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Abstract

We study online meta-learning with bandit feedback, with the goal of improving1

performance across multiple tasks if they are similar according to some natural2

similarity measure. As the first to target the adversarial online-within-online3

partial-information setting, we design meta-algorithms that combine outer learners4

to simultaneously tune the initialization and other hyperparameters of an inner5

learner for two important cases: multi-armed bandits (MAB) and bandit linear6

optimization (BLO). For MAB, the meta-learners initialize and set hyperparameters7

of the Tsallis-entropy generalization of Exp3, with the task-averaged regret8

improving if the entropy of the optima-in-hindsight is small. For BLO, we learn9

to initialize and tune online mirror descent (OMD) with self-concordant barrier10

regularizers, showing that task-averaged regret varies directly with an action space-11

dependent measure they induce. Our guarantees rely on proving that unregularized12

follow-the-leader combined with two levels of low-dimensional hyperparameter13

tuning is enough to learn a sequence of affine functions of non-Lipschitz and14

sometimes non-convex Bregman divergences bounding the regret of OMD.15

1 Introduction16

Learning-to-learn [50] is an important area of research that studies how to improve the performance17

of a learning algorithm by meta-learning its parameters—e.g. initializations, step-sizes, and/or18

representations—across many similar tasks. The goal is to encode information from previous19

tasks in order to achieve better performance on future ones. Meta-learning has seen a great deal20

of experimental work [24, 48], practical impact [21, 29], and theoretical effort [11, 18, 22, 44, 20].21

One important setting is online-within-online meta-learning [19, 31], where the learner performs a22

sequence of tasks, each of which has a sequence of rounds. Past work has studied the full-information23

setting, where the loss for every arm is revealed after each round. This assumption is not realistic in24

many applications, e.g. recommender systems and experimental design, where often partial or bandit25

feedback—only the loss of the action taken—is revealed. Such feedback can be stochastic, e.g. the26

losses are i.i.d. from some distribution, or adversarial, i.e. chosen by an adversary. We establish27

the first formal guarantees for online-within-online meta-learning with adversarial bandit feedback.28

As with past full-information meta-learning results, our goal when faced with a sequence of bandit29

tasks will be to achieve low regret on average across them. Specifically, our task-averaged regret30

should (a) be no worse than that of algorithms for the single-task setting, e.g. if the tasks are not very31

similar, and should (b) be much better on tasks that are closely related, e.g. if the same small set of32

arms do well on all of them. We show that a natural way to achieve both is to initialize and tune online33

mirror descent (OMD), an algorithm associted with a strictly convex regularizer whose hyperparam-34

eters have a significant impact on performance. Our approach works because it can learn the best35

hyperparameters in hindsight across tasks, which will recover OMD’s worst-case optimal performance36

if the tasks are dissimilar but will take advantage of more optimistic settings if they are related. As37

generalized distances, the regularizers also induce interpretable measures of similarity between tasks.38

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



1.1 Main contributions39

We design a meta-algorithm (Algorithm 1) for learning variants of OMD—specifically those with40

entropic or self-concordant regularizers—that are used for adversarial bandits. This meta-algorithm41

combines three full-information algorithms—follow-the-leader (FTL), exponentially weighted online42

optimization (EWOO), and multiplicative weights (MW)—to set the initialization, step-size, and43

regularizer-specific parameters, respectively. It works by optimizing a sequence of functions that each44

upper-bound the regret of OMD on a single task (Theorem 2.1), resulting in (a) interesting notions45

of task-similarity because these functions depend on generalized notions of distances (Bregman46

divergences) and (b) adaptivity, i.e not needing to know how similar the tasks are beforehand.47

Our first application is to OMD with the Tsallis regularizer [3], a relative of Exp3 [6] that is optimal for48

adversarial MAB. We bound the task-averaged regret by the Tsallis entropy of the estimated optima-49

in-hindsight (Corollary 3.1), which we further extend to that of the true optima by assuming a gap50

between the best and second-best arms (Corollary 3.2). Both results are the first known consequences51

of the online learnability of Bregman divergences that are non-convex in their second arguments [31],52

while the latter is obtained by showing that the loss estimators of a modified algorithm identify the opti-53

mal arm w.h.p. As an example, our averagem-round regret across T tasks under the gap assumption is54

oT (poly(m)) + 2 min
β∈(0,1]

√
Hβdβm/β + o(

√
m) (1)

where d is the number of actions and Hβ is the Tsallis entropy [51, 3]of the distribution of the optimal55

actions (β = 1 recovers the Shannon entropy).1 This entropy is low if all tasks are solved by the same56

few arms, making it a natural task-similarity notion. For example, if s� d are always optimal then57

Hβ = O(s), so using β = 1/ log d in (1) yields an asymptotic task-averaged regret ofO(
√
sm log d),58

dropping fast terms. For s = Od(1) this beats the minimax optimal rate of Θ(
√
dm) [5]. On the other59

hand, since H1/2 = O(
√
d), the same bound recovers this rate in the worst-case of dissimilar tasks.60

Lastly, we adapt our meta-algorithm to the adversarial BLO problem by setting the regularizer61

to be a self-concordant barrier function, as in Abernethy et al. [2]. Our bounds yield notions of62

task-similarity that depend on the constraints of the action space, e.g. over the sphere the measure63

is the closeness of the average of the estimated optima to the sphere’s surface (Corollary 4.1). We64

also instantiate BLO on the bandit shortest-path problem (Corollary D.2) [49, 30].65

1.2 Related work66

While we are the first to consider meta-learning under adversarial bandit feedback, many have67

studied meta-learning in various stochastic bandit settings [9, 34, 46, 47, 35, 13, 15, 40, 10]. The68

latter three study stochastic bandits under various task-generation assumptions, e.g. Azizi et al. [10]69

is in a batch-within-online setting where the optimal arms are adversarial. In contrast, we make no70

distributional assumptions either within or without.71

A setting that bears some similarity to online-within-online bandits is that of switching bandits [6],72

and more generally online learning with dynamic comparators [4, 27, 38, 7, 53]. In such problems,73

instead of using a static best arm as the comparator we use a piecewise constant sequence of arms,74

with a limited number of arm switches. The key difference between such work and ours is our75

assumption that task-boundaries are known; this makes the other setting more general. However,76

while e.g. Exp3.S [6] can indeed be applied to online meta-learning, its guarantees are worse than77

if we just repeatedly apply a base-learner such as Exp3 on each task. Furthermore, these approaches78

usually quantify difficulty by the number of switches, whereas we focus on task-similarity.79

There has been a variety of work on full-information online-within-online meta-learning [32, 12],80

including tuning OMD [31, 19]. Doing so for bandit algorithms has many additional challenges,81

including (1) their inherent and high-variance stochasticity, (2) the use of non-Lipschitz and even82

unbounded regularizers, and (3) the lack of access to task-optima in order to adapt to deterministic,83

algorithm-independent task-similarity measures. Theoretically our analysis draws on the average84

regret-upper-bound analysis (ARUBA) framework [31], which observes that OMD can be tuned by85

targeting its upper bounds, which are affine functions of Bregman divergences, and provide online86

learning tools for doing so. Our core structural result shows that the distance generating functions ψθ87

of these Bregman divergences can be tuned without interfering with meta-learning the initialization88

