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Abstract

Self-Supervised learning without contrastive pairs has shown huge success in the
recent year. However, understanding why these networks do not collapse despite
not using contrastive pairs was not fully understood until very recently [1]. In this
work we re-implemented the architectures and pre-training schemes of SimSiam,
BYOL, DirectPred and DirectCopy. We investigated the eigenspace alignment
hypothesis in DirectPred, by plotting the eigenvalues and eigenspace alignments
for both SimSiam and BYOL with and without Symmetric regularization. We also
combine the framework of DirectPred with SImCLRvV?2 in order to explore if any
further improvements could be made. We managed to achieve comparable results
to the paper of DirectPred in regards to accuracy and the behaviour of symmetry
and eigenspace alignment. We release our code[ﬁ

1 Introduction

Self-Supervised learning has become an important task in many domains, since labeled data is often
rare and expensive to get. Many modern methods of Self-Supervised learning are based on Siamese-
networks [2] which are weight sharing Neural networks for two or more inputs which representations
then will be compared in latent space. The representation created by this approach can then be used
for classification by fine-tuning on fewer labelled data-points. Traditionally, during pre-training
positive pairs (same image, or two images from the same class) and negative pairs (different images
or two images from a different class) are used. The distance of the representation of positive pairs is
minimized while the distance of the representation of negative pairs is maximized, which prevents
the networks from collapse (i.e mapping all inputs to the same representation). These methods have
shown quite some success in the past [3]], [4], [S], [6]. However, these methods rely on negative pairs,
and large batch sizes which makes the training less feasible.

Recently, new methods have been proposed which rely only on positive pairs and yet don’t collapse
[7]], [8]]. In the paper "Understanding Self-Supervised Learning Dynamics without Contrastive Pairs"
by Tian et.al. [1]] the underlying dynamics are explored and based on the theoretical results, a new
method, DirectPred, was proposed which does not need an update of the predictor via gradient descent
but instead is set directly each iteration. These method has then been simplified with DirectCopy in
[9] achieving similar performance.

The focus of this work is to test several assumptions made in [1]] for the theoretical analysis and see
if they hold. For this, we will concentrate especially on the eigenvalues of the predictor network
and the eigenspace alignment with its input. Also, we will reproduce the results from [1], [9] [7]
and [8]] on CIFAR-10 to compare their learned representation via linear probes. In addition we will
combine DirectPred with the method proposed in [8] and use a deeper projection head, as well as
keeping some layers for fine tuning, in order to test if an increase in classification performance can be
achieved, as reported by Chen et.al. [4].

"https://github. com/miszkur/SelfSupervisedLearning

Project report for DD2412 or FDD3412


https://github.com/miszkur/SelfSupervisedLearning

2 Related work

A common approach to representation learning without Siamese networks is generative modelling.
Typically these methods model a distribution over the data and a latent space, from which then
embeddings can be drawn as data representations. Usually these approaches rely on Auto-encoding
[LO,[11] or Adversarial networks [12} [13]]. However, generative models are often computatinaly heavy
and hard to train.

Discriminative methods using Siamese networks like SimCLR [3} 4] and Moco [5] outperform
generative models and have lower computational cost. However, these methods rely on very large
batch sizes since they use contrastive pairs. Most recent methods, replicated in this work, like BYOL
[7] and SimSiam [8]], only rely on positive pairs and therefore can make use of smaller batch sizes. To
understand why these methods do not collapse, the dynamics of these networks are analysed with
linear models in [1}[9]. From this analysis, the authors could derive ablations of BYOL where part of
the network is directly set to its optimal solution instead of being trained by gradient descent.

3 Method
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Figure 1: Network architecture for all presented methods

In this section we will describe the methods of BYOL and SimSiam as well as its successors DirectPred
and DirectCopy.

