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A ALGORITHM

Algorithm 1: MutexMatch algorithm

Input: batch of labeled data X = {(xlbb , ylbb )}Bb=1, batch of unlabeled data U = {xulbb }
µB
b=1,

feature extractor θ, TNC P , TNC N
1 for iteration t do
2 Lsup = 1

B

∑B
n=1H(ylbn ,P(xlbn )) // Supervised loss for xlb

3 for iteration b = 1 to µB do
4 pw = P(θ(αw(xulb))) // Compute TPC’s prediction for weak augmentation of xulb

5 ps = P(θ(αs(xulb))) // Compute TPC’s prediction for strong augmentation of xulb

6 rw = N (θ(αw(x
ulb))) // Compute TNC’s prediction for weak augmentation of xulb

7 rs = N (θ(αs(x
ulb))) // Compute TNC’s prediction for strong augmentation of xulb

8 p̂w = argmax(pw) // Select pseudo-labels for xulb

9 q̂w = argmin(pw) // Select complementary pseudo-labels for xulb

10 end
11 Lsep = 1

µB

∑µB
n=1H(q̂wn ,N (θ̂(xwn ))) // Stop back-propagating gradients on θ

12 Lp = 1
µB

∑µB
n=1 1(max(pwn ) ≥ τ)H(p̂wn , p

s
n) // Positive consistency loss for xulb

13 Ln = 1
µB

∑µB
n=1 1(max(pwn ) < τ)H(rwn , r

s
n) // Negative consistency loss for xulb

14 update θ,P,N by SGD to optimise Lsup + λsepLsep + λpLp + λnLn
15 end

B BARELY SUPERVISED LEARNING

The experimental protocol of barely supervised learning (BSL) described in Sohn et al. (2020) as-
sume a limited availability (e.g., 1 or 5) of labeled data from categories of interest. In order to test
the performance of our method in extreme cases, we conduct experiments on CIFAR-10 with only
one label per class, and considered developing a simple method to use our TNC in the test phase.
As shown in Table 4, we use five different random seeds to extract one label of each class from
CIFAR-10, and use MutexMatch to achieve test accuracy reaching between 65.30% and 93.07%
with a mean of 78.73%. Compared with FixMatch (Sohn et al., 2020) reaching between 48.58%
and 85.32%, the performance of MutexMatch is more superior. Then we consider using TNC to
complete the test phase under this setting to obtain the test accuracy. We assume that in the ideal
case, according to Equation (3), for test data x, the prediction of TNC rx = N (x) and the prediction
of TPC px = P(x) should satisfy argmax(rx) = argmin(px).

According to negative learning proposed in Kim et al. (2019), we hypothesis TNC is trained
to classify what input image does not belong to its complementary label, so that we can use
r̂x = argmin(rx) to classify an input image x. Compared with TPC, TNC may learn less error
information when the label is extremely scarce, so as to obtain better test performance. In order to
verify this idea, we used TNC to participate in the test phase showed in Figure 8. For test sample x,
we set a confidence threshold T , if px > T we uses TPC to predict, if px < T uses TNC instead,
that is, the leftmost point (T = 0) in the figure represents only TNC for test, and the rightmost point
(T = 1) represents only TNC for test. Taking 20 labels as the dividing line, we can see that using
TNC for prediction has more advantages in the case of fewer labels.

Table 4: Accuracy of MutexMatch on a single 1-label split of CIFAR-10 with different random
seeds. Results are ordered by accuracy.

Fold 1 2 3 4 5

Accuracy 65.30 71.12 77.83 86.33 93.07
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Figure 8: Test accuracy on CIFAR-10 in single run with various amount of labels using TNC to par-
ticipate test phase. The x-axis represents confidence threshold T and y-axis represents test accuracy.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ABLATION STUDY ON LEARNING RATE AND LEARNING RATE SCHEDULE

We note that learning rate and learning rate schedule are very important for MutexMatch. In this
section, we use the experiment setting in Section 4.1 to conduct additional ablation experiments for
both. Following Loshchilov & Hutter (2017), recent work(Sohn et al., 2020; Li et al., 2020) use a
cosine learning rate decay and achieve best performance. However, as shown in Table 5, we found
that MutexMatch achieve better results using no decay on CIFAR-10, outperforming cosine learning
rate decay by 0.32%. When there are many labels, the pseudo-labels output by TPC are more likely
to have high-confidence and remain stable. It is necessary for MutexMatch to use cosine learning
rate decay to jump out of the local optimum.

Table 5: Ablation study on learning rate and learning rate schedule. Results are reported on CIFAR-
10 varying number of labels.

