
A Non-stationary dynamic mean-field theory with both independent and
common input

The core idea of dynamic mean-field theory is that for large N , the distribution of the residual recurrent input for
different neurons becomes Gaussian and pairwise uncorrelated, according to the central limit theorem. To this
end, we characterize the distribution of the h̃i(t) (Eq 3b) by considering the (linear) stochastic dynamics:

τ
dh̃(t)

dt
= −h̃(t) + η(t) + ξ(t) , (9)

where η(t) is a Gaussian process with mean 〈η(t)〉 = 0 and autocorrelation

q(t, s) = 〈η(t)η(s)〉 = g2
〈
φ(m(t) + h̃(t))φ(m(s) + h̃(s))

〉
. (10)

Here and in the following, angular brackets denote expectation values over the distribution of the stochastic
process h̃(t), which approximates population averages in the full network. The mean-field estimate for the mean
m(t) therefore evolves according to Eq 3a with ν(t) = 〈φ(m(t) + h̃(t))〉, the mean-field estimate of the mean
population firing rate.

We obtain an expression for the time evolution of the two-time autocorrelation function c(t, s) =
〈
h̃(t)h̃(s)

〉
,

which explicitly depends on two time points. Taking the temporal derivative of c(t, s) with respect to s and
using Eq 9, we obtain

τ
d

ds
c(t, s) = −c(t, s) + r(t, s) , (11)

where r(t, s) =
〈
h̃(t) (η(s) + ξ(s))

〉
, which we take as an auxiliary function. Taking the temporal derivative

of r(t, s) with respect to t and using Eq 9 again, we arrive at

τ
d

dt
r(t, s) = −r(t, s) + q(t, s) + τσ2δ(t− s) , (12)

where q(t, s) = g2
〈
φ(m(t) + h̃(t))φ(m(s) + h̃(s))

〉
(see Eq 10) and σ2 is the variance of fluctuations driven

by the independent noise input. The additional term proportional to δ(t− s) in Eq. 12 is due to this independent
additive Gaussian white noise, similarly to the independent input considered previously [17, 16]. However, we
consider simultaneously a time-varying common input signal I(t), which renders the problem non-stationary.
Such a non-stationary DMFT was recently developed [21], but without the independent input, which is crucial
for meaningfully discussing information encoding rates in terms of a signal-to-noise ratio.

Together, the dynamic mean-field equations for m(t), c(t, s) and r(t, s) form a closed system of self-consistent
dynamic equations and can be solved forward in time s and t by integrating them on a two-dimensional grid from
some initial condition for m, c and r. The integration requires q(t, s), which can be calculated by evaluating
a Gaussian double integral that depends on c(t, s), c(t, t), c(s, s), m(t) and m(s). For the threshold-linear
transfer function φ(x) = max(x, 0), one integral can be evaluated analytically, which allows for an efficient
numerical implementation using adaptive Gauss–Kronrod integration. The non-stationary dynamic mean-field
theory captures accurately the time-dependent mean population rate ν(t) and the two-time autocorrelation
function from numerical simulations.

In contrast to previous work that did not include noise [21], we consider here a network where neurons
simultaneously receive a time-varying input component I(t) ("signal") that is identical across neurons and an
input component ξi ("noise") that is independent across neurons. Furthermore, we go beyond our previously
published non-stationary dynamic mean-field theory [21] by introducing a heuristic term that emulates fluctuating
input into the equation of the mean m due to finite network size N similar to [14] (see appendix B). We note
that in contrast to [14], we do solve the self-consistent set of dynamic mean-field equations for m, c and r to
calculate dynamic gain, mutual information rate and mutual information rate density.

B Heuristic finite-size fluctuations

The non-stationary dynamic mean-field theory is exact in the limit of largeN . However, for the precise evaluation
of the spectral coherence, finite-size network corrections have to be taken into account. These corrections are
expected to be of order 1√

N
and therefore have only a marginal effect on the dynamic gain. The finite-size

fluctuations can be heuristically accounted for by adding a fluctuation term to the equation of m(t) (mean-field
version of Eq. 3a), analogously to previous work [14]:

τ
dm

dt
= −m− bJ0ν(t) + bI(t) +

1√
N
ζ(t) , (13)

15

where the mean-field estimate of the mean population firing rate ν(t) = 〈φ(m(t) + h̃(t))〉 is additionally
driven by the fluctuations ζ(t), a noise term that captures the effective finite-size fluctuations. In the case of
g = 0, ζ(t) reduces to an additive white Gaussian noise processes (AWGN) with autocorrelation function
〈ζ(t)ζ(t+ t′)〉 = τσ2δ(t′) originating from the mean across neurons of the independent input noise ξi(t).

