-
tional conference on computer vision. 618–626.

[44] Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. 2021. Curriculum
self-paced learning for cross-domain object detection. Computer Vision and Image
Understanding 204 (2021), 103166.

[45] Peng Su, Kun Wang, Xingyu Zeng, Shixiang Tang, Dapeng Chen, Di Qiu, and
Xiaogang Wang. 2020. Adapting object detectors with conditional domain nor-
malization. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XI 16. Springer, 403–419.

https://github.com/facebookresearch/detectron


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[46] Antti Tarvainen and Harri Valpola. 2017. Mean teachers are better role models:
Weight-averaged consistency targets improve semi-supervised deep learning
results. Advances in neural information processing systems 30 (2017).

[47] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. 2019. Fcos: Fully convolutional
one-stage object detection. In Proceedings of the IEEE/CVF international conference
on computer vision. 9627–9636.

[48] Vibashan Vs, Vikram Gupta, Poojan Oza, Vishwanath A Sindagi, and Vishal M
Patel. 2021. Mega-cda: Memory guided attention for category-aware unsuper-
vised domain adaptive object detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 4516–4526.

[49] Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-Jun Zha, Yonggang
Wen, and Dacheng Tao. 2021. Exploring sequence feature alignment for domain
adaptive detection transformers. In Proceedings of the 29th ACM International
Conference on Multimedia. 1730–1738.

[50] Weixi Weng and Chun Yuan. 2024. Mean Teacher DETR with Masked Feature
Alignment: A Robust Domain Adaptive Detection Transformer Framework. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38. 5912–5920.

[51] Zhenda Xie, Yutong Lin, Zheng Zhang, Yue Cao, Stephen Lin, and Han Hu. 2021.
Propagate yourself: Exploring pixel-level consistency for unsupervised visual
representation learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 16684–16693.

[52] Chang-Dong Xu, Xing-Ran Zhao, Xin Jin, and Xiu-Shen Wei. 2020. Exploring
categorical regularization for domain adaptive object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11724–
11733.

[53] Minghao Xu, Hang Wang, Bingbing Ni, Qi Tian, and Wenjun Zhang. 2020. Cross-
domain detection via graph-induced prototype alignment. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12355–12364.

[54] Jayeon Yoo, Inseop Chung, and Nojun Kwak. 2022. Unsupervised domain adap-
tation for one-stage object detector using offsets to bounding box. In European
Conference on Computer Vision. Springer, 691–708.

[55] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu,
Vashisht Madhavan, and Trevor Darrell. 2020. Bdd100k: A diverse driving dataset

for heterogeneous multitask learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2636–2645.

[56] Jinze Yu, Jiaming Liu, Xiaobao Wei, Haoyi Zhou, Yohei Nakata, Denis Gudovskiy,
Tomoyuki Okuno, Jianxin Li, Kurt Keutzer, and Shanghang Zhang. 2022. MT-
Trans: Cross-domain object detection withmean teacher transformer. In European
Conference on Computer Vision. Springer, 629–645.

[57] Dan Zhang, Jingjing Li, Lin Xiong, Lan Lin, Mao Ye, and Shangming Yang. 2019.
Cycle-consistent domain adaptive faster RCNN. IEEE Access 7 (2019), 123903–
123911.

[58] Jingyi Zhang, Jiaxing Huang, Zhipeng Luo, Gongjie Zhang, Xiaoqin Zhang,
and Shijian Lu. 2023. DA-DETR: Domain Adaptive Detection Transformer With
Information Fusion. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 23787–23798.

[59] Yixin Zhang, Zilei Wang, and Yushi Mao. 2021. Rpn prototype alignment for
domain adaptive object detector. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 12425–12434.

[60] Liang Zhao and Limin Wang. 2022. Task-specific inconsistency alignment for
domain adaptive object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 14217–14226.

[61] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. 2020. Random
erasing data augmentation. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 34. 13001–13008.

[62] Qianyu Zhou, Qiqi Gu, Jiangmiao Pang, Xuequan Lu, and Lizhuang Ma. 2023.
Self-adversarial disentangling for specific domain adaptation. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2023).

[63] Wenzhang Zhou, Dawei Du, Libo Zhang, Tiejian Luo, and YanjunWu. 2022. Multi-
granularity alignment domain adaptation for object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9581–9590.

[64] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. 2020.
Deformable detr: Deformable transformers for end-to-end object detection. arXiv
preprint arXiv:2010.04159 (2020).


	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Problem Formulation
	3.2 Self-training Framework

	4 Methodology
	4.1 Overview
	4.2 Stochastic Complementary Masking
	4.3 Inter-changeable Context Consistency Reasoning
	4.4 Intra-changeable Context Consistency Reasoning
	4.5 Overall Optimization Objective

	5 Experiments
	5.1 Datasets
	5.2 Implementation Details
	5.3 Comparison with SOTA
	5.4 Ablation Studies and Analysis
	5.5 Quantitative Visualization Analysis

	6 Conclusions
	References