1We use On(·) (and on(·)) to denote terms with constant and (sub-constant) dependence on n.
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and step-size; tuning θ is critical for adapting to settings such as that of a small set of optimal arms89

in MAB. Doing so depends on several refinements of the original approach, including bounding the90

task-averaged-regret via the spectral norm of∇2ψθ and expressing the loss of the meta-comparator91

using only ψθ, rather than via its Bregman divergence as in prior work. Finally, applying our structural92

result requires setting-specific analysis, e.g. to show regularity w.r.t. θ or to obtain MAB guarantees93

in terms of the entropy of the true optimal arms. The latter is especially difficult, as Khodak et al. [31]94

define task-similarity via full information upper bounds, and involves applying tools from the best-95

arm-identification literature [1] to show that a constrained variant of Exp3 finds the optimal arm w.h.p.96

2 Learning the regularizers of bandit algorithms97

We consider the problem of meta-learning over bandit tasks t = 1, . . . , T over some fixed setK ⊂ Rd,98

a (possibly improper) subset of which is the action spaceA. On each round i = 1, . . . ,m of task t we99

play action xt,i ∈ A and receive feedback `t,i(xt,i) for some function `t,i : A 7→ [−1, 1]. Note that100

all functions we consider will be linear and so we will also write `t,i(x) = 〈`t,i,x〉. Additionally, we101

assume the adversary is oblivious within-task, i.e. it chooses losses `t,1, . . . , `t,m at time t. We will102

also denote x(a) to be the a-th element of the vector x ∈ Rd,K◦ to be the interior ofK, ∂K its bound-103

ary, and4 to be the simplex on d elements. Finally, note that all proofs can be found in the Appendix.104

In online learning, the goal on a single task t is to play actions xt,1, . . .xt,m that minimize105

the regret
∑m
i=1 `t,i(xt,i) − `t,i(̊xt), where x̊t ∈ arg minx∈K

∑m
i=1 `t,i(x). Lifting this to the106

meta-learning setting, our goal as in past work [31, 19] will be to minimize the task-averaged107

regret: 1
T

∑T
t=1

∑m
i=1 `t,i(xi,t)− `t,i(̊xt). In particular, we want to use multi-task data to improve108

average performance as the number of tasks T →∞. For example, we wish to attain a task-averaged109

regret bound of the form oT (poly(m)) + Õ(V
√
m) + o(

√
m), where V ∈ R≥0 is a measure110

of task-similarity that is small if the tasks are similar but still yields the worst-case single-task111

performance—O(
√
dm) for MAB and O(d

√
m) for BLO—if they are not.112

2.1 Online mirror descent as a base-learner113

In meta-learning we are commonly interested in learning a within-task algorithm or base-learner,114

a parameterized method that we run on each task t. A popular approach is to learn the initialization115

and other parameters of a gradient-based method such as gradient descent [24, 43, 36]. If the task116

optima are close, the best initialization should perform well after only a few steps on a new task.117

We take a similar approach applied to online mirror descent, a generalization of gradient descent118

to non-Euclidean geometries [14]. Given a strictly convex regularizer ψ : K◦ 7→ R, step-size η > 0,119

and initialization xt,1 ∈ K◦, OMD has the iteration120

xt,i+1 = arg min
x∈K

B(x||xt,i) + η
∑
j≤i

〈∇`t,j(xt,j),x〉 (2)

where B(x||y) = ψ(x)−ψ(y)−〈∇ψ(y),x−y〉 is the Bregman divergence of ψ. OMD recovers121

online gradient descent when ψ(x) = 1
2‖x‖

2
2, in which case B(x||y) = 1

2‖x − y‖22; another122

example is exponentiated gradient, for which ψ(p) = 〈p, log p〉 is the negative Shannon entropy123

on probability vectors p ∈ 4 and B is the KL-divergence [45]. An important property of B is that124

the sum over functions B(xt||·) is minimized at the mean x̄ of the points x1, . . . ,xT .125

OMD on loss estimators ˆ̀
t,i constructed via partial feedback forms an important class of bandit126

methods [6, 2, 3]. Their regularizers ψ are often non-Lipschitz, e.g. the negative entropy, or even127

unbounded, e.g. the log-barrier. Thus full-information results for tuning OMD, e.g. by Khodak128

et al. [31] and Denevi et al. [19], do not suffice. We do adapt the former’s approach of online129

learning a sequence Ut(x, η, θ) of affine functions of Bregman divergences from initializations x130

to known points in K. We are interested in them because the regret of OMD w.r.t. a comparator131

y is bounded by B(y||x)/η +O(ηm) [45, 25]. In our case the comparator is based on the estimated132

optimum x̂t ∈ arg minx∈K〈ˆ̀t,x〉, where ˆ̀
t =

∑m
i=1

ˆ̀
t,i, resulting from running OMD on task133

t using initialization x ∈ K and hyperparameters η and θ, which we denote OMDη,θ(x). Unlike134

full-information meta-learning, we use a parameter ε > 0 to constrain this optimum to lie in a subset135

Kε ⊂ K◦. Formally, we fix a point x1 ∈ K◦ to be the “center”—e.g. x1 = 1d/d when K is the136

d-simplex4—and define the projection cε(x) = x1 + x−x1

1+ε mapping from K to Kε. For example,137

c ε
1−ε

(x) = (1 − ε)x + ε1d/d on the simplex. This projection allows us to handle regularizers ψ138
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Algorithm 1: Tunes OMDη,θ with regularizer ψθ : K◦ 7→ R and step-size η > 0, which when run
over loss estimators ˆ̀

t,1, . . . , ˆ̀
t,m, yielding task-optima x̂t = arg minx∈K

∑m
i=1〈ˆ̀t,i,x〉.

Input: compact set K ⊂ Rd, initialization x1 ∈ K, ordered subset Θk ⊂ R also used to index
interval bounds η, η ∈ Rk≥0 and hyperparameters α ∈ Rk≥0, scalar hyperparameters
ρ > 0 and λ ≥ 0, learners OMDη,θ : K 7→ Rd, projections cθ : K 7→ Kθ

for θ ∈ Θk do
w1(θ)← 1 and η1(θ)← η(θ)+η(θ)

2 // initialize MW and EWOO

for task t = 1, . . . , T do
sample θt from Θk w.p. ∝ exp(wt) // sample from MW distribution
x̂t ← OMDηt(θt),θt(cθt(xt)) // run bandit OMD within-task

xt+1 ← 1
t

∑t
s=1 x̂s // FTL update of initialization

for θ ∈ Θk do

ηt+1(θ)←
∫ η(θ)

η(θ)
v exp(−α(θ)

∑t
s=1 U

(ρ)
s (xs,v,θ))dv∫ η(θ)

η(θ)
exp
(
−α(θ)

∑t
s=1 U

(ρ)
s (xs,v,θ)