For g > 0, the finite size noise ζ(t) should include the effect coming from the residual fluctuations h̃i(t), which
adds a colored noise component to it (see also [14]). In contrast to [14], we heuristically approximate both
amplitude and timescale of the finite-size fluctuations from the solution of the stationary DMFT.

C Details on numerical and analytical spectral analysis

We numerically solve the stochastic differential equation (Eq. 1) using the Euler–Maruyama method but with a
distributionally-exact solution of the Ornstein-Uhlenbeck process for I(t), meaning that I(t) is not a numerical
solution of stochastic differential equations, but obtained through exact sampling of the (continuous-time)
solution of the SDE. To calculate the spectral coherence, we used the function coherence from the Python
package scipy.signal version 1.7.3 with a default Hann window and default parameters except that we set the
length of each segment (nperseg) to 211. We calculated the integral over the mutual information rate density
1 − CIν(f) using standard trapezoidal integration. As pointed out in the main text, we find that the mutual
information rate approximately grows linear with tightness of balance b. In figure 5, we demonstrate that this
linear scaling over several orders of magnitude is also true for different levels of additive Gaussian white noise
σ. We note that for low noise σ and large b, the mutual information rate saturates which is an effect of finite
time-resolution of the integration of both dynamic mean-field theory and direct numerical simulations that result
in an effective upper bound on the frequencies (see figure 5), which leads to a deviation from the linear scaling
of the mutual information rate. We confirm this by deliberately introducing an upper cutoff frequency fcutoff up
to which the spectral coherence is integrated:

Rlb(I, ν) = −
∫ fcutoff

0

df log2 (1− CIν(f)) (14)

As expected, changing this frequency cutoff directly affects the mutual information rate for large b (see figure 6).
For high noise σ and small b, we also observe deviation from the linear scaling. In that case, for finite simulation
time tsim, the signal is so weak that spurious correlations between input and output give the illusion of mutual
information. This lower saturation can be ameliorated by a longer simulation time. All simulations were
performed on a laptop and took minutes to hours.

D Details on analytical approximation of mutual information rate

We observed an approximately linear scaling of the mutual information rate with tightness of balance b, both for
noise-driven homogeneous networks (g = 0) and heterogeneous networks (g >

√
2) that receive an OU-process

as input. Where does this linear scaling originate from? The linear scaling of the mutual information rate can be
obtained from the boost of the effective timescale of the network in combination with the signal-to-noise ratio
that comes from the OU-input signal and the additive Gaussian white noise. The boost of the effective timescale
was already noted earlier [2, 14], but we provided a non-stationary mean-field theory for nonlinear rate networks
and measured the effect on the mutual information rate. The power spectral density of the input signal is given
by

Ssignal(f) =

{
2τSI

2
1

1+(2πτSf)
2 f ≤ fcutoff

0 else.
(15)

Snoise(f) is the power spectrum of band-limited Gaussian white noise:

Snoise(f) =

{
2σ2τ f ≤ fcutoff

0 else.
(16)

In an approximation that ignores the nonlinearity of the recurrent network dynamics and the interplay between
m and h̃, we can approximate that b changes the effective low-pass filtering of the network from the low-pass
filtering coming from the leak-term in the dynamics

Gleak(f) = 1/
√

1 + 4π2f2τ2 (17)

to an effective filter of
Geffective(f) = 1/

√
1 + 4π2f2τ2/b2. (18)

Consequently, the characteristic timescales of the mean m(t) and therefore of the population firing rate ν(t) is
τ/b. This results from Eq. 3, when assuming a separation of timescales between the time-varying statistics of m

