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A discretization of the domain D, which is used to train the model.

A discretization of the domain D, which is used to evaluate the model.
Coordinate of spatial point in D.

Number of spatial points of seen meshes for training, as | X | = n.
Number of spatial points of unseen meshes for inference, as | X’| = n’,.
Number of input timestamps as number of input time-dependent PDE’s
initial states.

Number of output timestamps as number of output time-dependent
PDE’s future states.

Input function, where a € A(D;R% ) means for € D, a(zx) € Ré.
In time-dependent PDEs, a = u(-, T'), where T = {t;}"*,.

Target function for approximation, where u € U(D; R%) means for
x € D, u(x) € R,

Representation function, where v € U(D;R%) means for x € D,
v(z) € R%, which is a function obtained by a lifter which project a
into a higher dimensional space.

Approximation opeartor, where Gy (a) ~ u.

The probability measure for sampling Spatial points &, which sup-
ported on D.

Cost functional as the minimum optimization target.

Discrete Fourier transform for equispaced spatial points.

Discrete Inverse Fourier transform for equispaced spatial points.
Project operator, with P(a)(z) € R9.

Project operator, with Q(v)(z) € R%-.

t-th iterative representation function after kernel operators’ update.
Kernel integral operator mapping, which maps a to a bounded linear
opeartor, with parameter ¢.

Linear transform on the d,, dimension (chennel) of v(x) € d,.
Fourier transform of a periodic kernel function, which is learnable
parameters in a single iterative process in FNO.

Channel-mixing operator as a linear transform in the dimensoion of
channel (d,).

Token-mixing operator as a linear transform in the dimensoion of
spatial points (ny).

Proposed non-equispaced Fourier transform, where F = (F o H(a)).
Spatial points’ number on resampled equi-spaced points.
Interpolation opeartor to interpolate the non-equispaced spatial points
on equispaced spatial grids.

Parameter in Gaussian interpolation kernels controlling smoothness of
the kernel.

Parameter in Gaussian interpolation kernels, as the mean of Gaussian
kernels

Interpolation opeartor mapping, where H,(a) is a interpolation
opeartor used to map signals on the non-equispaced spatial points
to equispaced spatial grids.

Interpolation opeartor mapping, wher_e HIC (a) is. a inFerpolation
opeartor used to map signals on the equispaced spatial points to non-
equispaced spatial grids.

Neighborhood of spatial point .

Table Al: Glossary of Notations used in this paper.
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A.2 GRAPH CONSTRUCTION

Neighborhood construction. Instead of using K-nearest neighborhood method, the neighborhood
system in the interpolation layer is constructed by e-ball, because in equispace scenarios, there will
be multiple points as K-th nearest neighbor at the same time. For point «, its neighbor is defined
according to

{ dz,z;) <e x; € N(z); (11)
d(x, ;) > € x; ¢ N(x).

For given c defined in Sec.[3.2] we can restict € so that E,, [NV (z)|] < clog(ns).

A.3 PROOF OF THEOREM 3.1.

Our proof is mostly based on|Chen & Chen!(1995)) and [Kovachki et al.[(2021). For notation simplicity,
in the proof, we directly write H,(a) as 7, as the linear operator.
Lemma Al. Let X be a Banach space, and U C X a compact set, and K C X a dense set.

Then, for any € > 0, there exists a number n € N, and a series of continuous, linear functionals
G1,Ga,...,G, € C(U;R), and elements 1, ..., o, € K, such that

SupHv—ZG (W)pjlle <€ (12)

u€eU

The proof is given in Lemma 7. in|Kovachki et al.[(2021)), and Theorem 3. and 4. for reference .

Theorem A2. Let D C R? be compact domain. Let U be a separable Banach space of real-valued
Sunctions on D, such that C(D,R) C U is dense. Suppose U = LP(D;R) for any 1 < p < oo.
v is a probability measure supported on U and assume that, E,,||v|yy < oo foranyv € U. u
is a probabilistic measure supported on D, which defines the inner porduct of Hilbert space U as
< f.9 >u= [p f(x)g(x)du(x). Then, there exists a neural network h, : R* x RY — R whose
activation functions are of the Tauber-Wiener class, such that

[lo = H(v)[lu <e,
where H(v = [phy (y)du(y).