)
dv

// EWOO step-size update

wt+1(θ)← wt(θ)− λUt(xt, ηt(θ), θ) // MW update of tuning parameter

that diverge near the boundary, but also introduces ε-dependent error terms. In the BLO case it also139

forces us to tune ε itself, as initializing too close to the boundary leads to unbounded regret while140

initializing too far away does not take advantage of task-similarity. Thus the general upper bounds of141

interest are the following functions of the initialization x, the step-size η > 0, and a third parameter142

θ that is either β or ε, depending on the setting (MAB or BLO):143

Ut(x, η, θ) =
Bθ(cθ(x̂t)||x)

η
+ ηg(θ)m+ f(θ)m (3)

Here Bθ is the Bregman divergence of ψθ while g(θ) ≥ 1 and f(θ) ≥ 0 are tunable constants. We144

overload θ to be either β or ε for notational simplicity, as we will not tune them simultaneously; if θ =145

β (for MAB) then cθ(x) = x1 + x−x1

1+ε for fixed ε, while if θ = ε (for BLO) then Bθ is the Bregman146

divergence of a fixed ψ. The reason to optimize this sequence of upper bounds Ut is because they di-147

rectly bound the task-averaged regret while being no worse than the worst-case single-task regret. Fur-148

thermore, an average over Bregman divergences is minimized at the average ˆ̄x = 1
T

∑T
t=1 x̂t, where149

it attains the value V̂ 2
θ = 1

T

∑T
t=1 ψθ(cθ(x̂t))− ψθ(cθ(ˆ̄x)) (c.f. Claim A.1). We will show that this150

quantity leads to intuitive and interpretable notions of task-similarity in all the applications we study.151

2.2 A meta-algorithm for tuning bandit algorithms152

To learn these functions Ut(x, η, θ)—and thus to meta-learn OMDη,θ(x)—our meta-algorithm sets153

x to be the projection cθ of the mean of the estimated optima—i.e. follow-the-leader (FTL) over154

the Bregman divergences in (3)—while simultaneously setting η via EWOO and θ via discrete155

multiplicative weights (MW). We choose FTL, EWOO, and MW because each is well-suited to the156

way Ut depends on x, η, and θ, respectively. First, the only effect of x on Ut is via the Bregman157

divergence Bθ(cθ(x̂t)||x), over which FTL attains logarithmic regret [31]. For η, Ut is exp-concave158

on η > 0 so long as the first term is nonzero, but it is also non-Lipschitz; the EWOO algorithm is159

one of the few methods with logarithmic regret on exp-concave losses without a dependence on the160

Lipschitz constant [26], and we ensure the first term is nonzero by regularizing the upper bounds as161

follows for some ρ > 0 and D2
θ = maxx,y∈Kθ Bθ(x||y):162

U
(ρ)
t (x, η, θ) =

Bθ(cθ(x̂t)||x) + ρ2D2
θ

η
+ ηg(θ)m+ f(θ)m (4)

Note that this function is fully defined after obtaining x̂t by running OMD on task t, which allows us163

to use full-information MW to tune θ across the grid Θk. Showing low regret w.r.t. any θ ∈ Θ ⊃ Θk164

then just requires sufficiently large k and Lipschitzness of Ut w.r.t. θ. Combining all three algorithms165

together thus yields the guarantee in Theorem 2.1, which is our main structural result. It implies166

a generic approach for obtaining meta-learning algorithms by (1) bounding the task-averaged167
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regret by an average of functions of the form Ut, (2) applying the theorem to obtain a new bound168

oT (1) + minθ,η
V̂ 2
θ

η + ηg(θ)m + f(θ)m, and (3) bounding the estimated task-similarity V̂ 2
θ by an169

interpretable quantity. Crucially, since we can choose any η > 0, the asymptotic regret is always170

as good as the worst-case guarantee for running the base-learner separately on each task.171

Theorem 2.1 (c.f. Thm. A.1). Suppose x1 = arg minx∈K ψθ(x) ∀ θ and let D, M , F , and S be172

maxima over θ of Dθ, Dθ

√
g(θ)m, f(θ), and ‖∇2ψθ‖2, respectively. For each ρ ∈ (0, 1) we can set173

η, η, α, and λ s.t. the expected average of the losses Ut(cθt(xt), ηt(θt), θt) of Algorithm 1 is at most174

min
θ∈Θ,η>0

EV̂ 2
θ

η
+ηg(θ)m+f(θ)m+Õ

(
M
ρ +Fm
√
T

+
Lη
k

+
M

ρ2T
+min

{
ρ2D2

η
, ρM

}
+
S

ηT

)
(5)

Here V̂ 2
θ = 1

T

∑T
t=1 ψθ(cθ(x̂t)) − ψθ(cθ(ˆ̄x)) and Lη bounds the Lipschitz constant w.r.t. θ at175

V̂ 2
θ /η + ηg(θ)m+ f(θ)m. The same bound plus (M/ρ+ Fm)

√
1
T log 1

δ holds w.p. ≥ 1− δ.176

We keep details of the dependence on S and other constants as they are important in applying this177

result, but in most cases setting ρ = 1
4√
T

yields Õ(T
3
4 ) regret. While a slow rate, the losses Ut are178

non-Lipschitz and non-convex in-general, and learning them allows us to tune θ over user-specified179

intervals and η over all positive numbers, which will be crucial later. At the same time, this tuning180

is what leads to the slow rate, as without tuning (k = 1, Lη = 0) the same ρ yields Õ(
√
T ) regret.181

Lastly, while we focus on learning guarantees, we note that Algorithm 1 is reasonably efficient,182

requiring a 2k single-dimensional integrals per task; this is discussed in more detail in Section A.3.183

3 Multi-armed bandits184

We now turn to our first application: the multi-armed bandit problem, where at each round i of task185

t we take action at,i ∈ [d] and observe loss `t,i(at,i) ∈ [0, 1]. As we are sampling actions from186

distributions x ∈ K = 4 on the k-simplex, the inner product 〈`t,i,xt,i〉 is the expected loss and the187

optimal arm åt on task t can be encoded as a vector x̊t s.t. x̊t(a) = 1a=åt .188

We use as a base-learner a generalization of Exp3 that uses the negative Tsallis entropy189

ψβ(p) =
1−
∑d
a=1 pβ(a)

1−β for some β ∈ (0, 1] as the regularizer; this improves regret from Exp3’s190

O(
√
dm log d) to the optimal O(

√
dm) [3]. Note that −ψβ is the Shannon entropy in the limit191

β → 1 and its Bregman divergence Bβ(x||·) is non-convex in the second argument. As the192

Tsallis entropy is non-Lipschitz at the simplex boundary, which is where the estimated and193

true optima x̂t and x̊t lie, we will project them using c ε
1−ε

(x) = (1 − ε)x + ε1d/d to the set194

K ε
1−ε

= {x ∈ 4 : mina x(a) ≥ ε/d}. We denote the resulting vectors using the superscript (ε),195

e.g. x̂
(ε)
t = c ε

1−ε
(x̂t), and also use4(ε) = K ε

1−ε
to denote the constrained simplex. For MAB we196

also study two base-learners: (1) implicit exploration and (2) guaranteed exploration. The former197

uses low-variance loss under-estimators ˆ̀
t,i(a) =

`t,i(a)1at,i=a

xt,i(a)+γ for γ > 0, where xt,i(a) is the198

probability of sampling a on task t round i, to enable high probability bounds [42]. On the other hand,199

guaranteed exploration uses unbiased loss estimators (i.e. γ = 0) but constrains the action space200

to4(ε), which we will use to adapt to a task-similarity determined by the true optima-in-hindsight.201