16

10 1 100 101 102 103

balance b

100

101

102

103

104

M
ut

ua
l i

nf
or

m
at

io
n

(b
it/

)

noise strength
0.001
0.01
0.1
1.0
10.0

Figure 5: Information rate grows linearly with b for different noise strength σ. Same as figure 1E
but with different additive white Gaussian noise of strength σ. Model parameters: N = 64, g = 0,
∆t = 1/212τ , tsim = 26τ , I0 = J0 = 1, τS = τ , σ = 0.1, I1 = 1/8.
f

and h̃. Thus, in a linear approximation, the magnitude square coherence can be approximated to be

CIν(f) =
|SIν(f)|2

|SII(f)||Sνν(f)|
≈ |Ssignal(f)|
|Ssignal(f)|+ |Snoise(f)|/(Nb2)

. (19)

Using the equation for the mutual information rate in the Gaussian channel approximation, this results in a
mutual information rate density of

rlb(f) ≈ − log2

(
1− |Ssignal(f)|
|Ssignal(f)|+ |Snoise(f)|/(Nb2)

)
= log2

(
1 +Nb2

|Ssignal(f)|
|Snoise(f)|

)
. (20)

Thus, the effective signal-to-noise ratio of a scalar signal encoded in the population rate is boosted by a factor
Nb2. Calculating the mutual information rate gives

Rlb =

∫ ∞
0

df log2

(
1 +

Nb2

σ2τ

τSI
2
1

1 + (2πτSf)2

)
=

(√
NτSI

2
1b

2

σ2τ
+ 1− 1

)
2τS log 2

(21)

for bI1
√
τS/τ � σ/

√
N , i.e., for large networks and large signal-to-noise ratio, this results in a linear scaling

of the mutual information rate with tightness of balance:

lim
bI1
√
τS/τ�σ/

√
N

Rlb =
bI1
√
N

2σ
√
τS/τ log 2

. (22)

We observe already for moderate tightness of balance and moderate network size very good agreement between
this linear approximation and numerical experiments.

E Details on training setup and additional numerical training experiments

An example implementation in Flux, a machine learning library in Julia is available at training-balanced-nets.
Briefly, we trained standard rate networks (Eq. 1) to track an OU-process by a linear readout. We implemented

17

https://github.com/RainerEngelken/NeurIPS2022

10 1 100 101 102 103

balance b

102

103

104

M
ut

ua
l i

nf
or

m
at

io
n

(b
it/

)
cutoff frequency fcutoff

100
512

Figure 6: Cutoff frequency of input signal I(t) limits linear scaling of mutual information.
Same as figure1E but with different cutoff frequency fcutoff. Model parameters: N = 64, g = 0,
∆t = 1/212τ , tsim = 26τ , I0 = J0 = 1, τS = τ , σ = 0.001, σ = 0.1, I1 = 1/8.

the stochastic dynamics using the Euler–Maruyama method. We used the default ADAM hyperparameters
without any additional fine-tuning and found our results to be robust with respect to choices of parameters. The
parameters of the network simulations are reported in the respective figure captions.

F Details on training networks to track multiple time-varying signals

We found that training recurrent neural networks simultaneously on multiple signals yields balanced subnetworks.
We investigated this in the following scenario: We trained RNNs to approximate two time-varying external
inputs Ii(t) by two linear readouts Îi(t) = 1/N

∑
j w

out
ij φ(hj), by minimizing the mean squared loss l =∑

i

∫
|Îi(t) − Ii(t)|2 dt. The training scenario is identical to training on tracking a single OU-process, the

only difference is that there exist two independent OU-input processes Ii(t) and two readout vectors wout
i . All

parameters (recurrent weight matrix Jij , input weights and output weights) are initialized with parameters drawn
independently identically from Gaussian distributions as before.

We found that such randomly initialized networks trained on two OU-processes spontaneously break into
two balanced subnetworks throughout training. The subnetworks have strong local inhibition among neurons
belonging to one subnetwork, but weak connectivity between the subnetworks. We displayed that finding in
Figure 4A-D. We find the two subnetworks by k-means clustering on the input weights. Note that in the case of
two OU-processes, the sorting can also be obtained by simply sorting the weight matrix Jij according to the
indices of the sorted input weight vectors, i.e. by performing ’sortperm’ on one of the input vectors using the
resulting indices as row- and column indices of the displayed weight matrix Jij . Furthermore, we found that
the entries of the input weights, which were independent Gaussian random initially also displayed symmetry
breaking. We note that this finding is not limited to training networks on two independent OU-processes;
strongly inhibitory coupled subnetworks also emerge when training on a larger number of OU-processes (See
Figure 4F for the resulting connectivity of a network trained on three OU-processes). For networks trained on
multiple time-varying stimuli, we observed an interesting training dynamics. First, they develop a single global
inhibitory mode (figure 7), similar to networks trained to track a single OU-signal. After some intermediate
time, we observe the emergence of a second negative outlier eigenvalue. Concomitantly, the network breaks into

