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A A CHALLENGE OF MASKING STRATEGY

A.1 Challenge Formulation

MIC [8] proves the masking strategy can improve performance
across different visual recognition tasks. Here, we explore a chal-
lenge in the single masking strategy, where entire objects may be
masked (as shown in Figure 1), leading to unfair penalization during
training. This unfair penalization means that the teacher model
generates pseudo labels from the complete images, but the student
model is penalized with pseudo labels for failing to predict objects
completely occluded by the mask. As training progresses, the er-
ror accumulation of the student model is passed on to the teacher
model through the Exponential Moving Average (EMA), creating a
vicious cycle. We utilize different masked patch sizes and conduct
experiments on several common cross-domain datasets [5, 10, 15]
to evaluate the percentage of objects that are entirely obscured, as
shown in Figure 2. We observe this situation is prevalent across the
above datasets and gets worse as the masked patch size increases.

A.2 Our Solution

Different from MIC, our three modules address this challenge from
the following technical perspectives:

In SCM, we use the stochastic complementary masks to gener-
ate complementary masked images (i.e., two views {V1, V2}), and
feed them to the student model, separately. The complementary
mechanism ensures that the student model receives complete target
image information in each iteration, preventing half of the image
information from being omitted due to a single masking strategy.
This ensures fairer penalization for the student model.

In Inter-CCR, to prevent mismatches resulting from enforcing
consistency, we employ a higher IoU threshold for bounding box
matching between the two views to ensure that the matched bound-
ing boxes come from the same object. As illustrated in Figure 3,
we calculate the IoU matrix for the student model’s predictions
from two views {7V, V2}, and select the maximum value along the
longest side as their matching score. If this score exceeds the preset
7, the bounding boxes are considered successfully matched.

In the Intra-CCR, predictions of the student model for each of the
two views are computed with pseudo labels to calculate the loss.
Because the actual number of objects in {V;, V,} is different, to
balance the contributions of the two branches in Intra-CCR, we set
A= ﬁ,y = % in Eq. 12 and Eq. 13, i.e,, the bigger number
of objects will contribute more to the calculated loss Li;‘flrs?s. We
also set A = 1 —r, u = r, which assumes that the number of objects
is inversely proportional to the mask ratio. As shown in Figure 4,
the former (full line) performs better when the mask rate r is closer
to 0.5, while the latter (dashed line) performs better at r < 0.4,
indicating that the latter is more suitable for handling extreme
cases. As r = 0.5 achieves the best performance, we choose the
setting of A = ﬁ U= ﬁ,[ ultimately.

Incompletely masked objects W Completely masked objects

Figure 1: The masking strategy may result in entire objects
being occluded. (where masked patch size b = 32).

» 25%
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Figure 2: Percentage of completely masked objects to the

total number of objects under different masked patch sizes.
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Figure 3: IoU-based matching mechanism of Inter-CCR.
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Figure 4: We explore the performance of SOCCER at different
mask ratios under two loss weight settings.
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B MORE DIFFERENT MASKING MODE

B.1 Masking Out Data Augmentation.

We further discuss the difference between our SCMasking strategy
and other masking out methods (as shown in Figure 5). Chen et
al. [2] proposes that avoiding excessive deletion and reservation of
continuous regions is the core requirement for masking out meth-
ods. Recently, researchers intend to find a balance between deleting
and reserving regional information on the images. However, this is
very difficult for two reasons: On the one hand, excessively deleting
one or a few regions may result in the removal of complete object
and context information. Thus remaining regions are not enough
to be detected by the network. On the other hand, excessive pre-
serving regions could make some objects untouched, which cannot
provide challenging detection scenarios for the network to learn
the context information. Neither Cutout [7], Random Erasing [17],
nor GridMask [2] can achieve true balance, because creating chal-
lenging detection scenarios for the network will always mask a
large number of objects. It always caused the unfair penalization,
as discussed in Section A. Our stochastic complementary masking
strategy provides a good solution for the balance between deleting
and reserving of regions.

B.2 Regular Pattern Masking.

From the above experiments, we observe that stochastic masking
can prevent the network from over-relying on specific visual clues
and can train the model to predict the context reasoning ability of
the masked region. However, would using regular pattern masking
lead to better results?