3.1 Adapting to low estimated entropy with high probability using implicit exploration202

In our first setting, the base-learner runs OMDηt,βt(xt,1) on γ-regularized estimators with Tsallis203

regularizer ψβt , step-size ηt, and initialization xt,1 ∈ 4(ε). Standard OMD analysis combined with204

implicit exploration analysis [42] shows (43) that the task-averaged regret is bounded w.h.p. by205

(ε+ γd)m+ Õ

(√
d

γT

)
+

1

T

T∑
t=1

Bβt(x̂
(ε)
t ||xt,1)

ηt
+
ηtd

βtm

βt
(6)

The summands have the desired form of Ut(xt,1, ηt, βt), so we can apply Theorem 2.1 to bound206

their average by207

min
β∈[β,β],η>0

V̂ 2
β

η
+
ηdβm

β
+ Õ

(
Lη
k

+

(
d
ε

)2−β
ηT

+

(
ρ+

1

ρ
√
T

+
1

ρ2T

)
d
√
m

)
(7)
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where V̂ 2
β = 1

T

∑T
t=1 ψβ(x̂

(ε)
t ) − ψβ(ˆ̄x

(ε)
) is the average difference in Tsallis entropies between208

the (ε-constrained) estimated optima x̂t and their empirical distribution ˆ̄x = 1
T

∑T
t=1 x̂t, while Lη209

is the Lipschitz constant of
V̂ 2
β

η + ηdβm
β w.r.t. β ∈ [β, β]. The specific instantiation of Algorithm 1210

that (7) holds for is to do the following at each time t:211

1. sample βt via the MW distribution ∝ exp(wt) over the discretization Θk of [β, β] ⊂ [0, 1]

2. run OMDηt,βt using the initialization xt,1 = 1
t−1

∑
s<t

x̂
(ε)
t = ε

d1d + 1−ε
t−1

∑
s<t

x̂t (FTL)

3. update EWOO at each β ∈ Θk with loss
Bβ(x̂

(ε)
t ||xt,1)+ρ2D2

β

η + ηdβm
β , where D2

β = d1−β−1
1−β

4. update pt+1 using multiplicative weights with expert losses Bβ(x̂
(ε)
t ||xt,1)
η + ηdβm

β

(8)

The final guarantee for this procedure, given in full in Theorem B.1, follows by two properties of212

the Tsallis entropy −ψβ : (1) its Lipschitzness w.r.t. β ∈ [0, 1] (c.f. Lem B.1) and (2) the fact that213

V̂ 2
β is bounded by the entropy Ĥβ = −ψβ(ˆ̄x) of the empirical distribution of estimated optima (c.f.214

Lem B.2), which yields our first notion of task-similarity: multi-armed bandit tasks are similar if215

the empirical distribution of their (estimated) optimal arms has low entropy.216

We exemplify the implications of Theorem B.1 in Corollary 3.1, where we consider three regimes217

of the lower bound β on the entropy parameter: β = 1, i.e. always using Exp3; β = 1/2, which218

corresponds to the optimal worst-case setting [3]; and β = 1/ log d, below which the OMD219

regret-upper-bound always worsens (and so it does not make sense to try β < 1/ log d).220

Corollary 3.1 (c.f. Cors. B.1, B.2, and B.3). Suppose β = 1 and we set the initialization, step-size,221

and entropy parameter of Tsallis OMD with implicit exploration via Algorithm 1 as in Theorem B.1.222

1. If β = 1 and T ≥ d2

m we can ensure 1
T

T∑
t=1

m∑
i=1

`t,i(xt,i)−`t,i(̊xt) ≤ 2
√√
Ĥ1dm+Õ

(
d

2
3m

2
3

3√
T

)
w.h.p.223

2. If β = 1
2 and T ≥ d5/2

m we can set k = d 4
√
d
√√
T e and ensure w.h.p. that task-averaged regret is224

min
β∈[ 1

2 ,1]
2

√
Ĥβdβm/β + Õ

(
d5/7m5/7

T 2/7
+
d
√
m

4
√
T

)
(9)

3. If β = 1
log d and T ≥ d3

m we can set k = d 4
√
d
√√
T e and ensure w.h.p. that task-averaged regret is225

min
β∈(0,1]

2

√
Ĥβdβm/β + Õ

(
d3/4m3/4 + d

√
m

4
√
T

)
(10)

In all three settings, as T → ∞ the regret scales directly with the entropy of the estimated226

optima-in-hindsight, which is small if most tasks are estimated to be solved by one of a few arms227

and large if all arms are used roughly equally. Corollary 3.1 demonstrates the importance of tuning228

β: even if tasks are dissimilar, we asymptotically recover the worst-case optimal guarantee O(
√
dm)229

in cases two and three because the entropy is at most d
1−β

1−β . On the other hand, if a constant s� d230

actions are always minimizers, i.e. the empirical distribution ˆ̄x is s-sparse, then the last bound (10)231

implies that Algorithm 1 can achieve task-averaged regret oT (md) +O(
√
sm log d). At the same232

time, this tuning is costly, with the last two results having an extra Õ
(
d
√
m

4√
T

)
term because of it.233

Furthermore, the bound of β = 1
2 has a slightly better dependence on d, m, and T compared to that234

of β = 1
log d due to the

(
d
ε

)2−β
term in the bound (7) returned for MAB by our structural result.235

We can compare the s-sparse result to Azizi et al. [10], who achieve task-averaged regret236

Õ(m/ 3
√
T +
√
sm log T ) for stochastic MAB. Despite our adversarial setting and no stipulations on237

how tasks are related, our bounds are asymptotically comparable if the estimated and true optima are238

roughly equivalent (ignoring their O(
√

log T )-factor), as we also have Õ(
√
sm) average regret as239

T →∞. Their rate in the number of tasks is better, but at a cost of runtime exponential in s. Apart240

from generality, we believe a great strength of our results is their adaptiveness; unlike Azizi et al.241

[10], we do not need to know how many optimal arms there are to adapt to there being few of them.242
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3.2 Adapting to the entropy of the true optima-in-hindsight using guaranteed exploration243