18

two inhibitory subnetworks and the readouts start to track both OU-input signals independently. An analytical
analysis of this phenomenon is beyond this publication, but it can be explained in terms of the network to
learn subsequent singular values of the input-output cross-correlation matrix [58], where the singular value that
captures most of the variance is learned first. Indeed, tracking the average of the two OU-signals at each moment
in time is favorable compared to e.g. tracking only one and ignoring the other. This can be seen by calculating
the expectation of the mean squared error for the two cases. In the case where the mean is perfectly tracked, the
mean squared error is by a factor of two larger in case only one is tracked and the other is ignored.

0 20 40 60 80

0

20

40

60

80

10.0 7.5 5.0 2.5 0.0
Real(i)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im
ag

in
ar

y(
i)

pre training
post training

0 10000 20000 30000
Epochs

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Wsame
ij

Wdifferent
ij

Wij

Figure 7: Training dynamics of networks trained on multiple signals shows first tracking
of global mean input. A) RNNs are trained to approximate two time-varying external inputs
Ii(t) by two linear readout Îi(t) = 1/N

∑
j w

out
ij φ(hj), by minimizing the mean squared loss

l =
∑
i

∫
|Îi(t)− Ii(t)|2 dt. B) When trained on two independent stimuli, two outlier eigenvalues

with negative real parts emerge. C) When observing the mean connectivity strength within the two
subnetworks and between and the global mean coupling, an interesting training dynamics emerges:
First, all weights become more negative and one single negative outlier eigenvalue emerges, then at
some intermediate state, the network breaks up into two subnetworks, and their respective means
become more negative but the weights between them on average actually become closer to zero.
Model parameters at initialization: N = 100, g =

√
2, ∆t = 0.2τ , tsim = τ, b = 1, I0 = J0 = 1,

τS = 0.1, σ = 1, epochs= 30000.

G Mixed excitatory-inhibitory circuits

To corroborate our training results, we also initialized the trained network with separate excitatory and inhibitory
populations using the classical parametrization of [1], which for large b results in a balanced state. Consistent
with [1], we chose mean couplings JEE = JIE = 1.0/N , JII = −1.8/N , JEI = −2.0/N . We found that
training such a network on the auto-encoder task also results in a single inhibition-dominated population (See
Figure 7). We did not try to constrain the weight update to maintain a separation of excitation and inhibition.
This interesting scenario is left for future work.

H Training networks with other nonlinearities

To corroborate our training results and show the generality of our findings, we trained networks on the autoencod-
ing task also using sigmoid (Figure 9), linear (Figure 10) and threshold-quadratic (Figure 11) activation function
φ(x). We found that training such networks on the auto-encoder task also results in a single inhibition-dominated
population (See Figure 9 - 11) that becomes progressively more tightly balanced over time, as seen from the
outlier eigenvalue that emerges over time.

19

0 25000 50000 75000100000
epochs

10 2

10 1

100

101

lo
ss

0 20 40
Time (steps)

9.0

9.5

10.0

10.5

target output
actual output

0 20 40
Time (steps)

1

2

3

4

5

ex
am

pl
e

h

7.5 5.0 2.5 0.0
real(i)

0.4

0.2

0.0

0.2

0.4

im
ag

(
i)

initial
trained

0 25 50 75
0

20

40

60

80

0 25 50 75

0

20

40

60

80

0.4

0.2

0.0

0.2

0.4

0.04

0.02

0.00

0.02

0.04

Figure 8: Excitatory-inhibitory initialization lost during training. The network is initialized with
excitatory and inhibitory subnetworks using the classical parametrization of [1]. Top right: Decay
of mean squared error over epochs indicates that the network trained successfully. Top middle: This
is confirmed visually by testing it on tracking an OU-process it was not trained on (target output
dotted, actual output red). Top right: During training, an outlier eigenvalue with a very negative real
part emerges similar to Fig.3. Bottom left: Typical activity of five example neurons after training.
Bottom middle: An example recurrent connectivity matrix is displayed before training. Bottom
right: After 50000 epochs, the initialization with separate excitatory and inhibitory subnetworks is
largely lost and the network learned to track the time-varying external input. Model parameters at
initialization: N = 100, g = 0.01, ∆t = 0.2τ , tsim = 100τ, b = 1, I0 = J0 = 1, τS = 0.1, σ = 1,
epochs= 105. Mean couplings were JEE = JIE = 1.0/N , JII = −1.8/N , JEI = −2.0/N .

