
Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 PARTIALLY ASYNCHRONOUS ITERATIVE ALGORITHMS

Concretely, consider a collection of n nodes, which could be, for example, a set of pro-
cessors carrying out a distributed computation. Processor i is allocated a block xi 2 Rdi

of the length d =
Pn

i=1 di block vector of problem data x = (x1,x2, . . . ,xn) 2 Rd, and we
aim to coordinate the nodes to execute an iterative algorithm using node-specific update func-
tions fi : Rd 7! Rdi . Suppose we are given initial conditions x(t) 2 Rd for each t 0, a set
T i ✓ {0, 1, 2, . . . } of times at which the node i is updated, and ⌧ ij(t), i, j = 1, . . . , n for each
t 2 T i. The quantities sij(t) = t�⌧ ij(t) 2 [0, t] can be interpreted as the amount (in time) by which
information associated with node j is outdated or “stale” when used in the update of xi at time t.
This staleness value is bounded by 0 since at best, i executes an update with perfectly up to date
information about node j (corresponding to strict equality ⌧ ij(t) = t). At worst, node i has received
no data from node j, meaning node i executes an update using the initial condition associated with
node j (corresponding to strict equality ⌧ ij(t) = 0).

The update equations describing the algorithm are, for t � 0:

xi(t+ 1) = xi(t), if t /2 T i, (16)

xi(t+ 1) = fi(x1(⌧
i
1(t)),x2(⌧

i
2(t)), . . . ,xn(⌧

i
n(t))), if t 2 T i. (17)

Partial asynchronism corresponds to the following assumptions:

1. For every node i and for every t � 0, at least one of the elements of the set {t, t+1, . . . , t+
B � 1} belongs to T i.

2. There holds
t�B < ⌧ ij(t) t,

for all i and j, and all t � 0 belonging to T i.
3. There holds ⌧ ii (t) = t for all i and t 2 T i

In words, assumption 1 states that nodes are updated at least once every B units of time, assumption
2 states that the staleness of information associated with any node is bounded by B time units
(conversely, information is periodically ”purged” from the system after at most B time units), and
assumption 3 states that node i maintains the latest version of xi. We assume this model of partial
asynchrony in our work.

13

Under review as a conference paper at ICLR 2024

A.2 INPUT-CONVEX GNN ARCHITECTURE DETAILS

As in Amos et al. (2017), we construct a parametric family of neural networks f✓(x, y) with inputs
x 2 R

n, y 2 R
m which are convex with respect to y (i.e. a subset of the inputs). We define a

k-layer partially convex neural network by the recurrences:

ui+1 = g̃i(W̃iui + b̃i)

zi+1 = gi(

W (z)
i (zi � [W (zu)

i ui + b(z)i]+)+

W (y)
i (y � (W (yu)

i ui + b(y)i)+

W (u)
i ui + bi)

f✓(x, y) = zk, u0 = x, z0 = 0

Provided the W (z) are elementwise nonnegative, and the activation functions gi are non-decreasing
in each argument, it follows that f✓ is convex in y.

In the context of an energy GNN, an energy layer is comprised of two ICNNs, specialized to operate
on graph structures. The message function m in eq. (12) corresponds with an ICNN which has node
embeddings hi, i = 1, . . . , n and node features X as its convex and non-convex inputs, respectively.
A second ICNN corresponds with the update function u in eq. (12), which is convex in the node em-
beddings and the messages computed by the message function, and nonconvex in the node features.
The graph energy can then be written as the sum of the outputs of the second updating ICNN.