While the entropy of estimated optima-in-hindsight may be useful in some cases where we wish to244

actually compute the task-similarity, it is otherwise generally more desirable to adapt to an intrinsic245

and algorithm-independent measure, e.g. the entropy of the true optima-in-hindsight. However, doing246

so is difficult without further assumptions, as the optima are both hard to identify and the measure247

itself may not be fully defined in case of ties. Thus in this section we focus on the setting where we248

have a nonzero performance gap ∆ > 0 between the best and second-best arms:249

Assumption 3.1. For some ∆ > 0 and all tasks t ∈ [T ], 1
m

∑m
i=1 `t,i(a)− `t,i(̊at) ≥ ∆ ∀ a 6= åt.250

This assumption is common in the best-arm identification literature [28, 1], which we adapt to show251

that the estimated optimal arms match the true optima, and thus so do their entropies. To do so, we252

switch to unbiased loss estimators, i.e. γ = 0, and control their variance by lower-bounding the253

probability of selecting an arm to be at least εd ; this can alternatively be expressed as running OMD254

using the regularizer ψβ + I4(ε) , where for any C ⊂ Rd the function IC(x) = 0 if x ∈ C and∞255

otherwise. Guaranteed exploration allows us extend the analysis of Abbasi-Yadkori et al. [1] to show256

that the estimated arm is optimal w.h.p.:257

Lemma 3.1 (c.f. Lem C.1). Suppose for ε > 0 and any β ∈ (0, 1] we run OMD on task t ∈ [T ] with258

regularizer ψβ + I4(ε) . If m = Ω̃( d
ε∆2 ) then x̂t = x̊t w.p. ≥ 1− d exp(−Ω(ε∆2m/d)).259

However, the constraint that the probabilities are at least εd does lead to εm additional error on each260

task, with the upper bound on the task-averaged expected regret becoming261

E
1

T

T∑
t=1

m∑
i=1

`t,i(at,i)− `t,i(̊at) ≤ εm+
1

T

T∑
t=1

EBβt(x̂
(ε)
t ||xt,1)

ηt
+
ηtd

βtm

βt
(11)

Moreover, we will no longer set ε = oT (1), as this would require m to be increasing in T for the best-262

arm identification result of Lemma C.1 to hold. Thus, unlike in the previous section, our results will263

contain “fast” terms—terms in the task-averaged regret that are o(
√
m) but not decreasing in T nor af-264

fected by the task-similarity. They still allow us to circumvent the Ω(
√
dm) MAB lower bound if tasks265

are similar, but the task-averaged regret will not converge to zero as T →∞ if the tasks are identical.266

Nevertheless, the tuning-dependent component of the upper bounds in (11) has the appropriate267

form for our structural result—in fact we can use the same meta-algorithm (8) as for implicit268

exploration—and so we can again apply Theorem 2.1 to get a bound on the task-averaged regret269

in terms of the average difference V̂ 2
β = 1

T

∑T
t=1 ψβ(x̂

(ε)
t ) − ψβ(ˆ̄x

(ε)
) of the entropies of the270

ε-constrained estimated task-optima x̂
(ε)
t and their mean ˆ̄x

(ε). The easiest way to apply Lemma C.1271

to bound V̂ 2
β in terms of Hβ = 1

T

∑T
t=1 ψβ (̊xt)− ψβ (̊x̄) is via union bound on all T tasks to show272

that x̂t = x̊t ∀ t w.p. ≥ 1− dT exp(−Ω(ε∆2m/d)); however, setting a constant failure probability273

leads to m growing, albeit only logarithmically, in T . Instead, by analyzing the worst-case best-arm274

identification probabilities, we show in Lemma C.2 that the expectation of V̂ 2
β is bounded by275

Hβ + 3β (d/ε)1−β−1
1−β exp

(
− 3ε∆2m

28d

)
without resorting to m = ωT (1). Assuming m ≥ 75d

ε∆2 log d
ε∆2276

is enough (68) to bound the second term by 56
dm . Then the final result (c.f. Thm. C.1) bounds the277

expected task-averaged regret as follows (ignoring terms that become oT (1) after setting ρ and k):278

εm+ min
β∈[β,β],η>0

hβ(∆)

η
+
ηdβm

β
for hβ(∆) =

{
Hβ + 56

md if m ≥ 75d
ε∆2 log d

ε∆2

d1−β−1
1−β otherwise

(12)

If the gap ∆ is known and sufficiently large, then we can set ε = Θ( d
∆2m ) to obtain an asymptotic279

task-averaged regret that scales only with the entropy Hβ and a fast term that is logarithmic in m:280

Corollary 3.2 (c.f. Cor. C.3). Suppose we set the initialization, step-size, and entropy parameter of281

Tsallis OMD with guaranteed exploration via Algorithm 1 as specified in Theorem C.1. If [β, β] =282

[ 1
log d , 1] and m ≥ 75d

∆2 log d
∆2 , then setting ε = Θ̃

(
d

∆2m

)
, ρ = 1

3√
d

6√
mT

, and k = d 3
√
d2mT e283

ensures that the expected task-averaged regret is at most284

min
β∈(0,1]

2
√
Hβdβm/β + Õ

(
d

∆2
+
d

4
3m

2
3

3
√
T

+
d

5
3m

5
6

T
2
3

+
d∆4m3

T

)
(13)
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Knowing the gap ∆ is a strong assumption, as ideally we could set εwithout it. Note that if ε = Ω( 1
mp )285

for some p ∈ (0, 1) then the condition m ≥ 75d
ε∆2 log d

ε∆2 only fails if m ≤ poly( 1
∆ ), i.e. for gap286

decreasing in m. We can use this together with the fact that minimizing over η and β in our bound287

allows us to replace them with any value, even a gap-dependent one, to derive a gap-independent288

setting of ε that ensures a task-similarity-adaptive bound when ∆ is not too small and falls back to289

the worst-case optimal guarantee otherwise. Specifically, for indicator ι∆ = 1m≥ 75d
ε∆2 log d

ε∆2
, setting290

η = Θ
(√

hβ(∆)
dβm/β

)
in (12) and using β = 1

2 if the condition ι∆ fails yields asymptotic regret at most291

εm+ min
β∈(0,1]

O

(
ι∆

√√
Hβd

βm
β + (1−ι∆)

√√
dm

)
≤ εm+Õ

(
min

{
min
β∈(0,1]

√√
Hβd

βm
β +

d

∆
√√
ε
,
√√
dm

})
(14)

Thus setting ε = Θ(
√
d/m

2
3 ) yields the desired dependence on the entropy Hβ and a fast term in m:292

Corollary 3.3 (c.f. Cor. C.4). In the setting of Corollary 3.2 but with m = Ω(d
3
4 ) and unknown ∆,293

using ε = Θ(
√
d/m

2
3 ) ensures expected task-averaged regret at most294

min

{
min
β∈(0,1]

2
√
Hβdβm/β + Õ

(
d

3
4 3
√
m

∆

)
, 8
√
dm

}
+ Õ

(
d

4
3m

2
3

3
√
T

+
d

5
3m

5
6

T
2
3

+
d2m

7
3

T

)
(15)

While not logarithmic, the gap-dependent term is still o(
√
m), and moreover the asymptotic regret is295

no worse than the worst-case optimal O(
√
dm). Note that the latter is only needed if ∆ = o(1/ 6

