
A Appendix1

This Appendix includes additional empirical results for modeling double descent in a single-layer2

network shown in Figure 1 in the main paper. First set of results investigates the choice of theoretical3

constants a1 and a2 in VC bound (1) reproduced below:4
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VC theory [1, 2] specifies their range and provides the values corresponding to pessimistic assump-6

tions (about unknown data distributions):7

– the range [0, 4] for a1 and [0,2] for a2.8

– worst-case correspond to values a1 = 4 and a2 = 2.9

These worst-case values result in upper bounds that are too crude for real-life data sets. Therefore, for10

low-noise data sets in the main paper, we used values a1 = 1 and a2 = 1. However, for noisy data11

we should use larger values. The choice of proper values for these theoretical constants for noisy data12

is discussed next, using LS classifiers with ReLU features, for digits data (the same 5 vs. 8 data set13

as in the main paper). For this data set, we introduce noise by using corrupted class labels. That is,14

we consider 3 data sets, with 0% noise, 5% noise and 10% noise, where 0% noise refers to original15

‘clean’ data set (used in the main paper). Figure A.1 shows modeling results for data set with 5%16

noise, using VC bounds with a1 = 1 and a2 = 1. These results show that VC-bounds underestimate17

empirical curves for both first and especially second descent. However, using values a1 = 3 and18

a2 = 1 results in practical VC bounds that provide accurate modeling of double descent for this data,19

at various noise levels. See empirical results in Figure A.2.20

Figure A.1: Modeling double descent for digits data with 5% label noise, using values a1 = 1 and
a2 = 1.

Next, we show experimental results for the same digits data set, when images are corrupted by21

random Gaussian noise. Here, the noise level is given by standard deviation of the Gaussian noise22

σ̂ = 0, 0.1, 0.2. Empirical results in Figure A.3 show that VC bounds (with values a1 = 3 and23

a2 = 1) provide accurate modeling of double descent, at various noise levels.24

We can conclude that these values a1 = 3 and a2 = 1 provide robust VC theoretical modeling of25

double descent for noisy data. For example, Figure A.4, shows modeling double descent for CIFAR1026

data set (cat vs automobile), extracted from CIFAR10 data base. This data set has 800 training27

samples and 2,000 test samples. Modeling results are obtained for the network with random ReLU28

features, trained using LS classifier.29
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Figure A.2: Modeling double descent for digits data with corrupted class labels, using values a1 = 3
and a2 = 1.

Figure A.3: Modeling double descent for digits data with corrupted pixel, using values a1 = 3 and
a2 = 1.

Last set of results shows the effect of varying the number of training samples on test error, for a30

fixed-size network. This setting was used in [3]. Results in Figure A.5 show modeling double descent31

for digits data set, using fixed-size network with N=500 and N=1500. These results are obtained for32

the network with random ReLU features and are trained using LS classifier with a1 = 1 and a2 = 1.33

They show very accurate modeling of double descent using VC-bounds, under this setting.34
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Figure A.4: Modeling double descent for CIFAR data (Cat vs Automobile), using values a1 = 3 and
a2 = 1.

Figure A.5: Modeling the effect of varying the number of training samples on test error, for a
fixed-size network.
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