Proof. Since U is a Polish sreipace, we can find a compact set K, such that v(U/ \ K) < e. Therefore,
Lemma [AT] can be applied, to find a number n € N, a series of continuous linear functionals
G; € C(U;R) and functions ¢; € C(D;R) such that

bupHv—ZG Yoillu <e
velkl

Denote H,(v) = > =1 Gj(v)pj, and let 1 < g < oo be the Holder conjugate of p. Since

u=1=r (D R), by Relsz Representatlon Theorem, there exists functions g; € L9(D;R), such
that G, ( fD du(zx) forj =1,...,nand v € LP(D;R). By density of C(D;R) in
LY(D; ]R) we can ﬁnd functlons Wi, ..,y € C(D; R), such that

sup  ||v; — gjllLa(pir) < €/n.
je{l

Then, we define #,, : L?(D;R) — C(D;R) by

For the universal approximation (density) (Hornik et al.,|1989) of neural network, we can find a Multi-
layer Feedforward network h,, : R? x RY — R whose activation functions are of the Tauber-Wiener
class, such that

n
sup |hy(x,y) <e
my€D| z:: |
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Let Hy(z) = [, h (y)du(y). Then, there exists a constant C; > 0, such that

II”Hn(v) - (U)HLP(D;R) < C1(|[Ha(v) = Ha(0)llo (pir) + [Hn(v) = H(0)l|Lo(Diw))
For the first term, there is a constant Cy > 0, such that

70 (v) - <>|\LPDR><022||/ — 5 ()W) ;| o oz

< CzZHU Nzeo)|lgi(Y) — i (W)l La(pmr) |95l e (D:R)

< C3€||’U( ML (Dir)
for some C's > 0. And for the second term,

1#n(v) = H()l| Lo (D) = H/Dv(y)(zwj(y)@j(-) = () dp(Y) || Lo (D)

< [Dlel[v[Lr(pm)
Therefore, there is a constant C' > 0, such that

/u |[F(0) = F(0) e (0) < €CEopn 0]l

Because of the assumption that E,.., ||v||y < 0o, and € is arbitary, then

[0 = H@W)ll < |l = Ha ()l + [[Hn(v) = H©)]|uay
the proof is complete. O

Corollary A3. Define H,( fD —y,x,a(y))v(y)du(y), the interpolation operator can
also approximate v to any preczszon €.

Proof. We use a one-layer neural network h, : D x D — R as an example, which is defined as
ho (@, y, a(y) = o (XL we 2@ 4wy 5@ + b). We can rewrite it as

d
:U(Zw%i(x(i) _y(i)) + (wy,; + We i)Y () +Zw ja(J) ) +b),

where wg ; = 0. O

Corollary A4. The Theorem[A2|and Corollary[A3|can be extended for v : D — R%, where d,, > 1.

Proof. Asv = (v v@) . 9(d) for each v%), a single neural network can be used for approxi-
mation. Moreover, in implementation, we make h,, fully-connected, to improve the expressivity. [

Remark. As > x v(®i)hy,(x — i, T, a(x;)) is the unbiased estimation of By, (hy (2, y)v(y)),
we use the Equatlon (8) for the approximation.

B EXPERIMENTS

B.1 BENCHMARK METHOD DESCRIPTION

Vision Mixers. We provide a framework for vision mixers as PDE solvers, including VIT, MLP-
MIXER, FNET, GFN, FNO, PFNO and our NFS. The intermediate architecture of mixing layers
is shown in Fig. The code of our framework will be released soon. And the resampling and
back-sampling methods are stacked before ‘Equispaced Input’ and ‘Equispaced Output’. In this way,
the description of the Vision Mixers included in our framework can be decribed by different modules,
as shown in Table. E} All the trials on Vision Mixers set embedding size as 32, batch size as 4, layer
number of the intermediate equispaced mixing layers as 2. In FNO and PFNO, the truncated K, ax
is set as 16. The patch size of Vision Mixers with patchwise embedding are set as [4, 2] in 1-d PDEs
and [4, 4, 2] in 2-d PDEs. The interpolation layers in NFS are composed of one layer of feed-forward
network whose perceptron unit is equal to 4x embedding size of the model.
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Figure B1: The architecture of Vision Mixers.

Table B 1: Description of Vison Mixers in the unifying framework module by module.

Modules VIT MLPMIXER FNET GFN FNO PFNO NFS
Resamplin Patchwise Patchwise Patchwise Patchwise Identit Patchwise Interpolation
sampiing Embedding Embedding  Embedding Embedding y Embedding P
Tgk_c n ‘ Attention MLP Fourier Fourier Fourier Fourier Fourier
Mixing
Channel . . Elementwise Low Frequency Low Frequency Low Frequency
Mixing ‘ Linear Linear Linear Product MatMultiply MatMultiply MatMultiply
Token . . Inverse Inverse Inverse Inverse
Demixing ‘ Identity Identity Identity Fourier Fourier Fourier Fourier
Channel . . . . . .
Mixing ‘ Identity Identity Identity Linear Identity Identity Identity
Normalization | LayerNorm  LayerNorm Complex LayerNorm Identity LayerNorm LayerNorm
LayerNorm
Residual ‘ Identity Identity Identity Identity 1x1 Conv 1x1 Conv 1x1 Conv
Activation Gelu Gelu Complex Gelu Gelu Gelu Gelu
Gelu
Back Linear+ Linear+ Linear+ Linear+ Identit Linear+ Interpolation
Sampling Rearrange Rearrange Rearrange Rearrange y Rearrange P

