
Under review as a conference paper at ICLR 2023

APPENDIX

A LEARNING AND OBTAINING GRAPH EMBEDDINGS WITH CLEP

We summarize the training algorithm of CLEP in Algorithm 1. After training CLEP, the embeddings
of each graph can be obtained as in Algorithm 2.

Algorithm 1 The training algorithm of CLEP, for one batch.

Data: Graph batch B = {Gi | Gi := (Xi,Ai), i ∈ [1, |B|]}.
Modules: Variational encoder hV(·;ϕ), soft edge assignment module SEA(·), community-
specific graph encoders {h(k)G (·;θ) | k ∈ [1,K]}, global graph encoder hG(·;θ), projectors
{m(k)(·;θ) | k ∈ [1,K]}.

B′, B′′ ← perturb(B);
for i← 1 to |B| do
Ki,Λi ← hV(Xi,Ai;ϕ);
sample Zi with Ki,Λi, as in Equation (11);
hi ← hG(Xi,Ai);
for k ← 1 to K do
A

′(k)
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i, k, {Z
(k)
i · Z(k)⊺

i }k=1,K);
A
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h
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G (A
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i;θ);

h
′′(k)
i ← h
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G (A
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i ;θ);

f
′(k)
i ← m(k)(h

′(k)
i ;θ);

f
′′(k)
i ← m(k)(h

′′(k)
i ;θ)

end for
compute EZi∼Qϕ(Zi)

[
log pθ(i |Zi,Ai,Xi)

]
by Equation (5);

compute EZi∼Qϕ(Zi)

[
log p(Ai |Zi)

]
with the generative model defined in Section 3.1;

compute DKL(Qϕ(Zi) ∥P (Zi)) as in Equation (12);
ℓi ← EZi∼Qϕ(Zi)

[
log pθ(i |Zi,Ai,Xi) + log p(Ai |Zi)

]
−DKL(Qϕ(Zi) ∥P (Zi));

end for
LCLEP ← EB

∑|B|
i=1 ℓi;

ϕ← ϕ+ ηϕ · ∇ϕLCLEP;
θ ← θ + ηθ · ∇θLCLEP;

Algorithm 2 The algorithm to obtain the embeddings of each graph.

Data: Graph G := (X,A).
Modules: Variational encoder hV(·;ϕ), soft edge assignment module SEA(·), community-specific
graph encoders {h(k)G (·;θ) | k ∈ [1,K]}.
Output: Graph embedding h.

K,Λ← hV(X,A;ϕ);
sample Z with K,Λ, as in Equation (11);
for k ← 1 to K do
A(k) ← SEA(A, k, {Z(k) · Z(k)⊺}k=1,K);
h(k) ← h

(k)
G (A(k),X;θ);

end for
h← [h(1),h(2), · · · ,h(K)].
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B MORE ABLATION STUDIES

In Equation (5), we use a set of learned weights to balance the K community-specific contrastive
learning tasks. A simplification to this step is to replace these learned weights by directly setting
p
(k)
i = 1

K , which is referred to as “CLEP-average”. We compare the unsupervised graph classification
results obtained by regular CLEP, CLEP-average and their collective base model GraphCL. As
shown in Table 3, the improvement from community-wise contrastive learning is consistent across all
benchmarks, and the attention-like contrastive task balancing mechanism, as elaborated in Section 3.3,
can effectively enhance the advantage of community-wise contrastive learning.

Table 3: Comparison of graph classification performance (average accuracy ± standard error).

Method MUTAG PTC MR PROTEINS NCI1 IMDB-B IMDB-M RDT-B RDT-M5K
GraphCL 86.8 ± 1.3 63.6 ± 1.8 74.4 ± 0.5 77.9 ± 0.4 71.1 ± 0.4 50.7 ± 0.4 89.5 ± 0.8 56.0 ± 0.3

CLEP-average 90.5± 0.7 64.5 ± 1.3 75.8 ± 0.6 78.4 ± 0.3 73.4 ± 0.3 51.7 ± 0.4 86.5 ± 0.6 56.1 ± 0.4
CLEP 91.2 ± 0.8 65.1 ± 1.2 76.4 ± 0.4 78.5 ± 0.4 75.6 ± 0.4 52.0 ± 0.3 87.3 ± 0.5 56.4 ± 0.3
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