3.1 BYOL & SimSiam

The network architecture of the models is shown in Figure[] First, two augmented views X{ and X}
of an image X are created and fed into the online network W and target network W, respectively.
Both of these networks have the same architecture, a ResNet-18 (W7, ) as encoder [14], which
is supposed to create hidden features and a projector head W2 . which is a two layer MLP, with
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purpose to map the feature space into a lower dimensional hidden space. The online network also has
an additional predictor head, again consisting of a two layer MLP. The target network has a StopGrad
function instead of a predictor head. Therefore during back propagation, only the weights of the
online network are updated. The loss between the output of the online and target network is equal to
the cosine-similarity loss function.
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Note, that the final loss of one image is the symmetric loss 6(21(0)7 ZéT)) + 6(22(0)7 Z%T)), since
each augmentation is given to both networks. As mentioned, the target network is not updated with

(2, 2"y = - (1)



gradient descent, but with an exponential moving average (EMA). After each batch the target network
will be set to W, = W, + (1 — 7)(W — W,). In SimSiam the target network is set directly to the
online network after each update, i.e 7 = 0.

3.2 DirectPred & DirectCopy

[L] and [9] derive a one layer linear predictor analytically with the analysis of the underlying dynamics
of these models presented in Section [3.1] with an approximation of the actual network as a purely
linear model. In addition to the linearity of the encoder and predictor, three additional simplifying
assumptions where made:

* The target network is always in a linear relationship with the online network (e.g. W, (t) =
T(H)W(t)

* The original data distribution p(X) is Isotropic and its augmentation 5(X’| X ) has mean X
and covariance o1

* The predictor W), is symmetric

Based on these assumptions, one can show, that the eigenspaces of the output of the online network
and the predictor W), align. Let ' = WX WT (i.e output of the online network as linear model),
then it follows with the three assumptions, that the eigenspaces of these two matrices allgin over time
(e.g. for all non-zero eigenvalues Ay, , A of W), and F', the corresponding normalized eigenvectors

vw,, v are parallel, U‘TVP vr = 1). Therefore, we can derive an analytical expression for the predictor

W,. Let F = UQU T be the eigen-decomposition of F' with Q = diag(Ag), cey )\;;1)) the diagonal
matrix with the eigenvalues of I, then we can approximate the eigenvalues of W, with

AP =AY + emax A )
P J
and therefore set W), to
W, = Udiag(A\(y) ... A UT 3)

Note, that we cannot compute F' directly, which is why we use a running average Fas approximation
in practice

F=pb 4 (1-p)2 @
where Z = Z{O)ZAEO)T.

In [9] a more general and simpler version of DirectPred is analyzed and DirectCopy is proposed. In
DirectCopy the predictor is set directly to the normalized moving average of the projector’s output,
ie:

W, +el )

_F
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This method omits the eigen-decomposition, which makes it cheaper in terms of computation while
achieving similar results to DirectPred.

4 Data & Configurations

All experiments are conducted on CIFAR-10 [15]], which contains 60 000 RGB images uniformly
distributed over 10 classes. The pre-training and the finetuning are done on the entire training set,
which consists of 50 000 images. For finetuning only a linear layer is used on top of the encoder,
where the weights of the encoder are frozen (I.E. we test linear separability of the encoders output).
The reported results are produced from a test set containing 10 000 images. Also, to account for the
small dimension of the CIFAR-10 images (32 x 32 x 3) we use 3 x 3 convolutions and stride 1
without maximum pooling in the first block of the encoder.

To augment each image, we first do a random flip, take a random crop (up to 8% of the original size)
of the image. Then we randomly adjust brightness, saturation, contrast and hue of the RGB image by
a random factorﬂ Finally with a 20% chance we convert the image to grey scale.

for brightness, saturation and contrast we chose a value uniformly at random between 0.6 and 1.4. For
adjusting the hue, we set the maximal value to 0.1



Self-supervised pretraining In the basic setting, the online network use ResNet-18 as encoder, two
layer projector MLP, two layer predictor MLP, where the first layer consists of 512 nodes, followed
by BatchNorm and ReL.U, and then a linear output layer with 128 nodes. For BYOL we use EMA to
update target network and for SimSiam we directly set encoder and projector of target network to
the weights of the online one (7 = 0). We use SGD optimizer with learning rate 0.03, momentum
0.9 and weight decay (L2 penalty) of 0.0004. The predictor of DirectPred and DirectCopy are set
directly and are not trained with gradient descent and consist of one linear layer with 128 nodes. By
SGD baseline for those methods we mean a network pretrained with a one linear layer predictor with
or without EMA. In all experiments, we use batch size of 128. For updating the target network we
used the EMA parameter 7 = 0.996. For DirectPred we use ¢ = 0.1 and p = 0.3 and for DirectCopy
e=0.3and p=0.5.