Graph Spatio-Temporal Models. The evaluated graph spatio-temporal neural networks are based
on recurrent neural network for dynamics modeling, where the spatial dependency is modeled by
graph neural networks. The spatial and temporal modules for AGCRN, DCRNN and GCGRU are
shown in Table.[B2] MPPDE used different architecture, with the pushforward trick used for taining,
with rolling equaling 1 and time window equaling to 10 . All the trials on these graph spatio-tempral
models set embedding size as 64, except MPPDE as 128. Batch size is set as 4. When the graph
convolution needs multi-hop message-passing, we set the hop as 2. For MPPDE, the layer number of
GNNs is 6. The embedding dimension in AGCRN is set as 2.

Table B2: Description of different graph spatio-temporal models

Methods Spatial module Temporal module
GCGRU |Seo et al.|(2016) Cheb Conv |Defferrard et al.|(2017) GRU
DCRNN L1 et al.|(2018) Diff Conv|Atwood & Towsley|(2016) GRU
AGCRN Bai et al.|(2020)  Node Similarity |Bai et al.|(2020) GRU

B.2 DATA GENERATION
Burgers’ Equation. The initial condition ug(z) is generated according to ug ~ N (0.625(—A +
251)~2) with periodic boundary conditions. v is set as 0.01. = € [0,1] and ¢ € [0, 1]. The spatial

resolution is 1024, and time resolution is 200. The dataset generation follows FNO’s protocol, which
can be downloaded from its source code on official Github.

KdV Equation. The equation is written as

Opu(z,t) 4+ 30,u (2, t) + O2u(x,t) = 0, (13)

17



Under review as a conference paper at ICLR 2023

where z € [0, 1]. The initial condition ug(z) is calculated as

K
u(x,0) = Z 0.5¢; cos(0.5v/¢; + bjx — a;)
i=1

where ¢; ~ N(0,0;), and a;,b; > 0. The spatial resolution is 1024. The dataset is generated by
scipy package, with fftpack.diff used as pesudo-differential method and odeint used as
forward Euler method.

Darcy Flow. The equation is written as
—V(a(z)Vu(z)) = f(z) x € (0,1)

14
u(x) =0 x € 9[0,1)? (1

The original resolution is 256 x 256. a(x) is generated by Gaussian random field, and we directly
establish the operator to learn the mapping of a to u.

NS Equation. Our generation of NS Equation is based on FNO’s Appendix. A.3.3, with the forcing
is kept fixed. The original spatial resolution is 128 x 128, and time resolution is 200.

B.3 COMPLETE RESULTS ON MODEL COMPARISON

Here we give complete results on the four Equations. Table.[B3]give the performance comparison on
Darcy flow of both equispaced and non-equispaced scenarios. Table.|B4|and |B5|gives performance
comparison in equispaced scenarios on the other three time-dependent problems. Table. [B6]and
[B7] gives performance comparison in non-equispaced scenarios on the other three time-dependent
problems. In all the tasks except Darcy Flow, the depth of layer is set as 2, and k5 = 16 in both
NFS and FNO. However, we find in Darcy Flow, kyax should be set much larger, or the loss will
not decrease. In the reported results, kyax = 32,64,128 in Darcy Flow.

Table B3: Performance comparison on Darcy Flow.
MAE (x1073) RMSE(x107%) MAE(x107%) RMSE(x107%) MAE(x1073) RMSE(x107%)

Darcy Flow Darcy Flow Darcy Flow
(r = 64) (r =128) (r = 256)

VIT 0.50730.0411 0.8468+0.0432 0.9865:0.0002 1.6195+0.0007 1.1078x0.0021 1.8444+0.0023
MLPMIXER 0.4970+0.0021 0.8228+0.0034 0.8909:0.0099 1.4221+0.0118 0.9125=0.0024 1.6459+0.0032
GFN 0.4739+0.0016 0.8345+0.0019 0.8659:0.0046 1.4237+0.0071 0.9618+0.0124 1.6139+0.0128
FNO 0.4289+0.0051 0.7740+0.0046 0.7086+0.0045 0.1324+0.0019 0.9075x0.0051 1.4940+0.0046
NFES 0.1497+0.0005 0.1962+0.0007  0.2254:0.0007 0.7245:00009  0.4216:0.0033 0.8578:0.0041

