Desiderata for Representation Learning from Identifiability, Disentanglement, and Group-Structuredness

A. Definitions
We follow the definitions proposed by Higgins et al. (2018) for group structured representations and disentangled group-
structured representations.

Definition A.1 (Group Structured Representation). Let Zx be the generative factors of the observed space X" through the
mapping b : Zx — X, structured by a group G through the action - : G x Zx — Zx. A vector representation fy : X' — Z
is a group-structured representation if it satisfies:

1. There is a (non-trivial) action of G on Z,ie., -z : G X Z — Z.

2. The composition f = fgob: Zx — Z is equivariant, meaning that transformations of Zx are reflected on Z, i.e.,
Vg€ Gyzx € Zx, [f(g-z«2%) =g -z f(2%).

Definition A.2 (Disentangled Group Structured Representation). The group-structured representation is disentangled with
regard to the group decomposition G = GG1 X ... X G, if it satisfies this additional condition:

3. Z can be written as a product of spaces Z = Z; X ... X Z, or as a direct sum of subspaces Z = Z; @ ... & Z,, such
that each subgroup G; acts non trivially on Z; and acts trivially on Z; for j # .

Definition A.3 (Strong Identifiability (Khemakhem et al., 2020b)). Given a parameter class ©, when the feature extractors
fo,, fo, : X — Z produce latent representations z1 = fg, (), z2 = fo,(x) that are equivalent up to scaled permutations
and offsets ¢ for all 8,0, € O, i.e.,

91'\’92 — Z:f@l<$):DPf92(ZB)+C, (1)

where D is a diagonal and P a permutation matrix. Then 61, 6 fulfill an equivalence relationship.

Definition A.4 (Weak Identifiability (Khemakhem et al., 2020b)). Given a parameter class ©, when the feature extrac-
tors fo,, fo, : X — Z produce latent representations z1 = fo,(x), 22 = fg,(x) that are equivalent up to matrix
multiplications and offsets ¢ for all 61,65 € 0, i.e.,

01 ~ 0y = Z:f91($):Af92($)+C, (2

where rank (A) > min (dim Z; dim X’). Then 01, 0> fulfill an equivalence relationship.

Definition A.5 (Identifiability up to elementwise nonlinearities (Hyvérinen & Morioka, 2017)). Given a parameter class
©, when the feature extractors fg,, fg, : X — Z produce latent representations z; = fg,(x), z2 = fo,(x) that are
equivalent up to elementwise nonlinearities, matrix multiplications and offsets ¢ for all 61,6, € O, i.e.,

01~ 0 < z= fy,(x) =Aoc [fo,(x)] +¢, 3)

where rank (A) > min (dim Z;dim X") and o denotes an elementwise nonlinear transformation. Then 6y, 8 fulfill an
equivalence relationship.

B. Background

Let fo : X — Z be a feature extractor (encoder) parametrized by § € ©, where X' C RP ,Z2C R are the observation and
latent spaces. A € GL(d),c € RY, D=diag (Dy,...,Dg) : D; # 0.

Group theory. A group G structures the space S € {X, Z} through a group action - : G x § — S, associating an
invertible transformation of S to every group element g € (G. The induced map is a group homomorphism. E.g., given
the orientation of a 2D image by a scalar phase, it can be changed via scalar addition modulo the rotation period in Z,
or by a rotation matrix in X'. The structure of the latent space and the symmetry group is expressed via decomposition,
ie, Z2 =21 x---x Zpand G = G x --- X Gy, where only the subgroup G; affects the subspace Z; via the action
4 G xX Z; = Z; (k < d)—the dimensionality of Z; and that of the action’s representation of G; can have different
dimensions. E.g., the cyclic, scalar representation of color cannot be expressed with a one-dimensional linear transformation.
Among symmetry relationships, equivariance has a distinguished role, i.e., when fg (¢ - ) = g - fo (x) holds.