As illustrated in Figure 6, we employ three types of regular
pattern masking: checkerboard, horizontal stripes, and vertical
stripes. We conduct experiments with the above masking types on
Sim10k to Cityscapes, keeping all other settings unchanged, and
the results are summarized in Table 1. We observe that regular
pattern masking does not effectively contribute to enhancing the
detection performance. During the training process, the network
may only become sensitive to fixed positions in the context region.
In other words, the network learns to take shortcuts to predict only
the fixed unmasked region and loses the ability to actively utilize
the context information. A similar result is obtained when we fix
the stochastic mask. We also conduct experiments by randomly
applying these three regular pattern masking during the training
of the network. we observe that random application of the above
regular pattern masking can also obtain a similar performance to the
stochastic complementary masking strategy. The result indicates
that the stochastic mechanism is better than the fixed masking
to encourage the network to explore the masked region, and it is
independent of the masking pattern (stochastic or regular).

C DAY-TO-NIGHT DAOD BENCHMARK

Recently, the safety of autonomous driving at night has focused
on more and more researchers and domain adaptation technology
is undoubtedly the most effective solution. So we further evaluate
our SOCCER’s domain adaptive performance in the day-to-night
direction. Note that our approach is mainly designed for general
cross-domain adaptation, rather than day-to-night adaptation.

Anonymous Authors

(a) Cutout (b) Random erasing (c) GridMask

Figure 5: More examples of different masking out augmen-
tation methods: Cutout [7], Random Erasing [17], and Grid-
Mask [2]. We observed that none of the above data augmen-
tation measures strike a good balance between deletion and
retention regions.

checkerboard

horizontal stripes vertical stripes
Figure 6: Three types of regular pattern masking: checker-
board, horizontal stripes, and vertical stripes (where masked
patch size b = 32).

Table 1: The impact of different types of regular pattern
masking on the performance of SOCCER. "random" denotes
randomly applying the above three regular pattern masking
in the training of SOCCER, SCMasking denotes the stochas-
tic complementary masking strategy, and fixed SCMasking
denotes the stochastic masking is fixed. All types of regular
pattern masking are detrimental to performance, but ran-
dom application of these three regular pattern masking leads
to similar results as SCMasking.

S$—C (car) APgs APg75  APgs.0.95
checkerboard 60.7 34.1 33.9
horizontal stripes | 61.1 34.0 34.0
vertical stripes 61.0 34.8 344
fixed SCMasking | 61.4 34.9 34.8
random 63.7 38.3 36.9
SCMasking(ours) | 63.8 38.4 36.8
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Table 2: Results of Day-to-Night domain adaptation on the SHIFT dataset. Faster RCNN is used as the Source and is trained on
the labeled daytime subset. Where "D2N" denotes the detector specifically designed for day-to-night DAOD tasks. For a fair

comparison, all the compared methods employ the self-training framework with Faster RCNN as their base detectors.

Method Venues Detector D2N person car truck bus mcycle bicycle mAP
Source [13] NeurIPS’15 FRCNN No 40.4 44.5 49.9 53.7 14.3 46.7 41.6
DA FR [3] CVPR’18 FRCNN No 43.0 48.8 47.8 52.1 19.9 55.8 43.7

UMT [6] CVPR’21 FRCNN No 7.7 47.5 18.4 46.8 16.6 49.2 31.1

AT [12] CVPR’22 FRCNN No 25.8 33.0 54.7 49.5 20.7 52.3 38.9
2PCNet [11] CVPR’23 FRCNN Yes 51.4 54.6 54.8 56.6 23.9 54.2 49.1

CoS [9] ICME’24 FRCNN Yes 50.8 56.0 57.2 64.5 22.2 55.5 51.0

ISP-Teacher [16] AAAT24 FRCNN Yes 51.6 59.1 58.7 62.3 24.1 58.3 52.4
SOCCER(ours) = FRCNN No 58.8 59.4 58.3 66.6 29.6 57.7 55.1

C.1 Dataset

SHIFT [14] is a simulated autonomous driving dataset that contains
scenes in various environments, and it includes discrete shifts (e.g.
urban, village, and rural) and continuous shifts (e.g. daytime to
night) in cloudiness, rain, and fog weather. Following the previous
methods [11, 16], we use images with the "day" and "night" labels
as our source and target data respectively, which contain 19,452
daytime images and 8,497 nighttime images for training, and 1,200
nighttime images for validation. Additionally, we also ensure that
the weather label is "clear" to isolate other weather conditions from
the evaluation.

C.2 Evaluation

As illustrated in Table 2, our SOCCER outperforms all other meth-
ods, even the latest Day-to-Night-SOTA: ISP-Teacher [16]. In ad-
dition, we maintain an absolute advantage in the detection perfor-
mance of the "person" category with 7.2% mAP than SOTA. Rare
classes such as "bus" and "mcycle" also show a significant improve-
ment. This shows that our strategy is effective in enhancing the
network’s context reasoning capacity even in the night scene.