Darcy Flow Darcy Flow Darcy Flow

(ns = 1024) (ns = 4096) (ns = 16384)
DCRNN 1.8146x0.0060 2.6352+0.0029 1.7629+0.0003 2.5760+0.0001 OoOM OoOM
AGCRN 1.6938:0.0001 2.4440+0.0001 1.7336+0.0001 2.4167+0.0001 OOM OOM
GCGRU 1.7633+0.0001 2.5696+0.0001 1.7403:0.0001 2.5363+0.0001 OOM OOM
MPPDE 0.6673+0.0009 0.9290+0.0012 0.5608+0.0053 0.8424+0.0051 0.63840.0005 0.8748+0.0005
NFES 0.1727+0.0047 0.2311+0.0066  0.1430:0.0007 0.1914+00014  0.2379:0.0007 0.3489:0.0009

NFS fails to model the non-equispaced Burgers’ Equation when n; is set as 1, in which the perfor-
mance is far from it can achieve in equispaced scenarios. Such problem will be our future work.
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Table B4: Performance comparison with Vision Mixer benchmarks on different equations (n; = 1).
Validation loss on Burgers’ (n; = 1) of VIT, GFN, and FNO does not converge. The results show
that the early-stopping occurs in the begining of training.

MAE (x1073) RMSE(x107%) MAE(x107%) RMSE(x107%) MAE(x10~3) RMSE(x103)

.. . Burgers’ Burgers’ Burgers’
Vision Mixers (r = 512, 1, = 10) (r = 512, 1, = 40) (r = 1024, 0}, = 20)
VIT 201.6539:0.5284  231.9138:0.8403  183.6696+03015  210.6237:0.6767  195.5858+0.7706  224.4712+1.2472
MLPMIXER 201.6547+00671  231.916320.0263  183.6535:00599  210.6160+0.0305 195.5960:0.0240  224.4791+0.0132
GFN 201.6557+09513  231.9122+09535 183.6674:04803  210.6165+0.4831  195.591810.0471  224.47360.0681
FNO 201.6527+1.1415  231.9119+1.6747  183.6696:03015  210.6299+0.4983  195.5902:0.9304  224.4723+0.9230
NFS 0.1806=0.0005 0.2669=0.0010 0.3570-0.0008 0.5340-0.0009 0.4344-0.0014 0.6092-0.0017
Kdv Kdv Kdv

(r =512,n, = 10) (r =512,n, = 40) (r = 1024, nj = 20)
VIT 0.2808=0.0006 0.3938+0.0009 0.3428+0.0012 0.6832=0.0016 0.3066=0.0003 0.5461=0.0003
MLPMIXER 0.2732+0.0054 0.4259=0.0088 0.3336:0.0045 0.5923-0.0081 0.28720.0005 0.5235=0.0006
GFN 0.2587+0.0032 0.3490+0.0056 0.3086+0.0223 0.59520.0338 0.2011=0.0074 0.34640.0063
FNO 0.2619=0.0069 0.3849+0.0107 0.5608+0.0053 0.8424-0.0051 0.3925=0.0079 0.4623+0.0087
NFS 0.2514-0.0008 0.3776+0.00011 0.4522+0.0013 0.6290-0.0022 0.2254-0.0007 0.0745=0.0010

NS NS NS

(r = 64,n; = 10) (r = 64,n; = 40) (r =128, n; = 20)
VIT 9.3797=x0.0421 12.9291+0.0703 22.8565+0.0935 29.1130=0.1428 15.7398+0.0757 20.6927:+0.0664
MLPMIXER 7.524620.0080 10.4762+0.0096 15.8632+0.0375 20.1522:+0.0604 14.93600.0305 19.32680.0635
GFN 3.5524+0.0057 4.7071+0.0088 10.22500.0331 13.0451+0.0704 6.3976+0.00345 8.2685+0.297
FNO 3.3425+0.0007 5.2566+0.0008 8.9857+0.0010 14.0171+0.0023 4.4627+0.0004 6.3047+0.0004
NFS 1.7425+0.0017 2.2847+0.0022 4.7882+0.0066 6.1508-0.0042 2.6988-0.0005 3.5121=0.0006

Table B5: Performance comparison with Vision Mixer benchmarks on different equations (n; = 10).
MAE (x107%) RMSE(x1073) MAE(x107%) RMSE(x107%) MAE(x107%) RMSE(x107%)