14

Under review as a conference paper at ICLR 2024

A.3 IMPLICIT DIFFERENTIATION

Since we use an optimization procedure to compute the node embeddings within the forward pass ,
we need to obtain derivatives of the node embeddings with respect to the parameters of the model.
We compute derivatives by implicitly differentiating the optimality conditions, using the fact that at
the solution of the energy minimization problem, we have parameters ✓⇤ 2 Rp and node embeddings
H

⇤ 2 Rn⇥k such that:

@E✓⇤

@H
(H⇤) = 0. (18)

Let g(H, ✓) = @E✓
@H (H) and h⇤(✓⇤) = H

⇤, so that we can write the optimality conditions in terms
of the parameters only:

g(h⇤(✓⇤), ✓⇤) = 0. (19)

Given an objective L : Rp 7! R, the desired quantity is the total derivative of L with respect to the
parameters. By the chain rule,

dL
d✓

=
@L
@h⇤

dh⇤

d✓
+

@L
@✓

. (20)

We compute @L
@h⇤ and @L

@✓ using normal automatic differentiation, and the solution Jacobian dh⇤

d✓ using
implicit differentiation. Notice that, at the fixed point (where the optimality constraint is satisfied),
we have:

d

d✓
g(h⇤(✓), ✓) = 0 (21)

@g

@h⇤
dh⇤

d✓
+

@g

@✓
= 0 (22)

@g

@h⇤
dh⇤

d✓
= �@g

@✓
. (23)

This is the primal (or tangent) system associated with the constraint function g. In our setup we
utilize reverse mode automatic differentiation, since p� 1 parameters are mapped to a single scalar
objective. Provided @g

@h⇤ is invertible, we can rewrite the solution Jacobian as:

dh⇤

d✓
= �(@g

@h⇤)
�1 @g

@✓
, (24)

and substitute this expression into eq. (20) as follows:

dL
d✓

= � @L
@h⇤ (

@g

@h⇤)
�1 @g

@✓
+

@L
@✓

. (25)

For reverse mode, we compute the dual (or adjoint) of this equation,

dL
d✓

T

= �@g

@✓

T

(
@g

@h⇤)
�T @L

@h⇤

T

+
@L
@✓

T

, (26)

And solve the dual system:

@g

@h⇤

T

� = � @L
@h⇤

T

(27)

for the dual variable �.

15

Under review as a conference paper at ICLR 2024

A.4 PROVIDED THE STEP SIZE IS SMALL ENOUGH, THE ASYNCHRONOUS ENERGY GNN
INFERENCE ALGORITHM CONVERGES

To prove that the energy GNN inference algorithm converges under the assumption of partial asyn-
chronism, it is useful to frame the method as an unconstrained gradient method. Provided the step
size is small enough (which will be made precise), gradient algorithms converge under partial asyn-
chronism (Bertsekas, 1983). Gradient algorithms operating in asynchronous frameworks have been
analyzed in the asynchronous algorithms literature dating back to the late 1960s. We cite a proof
given by (Bertsekas & Tsitsiklis, 1989), and simply show that the assumptions required by Propo-

sition 5.1 holds for our algorithm, and thus it converges.

First, we build on appendix A.1 and section 5.3 to establish that the asynchronous EGNN inference
algorithm corresponds to solving an optimization problem via a gradient method. In eq. (12) we
introduced a scalar-valued convex “energy” function ei : Rd 7! R associated with each node i =
1, . . . , n. The dimension d of dom ei arose from our setup in section 5.3, i.e., concatenating the
graph data into a block-vector for correspondence with the partial asynchronism model. But recall
that ei does not depend on the data of any node which is not a neighbor of node i, which is to say,

j /2 ne(i) =) @ei
@xj

(y) = 0 for all y 2 Rdj .

We also noted in that section that, in fact, the energy associated with node i depends only on the
latent values associated with node i and its neighbors: {hi}[{hj | (i, j) 2 E}. Here we overload ei
and xi so that the domain of ei does not include these irrelevant auxiliary variables. In what follows,
we have dom ei = Rdi , with di = k(|ne(i)|+ 1): the length of the latent hi 2 Rk associated with
node i, plus the length of the latents ne(hi) = {hj |(i, j) 2 E} associated with the neighbors of node
i. Let xi = {hi} [{hj | (i, j) 2 E} 2 Rdi . In words, the energy of node i depends on xi which is
comprised of its own latent value, and the latent values of its neighbors. Generalizing the notion of
an “energy function” to the entire graph, we denote the “graph energy” E : Rnk 7! R as the sum of
the node energy functions:

E(h1,h2, . . . ,hn) =
nX

i=1

ei(xi).