√
m).296

The main improvement in this section is in using the entropy of the true optima, which can be much297

smaller than that of the estimated optima if there are a few good arms but large noise. Our use of298

the gap assumption for this seems difficult to avoid for this notion of task-similarity. We can also299

compare to Corollary 3.1 (10), which did not require ∆ > 0 and had no fast terms but had a worse300

rate in T ; in contrast, the O( 1
3√
T

) rates above match that of the closest stochastic bandit result [10].301

As before, for s � d “good” arms we obtain O(
√
sm log d) asymptotic regret, assuming the gap302

is not too small. Finally, we can also compare to the classic shifting regret bound for Exp3.S [6],303

which translated to task-averaged regret is O(
√
dm log(dmT )). This is worse than even running304

OMD separately on each task, albeit under weaker assumptions (not knowing task boundaries). It305

also cannot take advantage of repeated optimal arms, e.g. the case of s� d good arms.306

4 Bandit linear optimization307

Our last application is bandit linear optimization, in which at task t round i we play xt,i ∈ K in308

some convex K ⊂ Rd and observe loss 〈`t,i,xt,i〉 ∈ [−1, 1]. We will again use a variant of mirror309

descent, using a self-concordant barrier for ψ and the specialized loss estimators of Abernethy310

et al. [2, Alg. 1]. More information on such regularizers can be found in the literature on interior311

point methods [41]. We pick this class of algorithms because of their optimal dependence on the312

number of rounds and their applicability to any convex domain K via specific barriers ψ, which will313

yield interesting notions of task-similarity. Our ability to handle non-smooth regularizers via the314

structural result (Thm. 2.1) is even more important here, as barriers are infinite at the boundaries.315

Indeed, we will not learn a β parameterizing the regularizer and instead focus on tuning a boundary316

offset ε > 0. Here we make use of notation from Section 2, where cε maps points in K to a subset317

Kε defined by the Minkowski function (c.f. Def. D.1) centered at x1 = arg minx∈K ψ(x).318

From Abernethy et al. [2] we have an upper bound on the expected task-averaged regret of their319

algorithm run from initializations xt,1 ∈ K◦ with step-sizes ηt > 0 and offsets εt > 0:320

E
1

T

T∑
t=1

m∑
i=1

〈`t,i,xt,i − x̊t〉 ≤
1

T

T∑
t=1

EB(cεt(x̂t)||xt,1)

ηt
+ (32ηtd

2 + εt)m (16)

We can show (86) that D2
ε = maxx,y∈Kε B(x||y) ≤ 9ν

3
2K
√
S1

ε , where ν is the self-concordance321

constant of ψ and S1 = ‖∇2ψ(x1)‖2 is the spectral norm of its Hessian at the center x1 of K.322

Restricting to tuning ε ∈ [ 1
m , 1]—which is enough to obtain constant task-averaged regret above if323

the estimated optima x̂t are identical—we can now apply Algorithm 1 via the following instantiation:324
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1. sample εt via the MW distribution ∝ exp(wt) over the discretization Θk of [ 1
m , 1]

2. run OMDηt,εt using the initialization xt,1 = 1
t−1

∑
s<t

cεt(x̂t) = x1 +
∑
s<t x̂t−x1

(1+εt)(t−1) (FTL)

3. update EWOO at each ε ∈ Θk with loss B(cε(x̂t)||xt,1)+ρ2D2
ε

η + 32ηd2 for D2
ε = 9ν

3
2K
√
S1

ε

4. update pt+1 using multiplicative weights with expert losses B(cε(x̂t)||xt,1)
η + εm

(17)

Note the similarity to the MAB case (8), with the difference being the upper bound passed to EWOO325

and MW. Our structural result bounds the expected task-averaged regret as follows (c.f. Thm. D.1):326

E min
ε∈[ 1

m ,1],η>0

V̂ 2
ε

η
+ (32ηd2 + ε)m+ Õ

(
m2

T + 1
k

η
+
m

k
+mmin

{
ρ2

η
, dρ

}
+
dm

ρ

√√
log k

T
+
dm

ρ2T

)
(18)

For ρ = oT (1) and k = ωT (1) this becomes oT (poly(m)) +Eminε∈[ 1
m ,1],η>0

V̂ 2
ε

η + 32ηd2m+ εm,327

where V̂ 2
ε = 1

T

∑T
t=1 ψ(cε(x̂t) − ψ(cε(ˆ̄xt). Then by tuning η we get an asymptotic (T → ∞)328

regret of 4dV̂ε
√

2m+ εm for any ε ∈ [ 1
m , 1]. Our analysis removes the explicit dependence on

√
ν329

that appears in the single-task regret [2]; as an example, ν equals the number of inequalities defining330

a polytope K, as in the bandit shortest-path application below.331

The remaining challenge is to interpret V̂ 2
ε , which as we did for MAB we do via specific examples,332

in this case concrete action domains K. Our first example is for BLO over the unit sphere K = {x ∈333

Rd : ‖x‖2 ≤ 1} using the appropriate log-barrier regularizer ψ(x) = − log(1− ‖x‖22):334

Corollary 4.1 (c.f. Cor. D.1). For BLO on the sphere, Algorithm 1 has expected task-averaged regret335

Õ

(
dm

3
2

T
3
4

+
dm
4
√
T

)
+ min
ε∈[ 1

m ,1]
4d

√
2m log

(
1 +

1− E‖ˆ̄x‖22
2ε+ ε2

)
+ εm (19)

The bound above is decreasing in E‖ˆ̄x‖22, the expected squared norm of the average of the estimated336

optima x̂t. We thus say that bandit linear optimization tasks over the sphere are similar if the norm337

of the empirical mean of their (estimated) optima is large. This makes intuitive sense: if the tasks’338

optima are uniformly distributed, we should expect E‖ˆ̄x‖22 to be small, even decreasing in d. On the339

other hand, in the degenerate case where the estimated optima x̂t are the same across all tasks t ∈ [T ],340

we have E‖ˆ̄x‖22 = 1, so the asymptotic task-averaged regret is 1 because we can use ε = 1
m . Perhaps341

slightly more realistically, if it is 1
mp -away from 1 for some power p ≥ 1

2 then setting ε = 1√
m

can342

remove the logarithmic dependence on m. These two regimes illustrate the importance of tuning ε.343

Motivated by the bandit shortest-path problem [49, 30] and described in full in Section D.3, our last344

application specializes Theorem D.1 to polytopes. There, the induced task-similarity is a sum across345

polytope boundaries, with each summand the logarithm of a quotient of arithmetic and geometric346

means aggregating how close the task optima are to the boundary being considered. When all347

distances across tasks are the same, the two means are the same and so the log of their quotient is348

zero, making that summand zero. Thus, the task-averaged regret improves if the optima for different349

tasks are at similar distances from different boundaries of the polytope.350

5 Conclusion and limitations351

We develop and apply a meta-algorithm for learning to initialize and tune bandit algorithms, obtaining352

task-averaged regret guarantees for both multi-armed and linear bandits that depend on natural,353

setting-specific notions of task similarity. For MAB, we meta-learn the initialization, step-size,354

and entropy parameter of Tsallis-entropic OMD and show good performance if the entropy of the355

optimal arms is small. For BLO, we use OMD with self-concordant regularizers and meta-learn356

the initialization, step-size, and boundary-offset, yielding interesting domain-specific task-similarity357

measures. Some natural directions for future work involve overcoming some limitations of our results:358

can we adapt to a notion of task-similarity that depends on the true optima without assuming a gap359

for MAB, or at all for BLO? Alternatively, can we design meta-learning algorithms that adapt to both360

stochastic and adversarial bandits, i.e. a “best-of-both-worlds” guarantee? Beyond this, one could361

explore other partial information settings, such as contextual bandits or bandit convex optimization.362
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A Structural results493