Linear evaluation In order to test the performance of the different models, we use linear evaluation,
i.e we train a linear layer on top of the ResNet-18 with frozen weights for 100 epochs. This measures
how linearly separable the learned representations are. We use Adam optimizer [16] with polynomial
decay of learning rate from Se-2 to 5e-4. Images are normalized but we do not use augmentation for
this part of training just as in the original repository for DirectPred.

5 Experiments and findings

In this section, we will first show that the assumptions and theoretical findings from Section [3.2| hold
in practice. Finally, we will pre-train and finetune the different models presented in Section [3{and test
their performance.

5.1 Eigenspace alignment

First, we pre-train BYOL and SimSiam keep track of the predictor heads symmetry and eigenspace
alignment. In Figure|2|we can see, that the assumption of an symmetric predictor ¥, holds. Even
without symmetry regularisation, W,, approaches symmetry during training. Also, we can see that for
all non-zero eigenvalues of W), the eigenspaces between I and W), align as the training progresses.
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Figure 2: Pre-training BYOL for 100 epochs of CIFAR-10. Top row: BYOL without symmetry
regularisation on W,,. Bottom row: BYOL with symmetry regularisation on W,,. The eigenvalues of
F are plotted on the log scale, since the eigenvalues vary a lot.

We ran the same Experiment for SimSiam, and can also see the same effect on the predictor and the
alignment (Figure3). If we don’t use a symmetric predictor, we also see that the eigenspaces for the
non-zero eigenvalues align. However, once we use symmetry regularisation on W, all eigenvalues
become zero, which shows that the network collapses.
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Figure 3: Pre-training SimSiam for 100 epochs of CIFAR-10. Top row: SimSiam without symmetry
regularisation on W,,. Bottom row: SimSiam with symmetry regularisation on W,,. Note that the
eigenvalues of F' are not plotted on the log scale here, since we get 0 values.

We can prevent the collapse of SimSiam with symmetric predictor by choosing very large and different
learning rates c, «;, for W and W), as well as using different weight decay 7, 1, for W and W,
Figure[d The predictor has to have a higher learning rate in order to successfully remove the target
network. This suggests that EMA brings some stability to the learning dynamics of the network [T,
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Figure 4: SimSiam with symmetric predictor but learning rates « = 0.2, a, = 2 and weight decay
n=0,n, =4e—4

Eigenvalues From these plots we can already approximate the relative performance of the networks.
If the predictor has less 0 eigenvalues, the matrix W), has less singularities i.e less eigenvectors which
correspond to the nullspace of the matrix. Therefore, its output W, has higher rank, which is
desired in representation learning, as it enables a more separable representation.

5.2 Performance

Byol & SimSiam In table[I]we can see that the performance of BYOL increases slightly when using
symmetry regularisation on the predictor. However, as already seen in Figure 3} when using no EMA,
we observe that the network collapses. As shown in Figure[d] we can prevent this by adjusting the
learning rates « and cv, as well as the weight decay for the different parts of the model 7, 7,,. This
leads to a performance of 79.2 %. Also, we observe in general better performance for models trained
with EMA, given the same hyperarameters. However, we did not use extensive hyperparameter
tuning, as performance is not the focus of our work.

DirectPred & DirectCopy As we can see in Figure 2] & [3] the eigenspaces for both models align
and therefore the theoretical assumptions of [[1, 9] hold. As we can see in Figure[3] all models perform
reasonably well, and can achieve almost the same performance as BYOL or SimSiam. However, as
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symmetric W, | non symmetric W,
EMA 85.7 84.2
No EMA 20.3 79.4
Table 1: Comparision of a two layer predictor with and without symmetry regularisation as well as
with and without EMA (i.e first row is BYOL and second row is SimSiam).

already mentioned earlier, we can see that models with EMA outperform models without EMA in
every setting. Also DirectPred and DirectCopy achieve almost the same accuracy, in [9] it is stated
that DirectCopy can outperform DirectPred when pre-trained for more epochs. We did not replicate
this experiment, due to computational constraints.