Our asynchronous inference algorithm operates on a block vector h(t) 2 Rnk whose ith block (the
latent associated with node i), is updated by node i according to

hi(t+ 1) = hi(t) + ↵si(t), i = 1, . . . , n,

with ↵ > 0 a step size and si(t) 2 Rk the update direction. Per our overview of partial asynchronism
in appendix A.1, let T i be the set of times when node i performs an update. We assume that

si(t) = 0, 8t /2 T i.

Node i retains possibly outdated information about the latents associated with the other nodes in the
graph: importantly, it may have stale information about its neighbors. Denote h

i(t) 2 Rnk as node
i’s view of the graph at time t. That is,

h
i(t) = (h1(⌧

i
1(t)), . . . ,hn(⌧

i
n(t))).

We make the same assumptions about the ⌧ ij(t) as above. With this setup and notation in hand,
we simply confirm that the assumptions associated with Proposition 5.1 hold, which proves conver-
gence.

A.4.1 ASSUMPTION 5.1

Since both convexity and absolute continuity are preserved under nonnegative summation, the graph
energy E is a smooth, strictly convex function. Without loss of generality, we can assume ei(xi) �
0 for all xi 2 Rdi . This follows because the ei are strictly convex, therefore the optimal value
p⇤i = inf{ei(xi)} is achieved and thus ẽi = ei + p⇤i is nonnegative. Thus, we have that the graph
energy is the sum of nonnegative terms: E(h1,h2, . . . ,hn) � 0 for all (h1,h2, . . . ,hn) 2 Rnk.

A.4.2 ASSUMPTION 5.2

For those times t 2 T i, our update direction for node i is si(t) = �rhiE(hi(t)), thus
si(t)TrhiE(hi(t)) 0, and our algorithm satisfies part (a). In words, the update direction is

16

Under review as a conference paper at ICLR 2024

such that the graph energy does not increase. Further, we have that |si(t)| = |riE(hi(t))| which
means part (b) holds with K2 = K3 = 1.

Since assumption 5.1 and 5.2 hold, and our inference algorithm is partially asynchronous, proposi-
tion 5.1 holds, and convergence is guaranteed provided the stepsize ↵ is small enough. In particular,
the maximum stepsize is:

↵0 =
1

1 + (n+ 1)B
,

where B > 0 is the positive integer bounding staleness as above. This is intuitive: as noted in
(Bertsekas & Tsitsiklis, 1989), if the nodes make larger steps, they must inform their neighbors
more often. We simply summarize the conclusion of proposition 5.1 here in the context of our
algorithm: we have that limt!1rE(h(t)) = 0 provided 0 < ↵ < ↵0, with ↵0 defined above.

17

Under review as a conference paper at ICLR 2024

A.5 ASYNCHRONOUS GNN IMPLEMENTATION

In our experiments with asynchronous inference, we simulate partial asynchrony 1. We set the
maximum staleness bound B = 20. Our implementation ensures nodes never deviate from one
another in terms of number of updates by more than 1, i.e., all nodes update at a regular frequency.