I Training on linear transformation on multiple input streams results in
tightly balanced subnetworks

To further corroborate our training results and show the generality of our findings, we also trained networks on
calculating a linear transformation on multiple input streams in each moment in time.

For that, analogous to Fig.4B-D, RNNs are trained to perform a linear transformation yi(t) =
∑
j AijIj(t) on

a set of multi-dimensional time-varying external inputs Ii(t) (Fig 12 top middle). The training was done by
minimizing the mean squared loss l =

∑
j

∫
|ŷ(t) −

∑
ij AijIj(t)|

2 dt, where ŷi are linear readouts of the
recurrent network, ŷi(t) = 1/N

∑
j w

out
ij φ(hj) and A is a random matrix of size S × R with entries drawn

independently from a Gaussian distribution with zero mean and variance 1/R. Here we chose R = S = 3.
Again, the time-varying input signals Ij(t) were independent OU processes.

We observe that the test loss drops throughout training (Fig 12 top left), concomitantly the linearized network
dynamics develops three outlier with negative real part throughout the course of the training (Fig 12 top right).
We observe that the number of outlier eigenvalues is determined by the rank of A (Fig 12 bottom left) and their
training dynamics seems to be shaped by the singular values of A, reminiscent of the training dynamics of
multi-layer perceptrons [58]. For our case of R = S = 3 in figure 12, we observed that three outlier eigenvalues
develop, at the same time three tightly balanced subnetworks with strong inhibition emerge (Fig 12 bottom right).
For illustration, we plotted the activity hi for 5 example neurons in the bottom middle of Fig 12. Consistent
with our theory, the network becomes more tightly balanced over the course of training. We leave an analytical
description of the training dynamics for future work.

20

0 20000
epochs

10 2

10 1

te
st

 e
rro

r

0 2 4
Time ()

0.5

1.0

1.5

target output
actual output

0 2 4
Time ()

4

2

0

ex
am

pl
e

h

10 0
real(i)

0.2

0.0

0.2

im
ag

(
i)

initial
trained

0 20000
epochs

15

10

5

0

m
in

(re
al

(
i))

0 50

0

25

50

75

2

1

0

1

2

0 2
Epochs 1e4

0

5

10

15
m

ea
n

we
ig

ht

win

wout

0 2
Epochs 1e4

0

50

100

b
Figure 9: RNNs with sigmoid nonlinearity trained on tracking time-varying input become
more tightly balanced throughout training. Top left) Analogous to Fig.3, RNNs are trained to
approximate a time-varying external input I(t) by linear readout Î(t) = 1/N

∑
i w

out
i φ(hi), by

minimizing the mean squared loss l =
∫
|Î(t)− I(t)|2 dt. Test loss drops throughout training. Top

middle left) Target output I(t) (black dashed) and actual linear readout Î(t) are plotted after training.
Top middle right) The eigenvalue spectrum of the dynamics linearized at the fixed point before and
after training. Top right) Typical activity hi(t) of five example neurons after training. Note that
individual neurons have strong slow fluctuations despite reliable network response. Bottom left) The
training dynamics of the minimum over the real parts of the eigenvalues indicates that during training,
an eigenmode with a strongly negative real part emerges. Bottom middle left) Example network after
training on independent OU-processes. After training, the network has an overall strongly negative
recurrent weight matrix, despite being initialized with weights drawn from a Gaussian with a mean
−bJ0/N = −0.01. Bottom middle right) Mean external input weights 1

N

∑
i w

in
i are increasing

strongly during training (green line), consistent with theory, while output weights 1
N

∑
i w

out
i are

only moderately increasing (dashed blue line). Bottom right) Consistent with theory, the network
becomes more tightly balanced as the increasing empirical balance b shows. Model parameters at
initialization: N = 100, g =

√
2, ∆t = 0.05τ , tsim = 5τ, b = 1, I0 = J0 = 1, τS = 0.1, σ = 1,

epochs= 30000.