A.1 Properties of the Bregman divergence494

Lemma A.1. Let ψ : C 7→ R be a strictly convex function with maxx∈C ‖∇2ψ(x)‖2 ≤ S over495

a convex set C ⊂ Rd over size maxx∈C ‖x‖2 ≤ K, and let B(·||·) be the Bregman divergence496

generated by ψ. Then for any points x1, . . . ,xT ∈ C the actions y1 = arg minx∈C ψ(x) and497

yt = 1
t−1

∑
s<t xs have regret498

T∑
t=1

B(xt||yt)−B(xt||yT+1) ≤
T∑
t=1

8SK2

2t− 1
≤ 8SK2(1 + log T ) (20)

Proof. Note that499

∇yB(x||y) = −∇ψ(y)−∇y〈∇ψ(y),x〉+∇y〈∇ψ(y),y〉 = diag(∇2ψ(y))(y − x) (21)

so B(xt||y) is 2SK-Lipschitz w.r.t. the Euclidean norm. Applying Khodak et al. [31, Prop. B.1]500

yields the result (note that its assumption of strong convexity of the regularizer can be replaced with501

strict convexity without changing the proof or result).502

Claim A.1. Let ψ : K 7→ R be a strictly-convex function with Bregman divergence B(·||·) over a503

convex set K ⊂ Rd containing points x1, . . . ,xT . Then their mean x̄ = 1
T

∑T
t=1 xt satisfies504

T∑
t=1

B(xt||x̄) =

T∑
t=1

ψ(xt)− ψ(x̄) (22)

Proof.

T∑
t=1

B(xt||x̄) =

T∑
t=1

ψ(xt)− ψ(x̄)− 〈∇ψ(x̄),xt − x̄〉

=

T∑
t=1

ψ(xt)− ψ(x̄)− 〈∇ψ(x̄),

T∑
t=1

xt − x̄〉 =

T∑
t=1

ψ(xt)− ψ(x̄)

(23)

505

A.2 Tuning the step-size506

Lemma A.2. Let `1, . . . , `T : R>0 7→ R>0 be a sequence of functions of form `t(x) =
B2
t

x +G2x507

for adversarially chosen Bt ∈ [0, D] and some G > 0. Then for any ρ ≥ 0, the actions of508

EWOO [26, Fig. 4] with parameter 2ρ2

DG run on the modified losses B2
t+ρ2D2

x +G2x over the domain509 [
ρD
G , DG

√
1 + ρ2

]
achieves regret w.r.t. any x > 0 of510

T∑
t=1

`t(x)− `t(x) ≤ min

{
ρ2D2

x
, ρDG

}
T +

DG(1 + log(T + 1))

2ρ2
(24)

Proof. By Khodak et al. [31, Prop. C.1] the modified functions are 2ρ2

DG -exp-concave. Then Khodak511

et al. [31, Cor. C.2] with Bt set to Bt
G , D to D

G , αt = G2, and ε = ρD
G yields the result.512
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Lemma A.3. For x̂1, . . . , x̂T ∈ ∂K consider a sequence of functions of form513

Ut(x, η) =
B(cε(x̂t)||x)

η
+ ηG2m (25)

where B is the Bregman divergence of a strictly convex d.g.f. ψ : K◦ 7→ R and where x1 =514

arg minx∈K ψ(x) defines the projection cε(x) = x1 + x−x1

1+ε for some ε > 0 . Suppose we play515

xt+1 ← cε

(
1
t

∑t
s=1 x̂s

)
and set ηt using the actions of EWOO [26, Fig. 4] with parameter 2ρ2

DG for516

some ρ,Dε > 0 s.t. B(cε(x̂t)||x) ≤ D2
ε ∀ x ∈ Kε on the functions B(cε(x̂t)||xt)+ρ2D2

ε

η +ηG2m over517

the domain
[
ρDε
G
√
m
, DεG

√
1+ρ2

m

]
, with η1 being at the midpoint of the domain. Then Ut(xt, ηt) ≤518

DεG
√
m
(

1
ρ +

√
1 + ρ2

)
∀ t ∈ [T ] and519

T∑
t=1

Ut(xt, ηt) ≤ min
η>0,x∈K

T∑
t=1

B(cε(x̂t)||x)

η
+ ηG2m

+ min

{
ρ2D2

ε

η
, ρDεG

}
T +

DεG(1 + log(T + 1))

2ρ2
+

8SεK
2(1 + log T )

η
(26)

for K = maxx∈K ‖x‖2 and Sε = maxx∈Kε ‖∇2ψ(x)‖2.520

Proof. The first claim follows by directly substituting the worst-case values of η into Ut(x, η). For521

the second, apply Lemma A.2 followed by Lemma A.1:522

T∑
t=1

Ut(xt, ηt)

=

T∑
t=1

B(cε(x̂t)||xt)
ηt

+ ηtG
2m

≤ min
η>0

min

{
ρ2D2

ε

η
, ρDεG

}
T +

DεG(1 + log(T + 1))

2ρ2
+

T∑
t=1

B(cε(x̂t)||x)

η
+ ηG2m

≤ min
η>0

min

{
ρ2D2

ε

η
, ρDεG

}
T +

DεG(1 + log(T + 1))

2ρ2
+

8SεK
2(1 + log T )

η

+ min
x∈Kε

T∑
t=1

B(cε(x̂t)||x)

η
+ ηG2m

(27)

Conclude by noting that the sum of Bregman divergence to cε(x̂t) is minimized on their convex hull,523

a subset of Kε.524

A.3 Computational and space complexity525

Algorithm 1 implicitly maintains a separate copy of FTL for each hyperparameter in the continuous526

space of EWOO and the grid Θk over the domain of θ, but explicitly just needs to average the estimated527

task-optima x̂t; this is due to the mean-as-minimizer property of Bregman divergences and the linear-528

ity of cε. Thus the memory it uses isO(d+k), where k is size of the discretization of Θ and should be529

viewed as sublinear in T , e.g. for MAB with implicit exploration and BLO k = O( 4
√
d
√
T ). Computa-530

tionally, at each timestep t and for each grid point we must compute two single-dimensional integrals;531

the integrands are sums of upper bounds that just need to be incremented once per round, leading to a532

total per-iteration complexity of O(k) (ignoring the running of OMD). Although outside the scope of533

this work, it may be possible to avoid integration by tuning η with MW as well, rather than EWOO,534

but likely at the cost of worse regret because it would not take advantage of the exp-concavity of U (ρ)
t .535
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A.4 Main structural result536