Algorithm 1 Simulated asyncronous GNN inference
Initialize each node in G with all GNN parameters, its own node features Xi, and for each of its
neighbors j, the node and edge features Xj , Eij , and weights Ai,j . Initialize the current iteration
count ti = 0 for all nodes i. Let ⌧ ij be the number of iterations by which node i’s view of node j
is outdated; we maintain a global view of these values for all neighboring nodes pairs and control
the staleness value in simulation. Let L be the number of layers in the GNN, equal to 1 for
infinite-depth GNNs. Let T be the total number of simulated node updates. Let n be the number
of nodes in the graph. Let B be the maximum staleness of a node’s view of its neighbor values.

ordering = []
for t = 0, . . . , T do

if t mod n = 0 then

Set ordering as a random permutation of the node indices
end if

i = ordering[t mod n]
if ti < L then

for neighbors j of node i do

Sample an updated staleness for node j, (⌧ ij)0 ⇠ Uniform(0,max(⌧ ij , B))
⌧ ij (⌧ ij)

0

end for

mi = gti
�
{mti(hj(⌧ ij),hi,Xj ,Xi,Eij ; ✓tim) | j 2 ne(i)},Ai; ✓tig

�

hi uti (mi,hi,Xi; ✓tiu)
ti ti + 1
⌧ ji ⌧ ji + 1 8j 2 ne(i)

else

ŷi = o�(hL
i)

end if

end for

18

Under review as a conference paper at ICLR 2024

A.6 EXPERIMENT DETAILS (SYNTHETIC EXPERIMENTS)

For all experiments, we use 2 layers of message passing for GCN, and for IGNN and energy GNN
we use a single parameterized layer of message passing.

For training all models we use the Adam optimizer with weight decay. We record the test perfor-
mance at the epoch corresponding to the best training loss. For asynchronous inference, we set
the maximum staleness of information B = 20, and follow the asynchronous inference simulation
presented in Appendix A.5.

For energy GNNs, we define the architecture of the energy function E✓, which is a PICGNN, as
some variant of the following:

mij := mn(hj ,hi,Xj ,XiEij ; ✓mn) 8i, j 2 E (28)
mii := ms(hi,Xi; ✓ms) 8i 2 V (29)

mi := ⇣

0

@
X

j2ne(i)[i

mij

1

A (30)

i := u (mi,hi,Xi; ✓u) + �||hi||22 (31)
(32)

where mn is a message function applied to information pertaining to neighbors (with parameters
✓mn) and ms is a message function applied to a node’s own information (with parameters ✓ms). In
other words, we introduce an asymmetric self loop where each node is in it’s own neighborhood
and a separate message function is used to transform its data before aggregation. We use a 3-layer
PICNN for mn, ms, and u, where convex and non-convex inputs are grouped and concatenated prior
to input. We use L-BFGS to minimize the energy during training.

Consistent with Gu et al. (2020), for IGNNs, we always do aggregation with the symmetric renor-
malized adjacency matrix with added self loops. The IGNN has a single parameterized layer of
message passing. All GCNs in our experiments use two layers.

We set the node embedding sizes such that the parameter counts are approximately equal for all
models.

A.6.1 CHAINS

For all architectures, the node output net o� is an affine function. We optimize the loss (binary cross
entropy) with learning rate 0.001, and a decay rate of 0.9 every 150 epochs. We train for a maximum
of 2000 epochs.

For energy GNNs, we set hi 2 R
2. We use a 3-layer PICNN for mn, ms, and u

with layer sizes (4, 4, 2), (4, 4, 2), and (4, 4, 1), where the inputs to each networks are
(hj ,hi,Xi,Xj), (hi,Xi), (mi,hi), respectively. We set � = 0.1. For IGNN, we set hi 2 R

22,
and for GCN, we set hi 2 R

16.

A.6.2 COUNTING/SUMMING

For all architectures, the node output net o� is a 3 layer neural network with layer sizes (4, 4, 1). We
optimize the loss (mean squared error) with learning rate 0.0025, and a decay rate of 0.9 every 200
epochs. We train for a maximum of 5000 epochs.

For each dataset, we scale the prediction target based on the largest graph size, so the prediction
target falls in the range [0, 1].