Disentanglement. Inspired by Weyl’s principle from physics (Kanatani, 2011), an equivariance-based notion of disen-
tanglement was first proposed by Cohen & Welling (2014), followed by Higgins et al. (2018). ?? deems a representation
disentangled w.r.t. a decomposition of G if the representation also decomposes into independent subspaces Z; that are only
affected by GG;. ?? depends on the group decomposition into subgroups. I.e., disentangled representations are non-unique
since the true decomposition” is nontrivial. For the subgroups’ dimensionality is not prescribed, the representation
granularity and the bases of Z; can be arbitrary.
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Identifiability. Identifiability attempts to construct model classes with theoretical guarantees for reconstructing the latent
factors (up to indeterminacies, such as scalings, permutations, or elementwise transformations). This is impossible without
additional assumptions (Hyvérinen & Pajunen, 1999) restricting the data distribution (Guo et al., 2022; Hyvérinen &
Morioka, 2017; Khemakhem et al., 2020a; Morioka et al., 2021; Hyvirinen & Morioka, 2016) or the function class (Gresele
etal., 2021). A factorizing joint latent distribution p (z) = [ [, p (z;) over Z is central to identifiability, with recent work
relying on auxiliary variables u that introduce conditional independence (Khemakhem et al., 2020a). Furthermore, f is
assumed to be at least injective (Khemakhem et al., 2020a); most works assume bijectivity (Hyvirinen & Morioka, 2017;
2016; Zhang & Hyvarinen, 2012; Hyviérinen et al., 2019) since they assume dim X = dim Z. Appx. A summarizes the
notions of identifiability—with the common denominator that V01, 03 € © the marginals pg, (), pp, (x) are equivalent;
expressed as 6; ~ 0. However, the feature extractors fg, map « to an equivalent z up to a certain equivalence class,
including invertible transformations: DPz + c with permutation matrix P for strong; Az + c for weak identifiability.
Hyvirinen & Morioka (2017; 2016) include elementwise (monotonous) (non)linear transformations (denoted as o), i.e.,
Aoc|[z] + c. Alternatively, the parameters 61, 62 are equivalent if they parametrize feature extractors that (or, equivalently,
the representation they produce) equal up to specific transformations.

Useful representations. The usefulness of a representation is not well-defined: identifiability defines it via independence
and a relation to the ground truth, disentanglement via semantic meaning and symmetries. Achille & Soatto (2018) postulate
sufficiency, minimality, invariance, and disentanglement to call a representation optimal. Eastwood & Williams (2018)
use disentanglement, completeness, and informativeness. Cohen & Welling (2014) and Higgins et al. (2018) advocate for
group-based structure. The plethora of metrics measuring disentanglement makes it especially hard to navigate the literature.
To add insult to injury, the word disentanglement is overloaded several times, and the metrics measure distinct though often
correlated propeties (Locatello et al., 2019; Sepliarskaia et al., 2021; Eastwood & Williams, 2018; Higgins et al., 2018).

C. Related work

Identifiability reasons about the true Data Generating Process (DGP), whereas disentanglement takes a more empirical
approach and measures the performance of (heuristic) methods such as 8-Variational Autoencoder (VAE) (Higgins et al.,
2017), TCVAE (Chen et al., 2018), FactorVAE (Kim & Mnih, 2018) with a set of diverse metrics (for comparison,
see (Locatello et al., 2019)). Thus, despite a conceptual connection was already present in the seminal work of Bengio
et al. (2013), the two communities largely developed independently; metrics, such as Mean Correlation Coefficient
(MCC) (Hyvirinen & Morioka, 2016) started to appear in the disentanglement literature, although proposed for identifiability.
The group-theoretic formalization of disentanglement is a recent development (Cohen & Welling, 2014; Higgins et al.,
2017; 2022; Bronstein et al., 2021) and was leveraged for different problems (Cohen et al., 2019; Keurti et al., 2022). Until
recently, there was no formal connection between the two notions. The first such result known to the authors is (Eastwood
et al., 2022), which proves a connection between optimizing the DCI disentanglement score (Eastwood & Williams, 2018)
and identifiability up to permutation and sign. Ahuja et al. (2022) describe the identifiability indeterminacies for a specific
model from the perspective of the equivariances of the mechanisms mapping Z — X.

D. Notation
Acronyms

DCI Disentanglement Completeness Informativeness score MCC Mean Correlation Coefficient

DGP Data Generating Process MIG Mutual Information Gap
LVM Latent Variable Model VAE Variational Autoencoder
Nomenclature

G symmetry group Algebra

u auxiliary variable vector D diagonal'matrix _

S hypersphere P permutation matrix
Ker kernel space Latents

f encoder map X' — Z 2z latent vector

g group element Z latents
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d dimensionality of the latent space Z D dimensionality of the observation space X’

z latent single component  observation vector

Observations X observation space
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