21

0 10000 20000 30000
epochs

10 3

10 2

10 1

100
te

st
 e

rro
r

0 2 4
t ()

0.50

0.75

1.00

1.25

1.50

target output
actual output

0 2 4
t ()

2

0

2

ex
am

pl
e

h

10 0
real(i)

2

1

0

1

2

im
ag

(
i)

initial
trained

0 10000 20000 30000
epochs

15

10

5
m

in
(re

al
(

i))

0 50

0

25

50

75

0.50

0.25

0.00

0.25

0.50

Figure 10: Linear RNN trained on tracking time-varying input become more tightly balanced
throughout training. Everything same as Fig 9 but linear activation φ(x) = x.

0 10000 20000 30000
epochs

10 2

10 1

te
st

 e
rro

r

0 2 4
Time ()

0.50

0.75

1.00

1.25

1.50

1.75

target output
actual output

0 2 4
Time ()

2

0

2

4

ex
am

pl
e

h

10 5 0
real(i)

2

1

0

1

2

im
ag

(
i)

initial
trained

0 10000 20000 30000
epochs

20

15

10

5

0

m
in

(re
al

(
i))

0 50

0

25

50

75

0.4

0.2

0.0

0.2

0.4

Figure 11: RNNs with threshold quadratic nonlinearity trained on tracking time-varying input
become more tightly balanced throughout training. Everything same as Fig 9 but threshold
quadratic activation φ(x) = max(x, 0)2.

22

0 1 2
Epoch 1e4

10 2

10 1

100

te
st

 e
rro

r

0 1 2
Time ()

2

0

2

input
targets
output

0 1 2
Time ()

0

1

2

ex
am

pl
e

h

5 0
real(i)

0.5

0.0

0.5

im
ag

(
i)

initial
trained

0 1 2
Epoch 1e4

5

0

re
al

(
i)

1
2
3
4

0 50
0

25
50
75

0.5

0.0

0.5

Figure 12: RNNs trained on performing linear transformation on time-varying input become
more tightly balanced throughout training. Top left) Analogous to Fig.4B-D, RNNs are trained
to perform a linear transformation yi(t) =

∑
j AijIj(t) on a set of multi-dimensional time-varying

external input Ii(t), by minimizing the mean squared loss l =
∑
i

∫
|ŷi −

∑
j AijIj |2 dt, where ŷi

is again a linear readout approximating yi. Test loss drops throughout training. Top middle) Target
output y(t) (black dashed) and actual linear readout ŷ(t) are plotted after training. Top right) The
eigenvalue spectrum of the recurrent weights before and after training. After training, three negative
outlier eigenvalues emerged. Bottom left) Training dynamics of the four most negative outlier
eigenvalues. In this case (rank of Aij is 3), there are three outlier eigenvalues forming over time
(c.f. [58]). Bottom middle) Typical activity hi(t) of five example neurons after training. Bottom
right) Example recurrent weights after training on linear transformation of three OU-processes.
After training, the network developed three strongly inhibitory subnetworks. Model parameters at
initialization: N = 100, g = 0.1, ∆t = 0.05τ , tsim = 5τ, b = 1, I0 = J0 = 1, τS = 0.1, σ = 1,
epochs= 30000.

23

	Introduction
	Population coding in recurrent networks
	Frequency-dependent signal encoding in the population response
	Mutual information rate between time-varying stimulus and population response
	Frequency-resolved mutual information rate analysis
	Training networks on auto-encoding results in tight balance
	Training on multiple inputs results in tightly balanced subnetworks
	Training on nontrivial computation results in tightly balanced network
	Limitations
	Discussion
	Non-stationary dynamic mean-field theory with both independent and common input
	Heuristic finite-size fluctuations
	Details on numerical and analytical spectral analysis
	Details on analytical approximation of mutual information rate
	Details on training setup and additional numerical training experiments
	Details on training networks to track multiple time-varying signals
	Mixed excitatory-inhibitory circuits
	Training networks with other nonlinearities
	Training on linear transformation on multiple input streams results in tightly balanced subnetworks