D PSEUDO-CODE FOR SOCCER

In Algorithm 1, we present a pseudo-code pipeline of our stochastic
context consistency reasoning (SOCCER) network. The core process
is 5-9. We also provide detailed hyper-parameters in Table 3.

E QUANTITATIVE RESULTS

In Figure 7, we provide more detailed performance of our SOCCER
with our baseline SADA [4], MIC [8], and CMT [1] on Cityscapes
to Foggy Cityscapes. We observe that small object detection is still
a challenging direction. The mAP of small objects is all below 10%
among the four approaches, and CMT is only 1.8%. Compared with
the baseline SADA and SOTA CMT, SOCCER leverages the con-
text relation information to detect small objects more accurately.
For MIC, our SOCCER can reduce unfair penalization and avoid
error accumulation for detecting small objects. As illustrated in
the performance of mAPm, SOCCER can detect medium objects
better than others with a significant gain of 6.3% over SADA. We
also observe that mAPI is very similar to mAP0.5, indicating that

Algorithm 1 : The training pipeline of SOCCER

Input: Object detectors: Student S(-;6;), Teacher T(:;60;) and
0s/0; are the model parameters of Student and Teacher. Domain
discriminator D(-; 8;) and domain labels ds, d;. Total number of
iterations: Tinax_iterations- Hyper-parameters: Momentum « in
EMA, pseudo label confidence threshold &, and learning rate 7.

Output: Student S(-; 6s), Teacher T(-; 6;) after the training of sto-
chastic context consistency reasoning.
for iteration < 1to Tnax_iterations do

// 1. Load data mini-batch
Sample source batch Bs = {(xl, bg,ci)}ﬁ\fl € Ds(Xs, Bs, Cs)
Sample target batch B; = {(x;')}l{ifl € Dy (Xy)
// 2. Compute base losses
B;’C; = S(Xs; 0s)
Lsup = L;Zf, (B, Bs) + -Escilziy(c;’ Cs)
Ly = maxg minp S(D(Lpcg(Xs, Xt ds, dt); 0g); 05)
// 3. Update Teacher by EMA
0; «— ab; + (1 — a)bs
/ 4. Generate pseudo labels by Teacher
B,C = Filter(T(X;6;),8)
if B,C # @ then
// 5. Generate stochastic complementary masked images
XM= MY XM= MRy
// 6. Student reasoning stage
BM,cM =s(xM0,)  BM cM =s(xM;05)
// 7. Compute Inter-CCR loss

Inter _ pred pM pM I M pM
‘Ecgni;s - ‘Elnter(B ’ Bt ) + ‘Clcnster (P P )
// 8. Compute Intra-CCR loss

Intra _ pred pM pM I M pM A
‘Ecgng?s - ‘Elntra (B Bt B)+ Llcns;‘ra(P P7,0)

> Where PM/M denotes probability vector of (‘[M’/ M,
// 9. The optimization objective
— Inter Intra
L= Loup + M- Ligngis + 42 Legnsis + 43 - Lado
else
// 10. If the predictions of the Teacher are not sufficient to
generate pseudo labels, then only the base losses are optimized
L = AO . Lsup +)~3 . Ladv
end if
Take SGD step: 05 = 05 —n Vg L
end for
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Table 3: Detailed hyper-parameters of SOCCER for each benchmark. "City2BDD" denotes Cityscapes to BDD100k(daytime),
"Sim2City" denotes Sim10k to Cityscapes(car), and "City2Foggy" denotes Cityscapes to Foggy Cityscapes(0.02)

Hyperparameter Description City2BDD City2Sim City2Foggy
Ne Number of shared cross-domain categories 7 1 8
a EMA update ratio 0.9 0.9 0.9
é confidence threshold of pseudo labels 0.8 0.8 0.8
Ao Weight for Supervised Loss 1 1 1
M Weight for Inter-CCR Loss 1 1 1
A2 Weight for Intra-CCR Loss 1 1 1
A3 Weight for Image/Instance-Level Adversarial Loss  0.025/0.1  0.025/0.1 0.025/0.1
b Mask patch size of SCM 32 32 32
Transition point of Huber Loss 0.6 0.6 0.6
T IoU matching threshold of Inter-CCR 0.75 0.75 0.75
Mask ratio of SCM 0.5 0.5 0.5
Ir Initial learning rate 0.0025 0.0025 0.0025
- Learning rate weight decay 0.0001 0.0001 0.0001
- Total training iterations 60000 60000 60000
the performance of detectors is dominated by the detection per- 60%
formance of large objects. Our SOCCER can balance the detection [ sADA
performance for small, medium, and large objects. SOF [ MIC
B cmT
40 - [ ours
F QUALITATIVE RESULTS sor
In Figure 8, we present more qualitative results of our SOCCER 20r
with SOTA: MIC [8] and CMT [1] on the task Cityscapes — Foggy 10k
Cityscapes. As shown in this figure, MIC and CMT struggle with