- . Burgers’ Burgers’ Burgers’
Vision Mixers (r = 512,n] = 10) (r = 512,n] = 40) (r = 1024, = 20)
VIT 0.5042+0.0114 0.7667+0.0225 2.4269+0.0288 3.7728+0.0431 1.5327+0.0314 2.4093+0.0408
MLPMIXER 0.1973+0.0070 0.2600:0.0097 0.42100.0084 0.5844+0.0101 0.3303+0.0077 0.4473+0.0086
GFN 0.2383+0.0082 0.3066+0.0114 0.4187+0.0079 0.5407:+0.0090 0.3500:0.0062 0.4489+0.0081
FNO 0.0978+0.0019 0.1287:0.0023 0.1815x0.0009 0.2410+0.0011 0.1430:0.0009 0.1871=0.0010
NFS 0.0958:0.0015 0.1347:0.0022  0.1708:0.0006 0.2351:+0.0009 0.1474+0.0026 0.19570.0034
Kdv Kdv Kdv

(r =512,n} = 10) (r = 512,n} = 40) (r = 1024, n} = 20)
VIT 0.2066+0.0027 0.3525+0.0049 0.2376+0.0022 0.5521+0.0036 0.1897+0.0003 0.3725+0.0009
MLPMIXER 0.2152+0.0023 0.3686:0.0039  0.2497+0.0017 0.5400:0.0029 0.2062:+0.0007 0.4429+0.0012
GFN 0.15300.0004 0.2607+0.0006 0.26910.0007 0.5451+0.0014 0.1984+0.0002 0.3869+0.0003
FNO 0.3230:0.0035 1.1105=0.0061 0.9605:0.0024 2.7500:0.0055 0.5929:0.0020 1.6473+0.0033
NFS 0.0678:0.0002 0.1214:0.0003 0.27090.0009 0.5122:00013  0.1576+0.0003 0.3114:0.0005

NS NS NS

(r = 64,n; = 10) (r = 64,n; = 40) (r =128, n} = 20)
VIT 3.9609:0.0101 6.0575+0.0250  12.343310.0342 16.5238+0.0415 9.3010+0.0234 14.0027+0.0380
MLPMIXER 3.1530:0.0049 4.4339+0.0067 7.9291:+0.0038 10.4149+0.0066 7.7410+0.0037 10.1934+0.0082
GFN 1.7396+0.0016 2.3551+0.0028 5.4464+0.0023 7.2130+0.0032 3.1261+0.0026 4.1691x0.0047
FNO 2.4076+0.0017 3.2861+0.0024 7.6979+0.0035 10.6401+0.0056 3.7001+0.0034 5.0047+0.0072
NFS 0.8636:0.0008 1.2264-0.0011 3.1122:0.0020 4.1950:0.0037 1.8406-0.0003 2.5620:0.0005

19



Under review as a conference paper at ICLR 2023

Table B6: Performance comparison with graph spatio-temporal benchmarks (n; = 1).

Graph Spatio- MAE (x107%) RMSE(x107%) MAE(x1073) RMSE(x1073) MAE(x1073) RMSE(x107%)
Temporal B , , ,
Models urgers Burgers Burgers

(ns = 512,n} = 10) (ns = 256, n; = 20) (ns = 512,n} = 40)
DCRNN 277.8393+00082  346.171620.0088 292.171210.0280 368.188320.0204 298.4096+0.0137  373.0938+0.0186
AGCRN 289.9780:0.0001  360.9834:0.0001 272.6697:03404  340.1351:0.5435 305.4976:02120  376.0804:0.2385
GCGRU 288.4507+0.0246  361.1175x0.0512  294.907520.0005  367.4703z0.0004 291.0365+0.0265  365.1668+0.0827
MPPDE 24.4997+0.0014 34.5123+0.0017 25.4357+0.0002 31.7015+0.0002 25.3311x0.0004 33.7808+0.0005
NFS 16.1860:00016  28.1504+0.0021 21.1634:00018 33.8976x00018 26.0818+0.0001  44.7962:0.0003

Kdv Kdv Kdv

(ns = 512,n; = 10) (ns = 256, n; = 20) (r =512, n}, = 40)
DCRNN 1.6855+0.0001 3.0875=0.0001 3.1267+0.0001 4.8662+0.0001 5.7387+0.0001 8.3752:0.0001
AGCRN 4.0753=0.0001 6.89430.0001 5.4107=0.0001 9.23330.0001 8.4438+0.0001 13.8677+0.0001
GCGRU 1.6554+0.0001 2.6839-0.0001 3.0677+0.0001 4.6557+0.0001 5.8745+0.0001 9.45280.0001
MPPDE 1.5452=0.0001 2.6774=0.0001 2.9929-0.0007 5.4582+0.0010 3.0101=0.0001 4.9946=0.0001
NFS 0.0816=0.0012 0.1512=0.0022 0.1576=0.0007 0.3114-0.0018 0.3210-0.0021 0.6873-0.0049