For energy GNNs, we set hi 2 R
1. We use a 3-layer PICNN for mn, ms, and u with

layer sizes (4, 4, 2), (4, 4, 2), and (4, 4, 1). For counting, the inputs to each of the net-
works are (hj ,hi), (hi), (mi,hi), respectively. For summing, the inputs to each networks are
(hj ,hi,Xi,Xj), (hi,Xi), (mi,hi), respectively. We set � = 0.02. For counting, we set hi 2 R

10

for IGNN and hi 2 R
8 for GCN. For counting, we set hi 2 R

18 for IGNN and hi 2 R
13 for GCN.

19

Under review as a conference paper at ICLR 2024

A.6.3 COORDINATES

For all architectures, the node output net o� is a 2 layer neural network with layer output sizes (2, 2).
We optimize the loss (mean squared error) with learning rate 0.001, and a decay rate of 0.99 every
150 epochs. We train for a maximum of 5000 epochs.

For energy GNNs, we set hi 2 R
2. We use a 3-layer PICNN for mn, ms, and u

with layer sizes (6, 6, 4), (6, 6, 2), and (4, 4, 1). The inputs to each of the networks are
(hj ,hi,Xi,Xj ,Eij), (hi,Xi), (mi,hi), respectively. We set � = 0.1. For the lattice and ran-
dom graph datasets consisting of graphs with 10 nodes (and thus using node features X 2 Rn⇥10),
we set hi 2 R

26 for IGNN and hi 2 R
19 for GCN. For the datasets with graphs of size 20, we set

hi 2 R
22 for IGNN and hi 2 R

18 for GCN.

20

Under review as a conference paper at ICLR 2024

Figure 2: Log dataset loss during asyncronous inference for chains experiment. From left to right and top to
bottom, plots correspond to chains of length 10, 20, 50, 100.

A.7 PARTIALLY ASYNCRONOUS IGNN/ENERGY GNN INFERENCE PLOTS

In Figure 2, we show plots of dataset loss over time during partially asynchronous inference of
energy GNNs (referred to as EGNN) and IGNNs for the synthetic chains experiments. The loss
achieved by asynchronous inference converges given enough iterations for both architectures, equiv-
alently showing that node embeddings eventually converge.

21

Under review as a conference paper at ICLR 2024

A.8 BENCHMARK DATASETS

For all experiments with benchmark datasets, we use 2 layers of message passing for GCN, and for
IGNN and energy GNN we use a single parameterized layer of message passing.

A.8.1 DATASET DETAILS

The benchmark datasets we report performance for are MUTAG and PROTEINS, where the predic-
tion task is graph classification, and PPI, where the prediction task is node classification.

MUTAG MUTAG is a dataset consisting of 188 graphs, each of which corresponds to a nitroaro-
matic compound (Srinivasan et al., 1996). The goal is to predict the mutagenicity of each compound
on Salmonella typhimurium. Nodes in the graphs correspond to atoms (and are associated with a
one-hot encoded feature in R7 corresponding to the atom type), and edges correspond to bonds. The
average number of nodes in a graph is 17.93, and the average number of edges is 19.79.

PROTEINS The PROTEINS dataset Borgwardt et al. (2005) consists of 1113 graphs, each of
which corresponds to a protein. The task is predicting whether or not the protein is an enzyme.
Nodes in the graph correspond to amino acids in the protein (and are associated with node features in
R3 representing amino acid properties). Edges connect amino acids that are less than some threshold
distance from one another in the protein. The average number of nodes in a graph is 39.06, and the
average number of edges is 72.82.

PPI The PPI dataset (Hamilton, 2020) consists of 24 graphs, each of which corresponds to a
protein-protein interaction network found in different areas of the body. Each node in the graph
corresponds to a protein, with edges connecting proteins that interact with one another. Nodes are
associated with features in R50, representing some properties of the protein. Each protein has 121
binary prediction targets, each of which corresponds to some ontological property that the protein
may or may not have.

A.8.2 GRAPH CLASSIFICATION

We test energy GNNs on two binary graph classification benchmark datasets; MUTAG and PRO-
TEINS.