accurate car localization, whereas SOCCER precisely determines
car positions even in the presence of occlusion (rows 1 and 3). By
leveraging context knowledge within the images, SOCCER can ac-
curately distinguish confusing categories in foggy weather (rows
5,7, 8, and 10). Compared to MIC, the stochastic complementary
masking module in SOCCER effectively avoids the unfair penaliza-
tion of the single mask strategy on small objects, thereby improving
the recognition rate for small objects (rows 2 and 10). Compared
to CMT, SOCCER exhibits a lower false positive ratio, enabling
accurate differentiation between foreground and background (rows
4 and 5).

G DETECTION RESULTS UNDER DIFFERENT
TRAINING ITERATION

In this section, we provide the detection results of our method across
different iterations. In Figure 9, we show the detection results in
15k, 30k, 45k, and final 60k iterations on the task Cityscapes —
Foggy Cityscapes. Similarly, in Figure 10 and Figure 11, we show
the detection results in 10k, 20k, 30k, and final 60k iterations on the
tasks BDD100k — Cityscapes and Sim10k — Cityscapes. Due to
the significant domain gap between synthetic and real-world data,
we additionally present the detection results at different iterations
on the source domain Sim10k for the Sim10k — Cityscapes task, as
shown in Figure 12. As the iteration progresses, the true positive
rate of the model continues to increase, enabling the recognition
of some easily-confused categories. Moreover, the localization of
objects becomes progressively more accurate.

mAPs mAPmM mAP|

mAP0.50 mAP0.75 mAP0.5:0.95

Figure 7: Quantitative results. We compare the detection re-
sults of SADA [4], MIC [8], CMT [1], and our SOCCER on
Cityscapes to Foggy Cityscapes. Where mAPs, mAPm, and
mAPI denotes the mAP of small, medium, and large objects.

H DETECTION RESULTS UNDER TWO VIEWS

We also report the detection results of SOCCER for two views
{V1,V2} under different masked patch sizes, aiming to validate
the robustness of our method under varied masking conditions. In
Figure 13, we observe that excessively small masked patch sizes
can interfere with the predictions, leading to incorrect predicted
categories. Conversely, overly large mask sizes may result in missed
detection due to complete object coverage. For a moderate masked
patch size, our network demonstrates the ability to detect results
similar to the original image accurately. We also observe that, in
certain situations, the network is capable of predicting completely
occluded objects.

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

464



465
466
467

469
470
471
472
473
474
475
476

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

Supplementary Materials: Stochastic Context Consistency Reasoning for Domain Adaptive Object Detection ACM MM, 2024, Melbourne, Australia

Ground truth

MIC [CVPR 23]

il Ll 13

CMT [CVPR 23]

row 8 row 7 row 6 row 5 row 4 row 3 row 2 row 1

row 9

row 10

train motorcycle

Figure 8: The qualitative results on the task Cityscapes — Foggy Cityscapes, in which SOTA MIC [8] and CMT [1], as well as
our method are evaluated.
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15k (39.1mAP) 30k (45.2mAP) 45k (50.2mAP) 60k (51.1mAP)

10k (34.9mAP)

Anonymous Authors

Ground truth

Figure 9: Iterative results analysis on the task Cityscapes — Foggy Cityscapes.

30k (37.2mAP) 60k (41.8mAP)

20k (36.6mAP)

motorcycle

Figure 10: Iterative results analysis on the task Cityscapes — BDD100k.
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10k (60.3AP) 20k (60.5AP) 30k (61.3AP) 60k (63.8AP) Ground truth

Figure 11: Iterative results analysis on the task Sim10k — Cityscapes, and this task only detects cars.

10k 20k 30k 60k Ground truth

Figure 12: Iterative results analysis on the Sim10k dataset ( Sim10k — Cityscapes), and only report the detection results of cars.
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rider car m train motorcycle
original GT b=16 b=32 b =48 b=64 | b=80 |

Figure 13: Stochastic complementary masking detection results. We compare the detection results of SOCCER under different
masked patch sizes.
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