NS NS NS

(ns = 4096, n, = 10) (ns = 1024, n) = 20) (ns = 4096, n; = 40)
DCRNN 30.6756=0.0001 41.7815x0.0001 52.1290+0.0138 69.701920.0032 88.3382+0.0864  119.5021+0.0055
AGCRN OOM OOM  59.9393:0.0001 79.0434+0.0001 OOM OOM
GCGRU 28.8537+0.0019 40.1215x0.0008 49.9352+0.0028 67.5623+0.0014 85.9303+0.0731  117.9925x0.0172
MPPDE 8.9810+0.0014 12.1595+0.0022 20.7453+0.0008 32.1098=0.0018 54.2387+0.0006 90.0190:0.0007
NFS 2.1992-0.0021 2.8280=0.0033 3.9178=0.0054 5.0182:0.0080 4.7865+0.0042 6.1384-0.0069

Table B7: Performance comparison with graph spatio-temporal benchmarks (n; = 10).

Graph Spatio-

MAE (x107%) RMSE(x10~%)

MAE(x1073) RMSE(x107%)

MAE(x1073) RMSE(x107%)

Temporal B , , ,
Models urgers Burgers Burgers
(ns = 512,n, = 10) (ns = 256, n} = 20) (ns = 512, ny = 40)
DCRNN 2.6122+0.0014 3.8435+0.0019 4.6126+0.0015 6.8853+0.0033 8.5880+0.0020 12.7394+0.0037
AGCRN 4.6667+0.0001 6.2791:0.0001  10.4900+0.0009 13.98100.0022  15.6143+0.0002 21.0937=0.0001
GCGRU 1.6643+0.0002 2.5074+0.0003 3.1400=0.0010 4.8008+0.0019 5.7653+0.0021 8.9335+0.0028
MPPDE 1.1271+0.0004 1.8838+0.0007 2.4554+0.0003 4.4315+0.0006 4.1213+0.0006 6.1980=0.0009
NFS 0.1085+0.0016 0.1504:0.0021 0.1634:0.0018 0.2328:00018  0.1983:0.0001 0.2775:0.0003
Kdv Kdv Kdv
(ns = 512,n; = 10) (ns = 256, n; = 20) (r = 512, n; = 40)
DCRNN 2.3196+0.0001 4.1634+0.0001 3.4503+0.0005 5.7450+0.0003 4.9286+0.0010 8.3912+0.0008
AGCRN 3.9350:0.0001 6.1166x0.0001 5.6631+0.0001 8.1191=0.0001 8.2893+0.0002 11.5684+0.0003
GCGRU 1.6643+0.0001 2.5074+0.0001 3.4205:0.0001 5.6873+0.0001 2.5032+0.0002 5.4515+0.0003
MPPDE 1.4967+0.0003 2.6309:0.0002 2.9708+0.0027 5.3811+0.0050 2.4293+0.0006 4.9310+0.0005
NFS 0.0816:0.0012 0.1512+00022  0.1576:0.0007 0.3114:00018  0.3210:0.0021 0.6873:0.0049
NS NS NS
(ns = 4096, n} = 10) (ns = 1024, n} = 20) (ns = 4096, n} = 40)
DCRNN 8.7025=0.0003 12.5238+0.0002  27.1069+0.0024 39.12590.0031  59.6602+0.0177 88.2946+0.0146
AGCRN OOM OOM  42.4197=0.0006 60.53750.0008 OOM OOM
GCGRU 6.3570:0.0001 9.73060.0002  21.35370.0026 32.9674+0.0033  57.24930.0085 84.1847:0.0106
MPPDE 5.4353+0.0041 7.8838+0.0037  17.5902+0.0013 25.9372+0.0016  42.3057+0.0066 76.3374+0.0069
NFS 0.9335+0.0011 1.3254200012  1.8239:0.0012 2.5291:00008  3.27680.0026 4.3988:0.0009
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B.4 MORE VISUALIZATION

Here we provide more visualization results on the three equations. See Fig.[B2] Fig.[B3]and Fig.[B4]
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Figure B2: Visualization on equispaced Burgers’ equation.
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Figure B3: Visualization on equispaced KdV equation.
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Figure B4: Visualization on non-equispaced NS equation: The training mesh (ny = 4096 in upper-
left) is different from the meshes in inference process (n), = 8192 in upper-right, n/, = 12288 in
lower-left and n's = 16384 in lower-right).
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B.5 MESH-INVARIANT EVALUATION

Table B8: Mesh-invariant performance of NFS on Burgers’ and KdV equations (n; = 10).