For MUTAG and PROTEINS, the node output net o� is a 2 layer neural network with layer output
sizes (2, 2) for all architectures. We take the mean of the node predictions, and use these as input
to a 2 layer neural network with layer output sizes (2, 1) to obtain the graph level prediction. We
optimize the loss (binary cross entropy) with learning rate 0.001, and a decay rate of 0.95 every 250
epochs. We train for a maximum of 5000 epochs for MUTAG and 2500 epochs for PROTEINS.

For energy GNNs, we set hi 2 R
2. We use a 3-layer PICNN for mn, ms, and u

with layer sizes (4, 4, 2), (4, 4, 2), and (4, 4, 1). The inputs to each of the networks are
(hj ,hi,Xi,Xj), (hi,Xi), (mi,hi), respectively. We set � = 0.05. For MUTAG we set hi 2 R

7

for IGNN and hi 2 R
15 for GCN. For PROTEINS we set hi 2 R

10 for IGNN and hi 2 R
14 for

GCN.

We perform 10-fold cross validation and report average classification accuracy and standard devia-
tions in Table 4. We include performance reported by Gu et al. (2020) (marked by an asterisk), as
well as performance of our own implementation of IGNN with a single layer and GCN with two
layers.

A.8.3 NODE CLASSIFICATION

For node classification, we consider the PPI dataset. We use a 20/2/2 train/valid/test split consistent
with Hamilton et al. (2017).

For all architectures, the node output net o� is a 2 layer neural network with layer output sizes
(8, 121). We optimize the loss (binary cross entropy) with learning rate 0.005, and a decay rate of
0.9 every 200 epochs. We train for a maximum of 2000 epochs.

For energy GNNs, we set hi 2 R
2. We use a 3-layer PICNN for mn, ms, and u

with layer sizes (4, 4, 2), (4, 4, 2), and (4, 4, 1). The inputs to each of the networks are

22

Under review as a conference paper at ICLR 2024

Table 4: Graph classification accuracy (%). Results are averaged (and standard deviations are com-
puted) using 10 fold cross validation. Asterisked values are from Gu et al. (2020).

DATASET

MODEL MUTAG PROTEINS

GCN* (5 layer) 85.6 ± 5.8 76.0 ± 3.2
IGNN* (3 layer) 89.3 ± 6.7 77.7 ± 3.4
GCN (2 layer) 72.83 ± 6.6 70.89 ± 3.2
IGNN (1 layer) 75.47 ± 7.3 70.98 ± 2.8
Energy GNN 87.78 ± 5.3 71.25 ± 2.6

(hj ,hi,Xi,Xj), (hi,Xi), (mi,hi), respectively. We set � = 0.05. We set hi 2 R
10 for IGNN

and hi 2 R
10 for GCN.

Table 5 shows average micro-f1 scores for energy GNNs compared to other GNN architectures. We
include performance reported by Gu et al. (2020) (marked by an asterisk), as well as performance
of our own implementation of IGNN with a single layer and GCN with two layers. Where layer
specifications are not included (for asterisked values), we were unable to determine them from Gu
et al. (2020).

Table 5: Node classification accuracy on PPI dataset (%). Results are averaged (and std are com-
puted) using 10 fold cross validation. Asterisked values are from Gu et al. (2020).

METHOD micro f1

MLP* 46.2
GCN* 59.2
GraphSAGE* 78.6
GAT* (3 layer) 97.3
IGNN* (5 layer) 97.6
IGNN (1 layer) 76.8
GCN (2 layer) 76.7
Energy GNN 76.2

23

Under review as a conference paper at ICLR 2024

A.9 EIGNN UPDATE AS OPTIMIZATION

Previous work (Yang et al., 2021; Zhu et al., 2021) has shown that many GNN node embedding
update functions correspond to optimization of some objective function. This is highly related to
energy GNNs; however, the class of objective functions considered is limited to a specific form. We
show the optimzation view of EIGNN Liu et al. (2021) as an example, and refer the reader to (Yang
et al., 2021; Zhu et al., 2021) for a more comprehensive overview. We note that the optimization
objective functions for all GNNs studied in (Yang et al., 2021; Zhu et al., 2021) have a form similar
to that for EIGNN, which as we show, consists of (1) a quadratic penalty between some function
of the input features and the node embeddings and (2) a possibly non-convex, graph-aware penalty
term that encourages smoothness of node embeddings across edges.