Decay Schedule Learning Rate Labels Backbone Accuracy

No Decay 0.03 40 WRN-28-2 93.54
No Decay 0.07 40 WRN-28-2 93.02
No Decay 0.10 40 WRN-28-2 92.89

Cosine Decay 0.03 40 WRN-28-2 93.22
Cosine Decay 0.07 40 WRN-28-2 93.20
Cosine Decay 0.10 40 WRN-28-2 92.59

No Decay 0.03 80 WRN-28-2 93.95
Cosine Decay 0.03 80 WRN-28-2 94.53
No Decay 0.03 1000 CNN-13 91.57
Cosine Decay 0.03 1000 CNN-13 93.46
No Decay 0.03 4000 CNN-13 92.75
Cosine Decay 0.03 4000 CNN-13 94.41

C.2 HYPERPARAMETERS

For MutexMatch, the choice of τ needs to be very cautious, because different τ will lead to the
division of high and low-confidence portions, which will affect the impact of the mutex-based con-
sistency regularization on the model. We use the identical setting of experiments in Section 4.1 for
MutexMatch and vary τ to verify the sensitivity of MutexMatch to this hyperparameter. As shown
in Table 6, MutexMatch needs to select appropriate τ to divide confidence portions. We note that
when there are many labels, τ has a greater impact on performance. The more labels are available,
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the less confirmation bias will be when using TPC directly for classification, so the portion of TPC
in mutex-based consistency regularization can be used directly for learning. Therefore, we guess
that in general, we should choose a smaller τ to make more pseudo-labels participate in the training
of TPC when the number of labels increases.

At the same time, showed in Figure 9, we vary the weight λsep of the separate training loss for
TNC Lsep and λn of the negative consistency loss Ln. Choosing the appropriate weight of loss is
very important for MutexMatch. Larger λsep ensures the accuracy of complementary pseudo-labels,
which helps TNC better participate in training. Appropriate λm weighs the contribution of TNC and
TPC in mutex-based consistency regularization, so that the model can achieve better performance.

Table 6: Ablation study on confidence threshold τ . Results are reported on CIFAR-10 varying
number of labels.

τ Labels Backbone Accuracy

0.5 40 WRN-28-2 93.52
0.75 40 WRN-28-2 93.44
0.85 40 WRN-28-2 93.28
0.95 40 WRN-28-2 93.54
0.99 40 WRN-28-2 92.17

0.5 80 WRN-28-2 94.53
0.95 80 WRN-28-2 93.64

0.5 1000 CNN-13 93.46
0.95 1000 CNN-13 92.07

0.5 4000 CNN-13 94.41
0.95 4000 CNN-13 92.94
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Figure 9: Testing accuracy of MutexMatch on CIFAR-10 with various λsep and λn.

D SEMI-SUPERVISED LEARNING WITH NOISY LABELS

To evaluate the robustness of MutexMatch, we conduct our experiments following settings of
semi-supervised learning with noisy labels on CIFAR-10. Semi-supervised learning and noise
labels are challenging problems, and semi-supervised with noise labels is much more, because
the ability of the model to resist noise labels will be greatly weakened when there is only a small
amount of labeled data.

Setting. Following Kim et al. (2019); Patrini et al. (2017), we applied three different types
of noise in experiments:
(1) Symmetric-inc noise is created by randomly selecting the label from all classes.
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(2) Symmetric-exc noise is created by randomly selecting the label from all classes without ground
truth label.
(3) Asymmetric noise is generated by mapping TRUCK → AUTOMOBILE, BIRD → PLANE,
DEER→ HORSE, and CAT↔ DOG for CIFAR-10.
We evaluate MutexMatch and baselines with noisy labels mentioned above using the same settings
as Section 4.1. All experiments use 40 labeled data for training, varying radio of noisy labels in
labeled data (25%&50%).

Results. Table 7 shows the accuracy comparison between MutexMatch and baselines. All
the results are reported by averaging the same labeled data randomly selected five times. Exper-
iments show the robustness of MutexMatch under this setting. For example, with 2 labels and
2 noisy labels (Symmetric-inc) per class, MutexMatch achieves 88.72±3.51% accuracy, while
training of FixMatch collapse reaching a lower 77.80±17.57% accuracy. MutexMatch contains
the idea of negative learning. Learning from the perspective of complementary pseudo-label can
prevents model from overfitting to noisy data (Kim et al., 2019) so that MutexMatch achieves
superior performance in SSL with noisy labels.

Table 7: Accuracy for CIFAR-10 with noisy labels averaged on 5 different folds. All experiments
were based on 40 labeled data with varying radio of noisy labels.

Method Symmetric-inc Symmetric-exc Asymmetric

25%noisy 50%noisy 25%noisy 50%noisy 25%noisy 50%noisy

FixMatch 77.80±17.57 81.54±18.47 80.05±5.80 75.11±14.66 84.58±5.90 72.91±19.30

MutexMatch 88.72±8.51 77.18±10.55 89.37±6.10 81.85±8.00 89.51±5.14 78.28±15.44
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