MAE (x1079)

RMSE(x1073)

MAE(x1073)

RMSE(x1073)

Burgers’

(ns = 512,n; = 10, n} = 40)

Kdv

(ns =512, ny = 10, nj = 40)

X 0.1983=0.0001 0.277520.0002 0.3210=0.0021 0.6873=0.0049
), = 1.3n, 0.2371+0.0034 0.3143+0.0041 0.37690.0030 0.7805+0.0077
=1.Tn, 0.2898+0.0113 0.3742x0.0102 0.40840.0072 0.8419=0.0174
o =2.0n, 0.3052=0.0098 0.4180=0.0100 0.4111x0.0042 0.8471=0.0074

Table B9: Performance of NFS with its variants of NS equations (n; = 10) on unseen meshes.

MAE (x1073) RMSE(x1073) MAE(x107%) RMSE(x107%) MAE(x107%) RMSE(x10~?)
NS NS NS
Flex + LN (ns = 4096, ) = 10) (ns = 1024, 7, = 20) (ns = 4096, 1, = 40)

X 0.9335x0.0011 1.3254=0.0012 1.8239:0.0012 2.5291:0.0008 3.2768:0.0026 4.39880.0009
nl, = 2n; 0.9731:0.0034 1.5042+0.0057 2.3530:0.0051 3.3320=0.0074 3.5439z0.0085 4.7904:0.0168
nl, = 3ns 1.1071=0.0021 1.571620.0038 2.5179+0.0089 3.5477+0.0125 3.6584:0.0180 4.8858:0.0246
nl, = 4n, 1.1015:0.0000 1.5627:0.0000 2.5919:0.0064 3.6526:0.0071 3.6608:0.0000 4.9521:0.0000

MAE (x1073) RMSE(x1073) MAE(x107%) RMSE(x107%) MAE(x107%) RMSE(x10~?)
NS NS NS
Gaus +LN (ns = 4096, 7, = 10) (ns = 1024, 7, = 20) (ns = 4096, 1, = 40)

X 1.6341:0.0034 2199200042 2.1976 +0.0065 3.0219:0.0090 3.6422:0.0026 5.0097:0.0039
nl, = 2n, 2.8589:0.0062 4.0562:0.0126 3.7465:0.0041 5.1308:0.0097 3.9092=0.0041 5.24020.0075
nl, = 3ns 3.45130.0168 4.5199+0.0377 5.7712+0.0123 5.71370.0199 4.2102:0.0082 5.5057+0.0138
nl, = 4n, 3.4357:0.0000 4.7382:0.0000 5.5990:0.0066 5.5958:0.0049 4.2628:0.0000 5.7679:0.0000

MAE (x1073) RMSE(x1073) MAE(x107%) RMSE(x107%) MAE(x107%) RMSE(x10~?)
NS NS NS
Flex + LN (ns = 4096, 7, = 10) (ns = 1024, 1, = 20) (ny = 4096, 1, = 40)

X 1.2138:0.0030 1.7293:0.0047 2.5119:0.0036 3.4923:0.0058 4.20830.0037 5.6761:0.0092
nl, = 2n; 1.4882:0.0146 2.1681:0.0300 7.02030.0203 10.6096:0.0345 5.8975:0.0060 8.7704+0.0189
nl, = 3ns 1.6384=0.0088 2.4130=0.0169 7.9177:0.0059 11.9825z0.0118 6.6622:0.0063 9.5874+0.0131
nl, = 4n, 1.6975:0.0000 2.5008:0.0000 7.1962:0.0101 10.8860:0.0098 6.6951:0.0000 9.6334:0.0000

The mesh-invariant evaluation on Burgers’ and KDV Equations of NFS are given in Table. [BE]
In Table. [BS] when the spatial resolution is just 512, inference performance on unseen meshes
deteriorates. This result also validate our conclusion (2) in the third paragraph in Sec. 4]

Besides, we give a full evaluation on mesh-invairance of NFS in NS equation, with its variants as a
detailed results corresponding to Table. [BY]
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B.6 NEIGHBORHOOD SIZE’S EFFECTS

The effects of mean neighborhood size on the predictive performance on Burgers’ (ns, =
512,n, = 10,n} = 40) and KDV (n, = 512,n, = 10,n} = 40) are shown in Fig.[B3]
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(a) Burgers’ (ns = 512,n; = 40). (b) KAV (ns = 512, n; = 40).

Figure BS5: The change of MAE and RMSE of NFS with the increase of neighborhood size on
Burgers’ (ns = 512,n; = 10,n; = 40) and KAV (n, = 512,n; = 10,n} = 40). PFNO is the
baseline.