Accuracies of one layer predictor models
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Figure 5: The accuracy of DirectPred and DirectCopy compared to their SGD baselines with and
without EMA

Deeper Projection Head In [13] a deeper projection head was proposed to increase accuracy.
In addition a reuse of the first projector layer for finetuning was also suggested. We attached a
deeper projection head to our DirectPred model trained with EMA. However, we could not increase
performance. Actually we could observe a clear decrease and also an even strongrer decrease if the
projector was reused.

re-use projector | only encoder
80.7 | 82.3
Table 2: Performance of two DirectPred models which where pre-trained with a deeper projection
head. Re-using part of the projector for finetuning did decrease performance most.

6 Challenges

Thanks to the detailed description of BYOL by Grill et. al. [7] we were able to reproduce the paper
achieving similar results as the authors. Due to time constraints we decided to use CIFAR-10 instead
of STL-10 which was used in most of the experiments in the reproduced paper.

Overall the main challenge was the large amount of computations required for all the experiments, it
took around 4 hours and 30 minutes to pre-train and fine tune a single model, and in total we trained
for around 100+ hours due to bug fixing and testing various schemes and hyper parameters.

Due to some missing details in [1]] we had to check the original repository, which was written in
PyTorch. Which brought another challenge as there are differences in TensorFlow and PyTorch
libraries. Example being, in PyTorch one of the parameters of the SGD optimizer is weight decay
(L2 penalty), in TensorFlow we had to implement it by hand as TensorTlow’s SGDW implements



Decoupled Weight Decay Regularization [17]. Image augmentation methods such as ColorJitter
from PyTorch do not have exact corresponding method. For example, adjusting brightness works
differently so we defined our custom way to do it so that augmentations are as close as possible to the
original version.

7 Conclusion

We could successfully re-implement several methods for unsupervised representation learning without
contrastive pairs, namely BYOL, SimSiam, DirectPred and DirectCopy. Our experimental results
aligned well with both the theoretical analysis about the eigenspaces made in [[1]] and the symmetric
assumptions. We achieved comparable behaviour with regards to eigenspace alignment, symmetry.
But we cannot report that DirectPred or DirectCopy could outperform their two layer opponent with
or without EMA. However, we compared these models on CIFAR-10, whereas in [1] the experiments
where run on STL-10.

This leaves us with the conclusion, that DirectPred and DirectCopy give valuable insights into the
dynamics of unsupervised representation learning without contrastive pairs, but do not necessarily
build new state of the art models themselves.

8 Ethical consideration, societal impact, alignment with UN SDG targets

Self-supervised learning circumvents label scarcity which is one of the most common problems when
applying ML to new scenarios. This can have both positive and negative consequences. On one hand,
it can accelerate important developments for example in medical diagnosis. However, it can also be
used in unethical ways such as in surveillance or military equipment. Furthermore, there will be less
need for people labelling datasets which will result in reduction of job positions in this area.

9 Self Assessment

We think that our project should be graded with an A for four main reasons:

* We have successfully implemented BYOL [7]] from scratch and its ablations:
— SimSiam [8]]
— DirectPred [[1]]
— DirectCopy [9]
BYOL requires implementing Exponential Moving Average and DirectPred requires more in
depth theory compared to SimSiam which was an alternative paper for the project. Moreover,

we achieved results matching the ones in the reproduced paper and observed the same
behaviour of the networks when investigating eigenspaces and symmetry.

* Reimplementation in a deep learning framework for which an online public repository
is not available: the original repository [18]], is written in PyTorch. As we used TensorFlow,
this added an extra layer of complexity.

* New combination with other papers, i.e. combining DirectPred with SimCLRvV2 frame-
work [4]. We implemented deeper projection head which is saved and used in fine-tuning
the model and successfully investigated the performance impact of this ablation.

* Comparison with other relevant methods: we compared DirectPred to recently proposed
DirectCopy.

We achieved all the success measures from our project proposal and in addition experimented with

influence of the learning rate and weight decay on stability of the training for SimSiam ().
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