The EIGNN update is defined as follows:

H
t+1 = �↵ÃH

t
F

T
F +X. (33)

The matrix Ã = (D+I)�1/2(A+I)(D+I)�1/2 is called the symmetric renormalized adjacency

matrix. The matrix F 2 Rk⇥k is comprised of parameters, ↵ > 0 is a scaling factor equal to
1

||F TF ||F+✏ with arbitrarily small ✏, and � 2 (0, 1] is an additional scaling factor. The overall
scaling factor �↵ is chosen to ensure that the update is contractive, from which it follows that the
sequence of iterates converges.

Proposition 1. The fixed point H⇤ achieved by the EIGNN update function satisfying H
⇤ =

↵ÃH
⇤
F

T
F +X corresponds to the minimum of the following convex energy function:

E(F ,H) =
1

2
||H(I � ↵F T

F)�1/2 �X(I � ↵F T
F)�1(I � ↵F T

F)�1/2||2F+ (34)
↵

2
trace(HT (I � �Ã)HF

T
F)

=
1

2
||HW �X(WW)�1

W ||2F +
↵

2
trace(HT (I � �Ã)HF

T
F) (35)

where W = W
T = (I � ↵F T

F)�1/2 and � < 1/�max(Ã) > 1/2.

The Jacobian of the energy with respect to H is:

@E

@H
= (HW �X(WW)�1

W)W + ↵(I � �Ã)HF
T
F

= HWW �X + ↵HF
T
F � �↵ÃHF

T
F

= H(I � ↵F T
F)�X + ↵HF

T
F � �↵ÃT

F

= H �X � �↵ÃHF
T
F (36)

At the energy minimum, we have:

H
⇤ = �↵ÃH

⇤
F

T
F +X, (37)

and thus recover the EIGNN fixed point. Note that Liu et al. (2021) appear to assume that the
maximum eigenvalue of Ã satisfies �max(Ã) 1 and thus restrict � 2 (0, 1]. However, this is
false if Ã is equal to the symmetric renormalized adjacency matrix with added self loops, as the
maximum eigenvalue may exceed 1. In this scenario, a choice of � > 1/�max(Ã) would result in
a divergent sequence of iterates. We modify the restriction on gamma so that � 1/�max(Ã) is
satisfied.

24

Under review as a conference paper at ICLR 2024

A.10 EIGNN SENSITIVITY TO INFERENCE VIA CLOSED FORM SOLUTION

EIGNNs Liu et al. (2021) are implicit GNNs employing contractive node embedding updates, where
a closed form solution can be obtained instead of iterating the fixed point function. We find that
performance of EIGNNs relies heavily on this closed form solution. When training EIGNNs with
an iterative forward pass, performance is significantly diminished; we demonstrate this in Table
6 on the chains dataset. Furthermore, even if the model is trained using the closed form forward
pass, at inference time, iterating on the fixed point function yields significantly different results; we
demonstrate this in Table 6 on the chains dataset. In summary, even though EIGNNs are provably
robust to distributed, asynchronous inference, their performance relies heavily on the closed form
forward pass, which requires global information about the graph and cannot be easily performed in
a distributed manner.

Table 6: EIGNN dataset accuracy on chains dataset under different training and inference regimes

Train/Test regime

chain length closed form train /

closed form test

closed form train /

iterative test

iterative train / iter-

ative test

10 100 90 100
20 100 77.5 100
50 100 64 73
100 100 55.5 62.5

25