B.7 INTERPOLATION WITH OTHER VISION MIXERS

We conduct experiments on non-equispaced NS equations with the combination of our interpolation
layers and other Vision Mixers to figure out if they can achieve camparable performance.

Table B10: Performance of different Vision Mixers combined with the interpolation layers in non-
equispaced scenarios on NS equations (n; = 10).

MAE (x1073) RMSE(x107%) MAE(x107%) RMSE(x1073) MAE(x1073) RMSE(x1073)

VIT NS NS NS
(ns = 4096, n, = 10) (ns = 1024, nj, = 20) (ns = 4096, n} = 40)
X OOM OOM OOM OOM OOM OOM
MAE (x107%) RMSE(x1073) MAE(x107%) RMSE(x107%) MAE(x1073) RMSE(x1073)
NS NS NS
MLPMIXER (ns = 4096, 7, = 10) (ns = 1024, 0}, = 20) (ns = 4096, = 40)

X 6.1854=0.0012 8.1556+0.0018 9.4593=0.0028 12.131620.0022  10.1862+0.0045 13.1548x0.0051
nl, = 2n, 8.1573=x0.0126 11.2258x00147  12.0706x0.0132 14.9460z0.0159  10.6003z0.0127 13.6872x0.0238
nl = 3ns 8.1952+0.0088 11.384020.0171  14.9910+0.0094 17.8415+00110  10.5633+0.0140 13.6394+0.0147
nl, = dn, 8.77730.0000 11.3313x0.0000  14.9517x0.0125 17.7857+0.0199  10.5414+0.0000 13.610620.0000

MAE (x107%) RMSE(x1073) MAE(x107%) RMSE(x107%) MAE(x1073) RMSE(x1073)
GFN NS NS NS
(ns = 4096, n; = 10) (ns = 1024, nj = 20) (ns = 4096, nj = 40)

X 12.2373+0.0091 16.2902+0.0133  10.2768=0.0084 13.7852+0.0078  14.7765+0.0055 19.4872+0.0106

ni, = 2ng 13.775220.0164 18.3108x0.0181  17.721620.0225 24.1397x00371  15.908320.0235 21.0041x0.0256

’
ni = 3n, 13.7054+0.0122 18.2192x0.0184  17.8238x0.0112 24.2783+00196  15.898620.0156 20.9943z0.0158
= dn, 13.71400.0000 18.2271x00000  17.8207+0.0105 24.2833x00141  15.873620.0000 20.97720.0000
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B.8 COMPLEXITY COMPARISON

We here first give Table.[BT1]to show the complexity of time and memory of all the evaluated methods
on NS (r = 64,n; = 10, n}, = 40).

Table B11: comparison on complexity of the evaluated methods

Type Methods Time/Epoch Peak Memory Parameter Number
GCGRU 6'18"” 8660MB 74945

Graph Spatio-  DCRNN 9'38" 11120MB 148673
Temporal Model AGCRN OOM OOM OOM
MPPDE 10'54” 23333MB 622161

VIT 3'14” 32166MB 773217

MLPMIXER 112" 4421MB 79749953

Vision Mixer GFN 48" 3296MB 1361729
FNO 27" 3748MB 6299425

PFNO 43" 3380MB 9742145

NFS 2'02" 31938MB 37891937

Table B12: Detailed complexity of NFS

Interpolation on Resampled Points

Neighbor Searching  Kernel Calculation ~ Weighted Summation
3522MB 3102MB 6884MB

Interpolation back on Original Points

Neighbor Searching Kernel Calculation Weighted Summation
2506MB 2754MB 6884MB

It demonstrates that our method has comparable efficiency as Vision Mixers. For the graph spatial-
temporal models, they suffer from the recurrent network structure, and thus is extremely time-
consuming while the parameter number is small, limiting their flexibility.

Time. However, once we compare the used time in PFNO and NFS, we will find that the inter-
polation layers are considerably time-consuming. Another module that cost time complexity is the
normalization layer, as the original FNO does not include Layer-Norm in its architecture, but it is
stacked in PFNO. Theoretically, PFNO handles a down-sampled grids in a low resolution, because
of the patchwise embedding. However, it takes more time than FNO. Therefore, we conclude that
the time complexity brought from Layer-Norm is very significant, but it is affordable because of the
performance improvements.

Memory. Besides, the operation of searching for each spatial points’ neighborhood and calculating
weighted summation in Eq. (9) and Eq. (10) are very memory-consuming. We test it on the same
experiment, and give the memory usage of different models in forward process, as shown in Table.[B12]
The memory cost in backward process is 6902MB.
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