Theorem A.1. Consider a family of strictly convex functions ψθ : K◦ 7→ R parameterized by θ lying537

in an interval Θ ⊂ R of radiusRΘ that are all minimized at the same x1 ∈ K◦, and for x̂1, . . . , x̂T ∈538

∂K consider a sequence of functions of form Ut(x, η, θ) (3), as well as the associated regularized up-539

per bounds U (ρ)
t (4). Define the maximum divergence D = maxθ∈ΘDθ, radius K = maxx∈K ‖x‖2,540

and Lη the Lipschitz constant w.r.t. θ ∈ Θ of V̂
2
θ

η +ηg(θ)m+f(θ)m. Then Algorithm 1 with Θk ⊂ Θ541

the uniform discretization of Θ s.t. maxθ∈Θ minθ′∈Θk |θ − θ′| ≤ RΘ

k , ρ ∈ (0, 1), η(θ) = ρDθ√
g(θ)m

,542

η(θ) = Dθ

√
1+ρ2

g(θ)m , α(θ) = 2ρ2

Dθ
√
g(θ)m

, and λ =
(
M
(

1
ρ +

√
1 + ρ2

)
+ Fm

)−1√
log k
2T leads to543

a sequence (xt, ηt(θt), θt) s.t. E
∑T
t=1 Ut(xt, ηt(θt), θt) is bounded by544

E min
θ∈Θ,η>0

8SK2(1 + log T )

η
+

(
V̂ 2
θ

η
+ ηg(θ)m+ f(θ)m+

LηRΘ

k
+ min

{
ρ2D2

η
, ρM

})
T

+

(
4M

ρ
+ Fm

)√
T log k +

M(1 + log(T + 1))

2ρ2

(28)

and
∑T
t=1 Ut(xt, ηt(θt), θt) is bounded w.p. ≥ 1− δ1k>1 by545

min
θ∈Θ,η>0

8SK2(1 + log T )

η
+

(
V̂ 2
θ

η
+ ηg(θ)m+ f(θ)m+

LηRΘ

k
+ min

{
ρ2D2

η
, ρM

})
T

+

(
4M

ρ
+ Fm

)(√
T log k + 1k>1

√
T

2
log

1

δ

)
+
M(1 + log(T + 1))

2ρ2

(29)

Proof. In the following proof, we first consider online learning Ut(·, ·, θ) for fixed θ ∈ Θk. To tune546

η, we online learn the one-dimensional losses Bθ(cθ(x̂t)||cθ(xt))/η + ηg(θ), where cθ(x̂t) is the547

(ηt(θ)-independent) action of FTL at time t. As discussed, the corresponding regularized losses U (ρ)
t548

are exp-concave, and so running EWOO yields Õ
(
M/ρ2 + min

{
ρ2D2/η, ρM

}
T
)

regret w.r.t. the549

original sequence [31, Cor. C.2]. At the same time, we show that FTL has logarithmic regret on the550

sequence Bθ(cθ(x̂t)||·) that scales with the spectral norm S of ∇2ψθ (c.f. Lem. A.1), and that the551

average loss of the optimal comparator is V̂ 2
θ (c.f. Claim A.1). Thus, since we only care about a fixed552

comparator η, dividing by ηT yields the first and last terms (5). We run a copy of these algorithms553

for each θ ∈ Θk; since their losses are bounded by Õ(M/ρ+ Fm), textbook results for MW yield554

O(
√
T log k) regret w.r.t. θ ∈ Θk, which we then extend to Θ ⊃ Θk using Lη-Lipschitzness.555

Formally, we have that556

E
T∑
t=1

Ut(xt, ηt(θt), θt)

= E
T∑
t=1

Bθt(cθt(x̂t)||xt)
ηt(θt)

+ ηt(θt)g(θ)m+ f(θ)m

≤
(
M

(
1

ρ
+
√

2

)
+ Fm

)√
2T log k + E min

θ∈Θk

T∑
t=1

Bθ(cθ(x̂t)||xt)
ηt(θ)

+ ηt(θ)g(θ)m+ f(θ)m

≤
(

4M

ρ
+ Fm

)√
T log k + E min

θ∈Θk,η>0,x∈K

T∑
t=1

Bθ(cθ(x̂t)||x)

η
+ ηg(θ)m+ f(θ)m

+ min

{
ρ2D2

θ

η
, ρDθ

√
g(θ)m

}
T +

Dθ

√
g(θ)m(1 + log(T + 1))

2ρ2
+

8SK2(1 + log T )

η
(30)
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where the first inequality is the regret of multiplicative weights with step-size λ [45, Cor. 2.14] and557

the second is by applying Lemma A.3 for each θ. We then simplify and apply the definition of V̂ 2
θ558

via Claim A.1 and conclude by applying Lipschitzness w.r.t. θ:559

E
T∑
t=1

Ut(xt, ηt(θt), θt)

≤
(

4M

ρ
+ Fm

)√
T log k + E min

θ∈Θk,η>0

V̂ 2
θ T

η
+ ηg(θ)mT + f(θ)mT

+ min

{
ρ2D2

η
, ρM

}
T +

M(1 + log(T + 1))

2ρ2
+

8SK2(1 + log T )

η

≤ E min
θ∈Θ,η>0

8SK2(1 + log T )

η
+

(
V̂ 2
θ

η
+ ηg(θ)m+ f(θ)m+

LηRΘ

k
+ min

{
ρ2D2

η
, ρM

})
T

+

(
4M

ρ
+ Fm

)√
T log k +

M(1 + log(T + 1))

2ρ2

(31)

The w.h.p. guarantee follows by Cesa-Bianchi and Lugosi [16, Lem. 4.1].560

B Implicit exploration561

B.1 Properties of the Tsallis entropy562

Lemma B.1. For any ε ∈ (0, 1] and x ∈ 4 s.t. x(a) ≥ ε
d ∀ a ∈ [d] the β-Tsallis entropy563

Hβ(x) = − 1−
∑d
a=1 xβ(a)

1−β is d log d
ε -Lipschitz w.r.t. β ∈ [0, 1].564

Proof. Let logβ x = x1−β−1
1−β be the β-logarithm function and note that by Yamano [52, Equation 6]565

we have logβ x − log x = (1 − β)(∂b logβ x + logβ x log x) ≥ 0 ∀ β ∈ [0, 1]. Then we have for566

β ∈ [0, 1) that567

|∂βHβ(x)| =

∣∣∣∣∣−Hβ(x)−
∑d
a=1 xβ(a) log x(a)

1− β

∣∣∣∣∣
=

1

1− β

∣∣∣∣∣
d∑
a=1

xβ(a)(logβ x(a)− log x(a))

∣∣∣∣∣
=

1

1− β

d∑
a=1

xβ(a)(logβ x(a)− log x(a))

≤ 1

1− β

(
d∑
a=1

x(a)

)β ( d∑
a=1

(logβ x(a)− log x(a))
1

1−β

)1−β

≤ 1

1− β

d∑
a=1

logβ x(a)− log x(a) ≤ d

1− β
(logβ

d

ε
− log

d

ε
) ≤ −d log

d

ε

(32)

where the fourth inequality follows by Hölder’s inequality, the fifth by subadditivity of xa for568

a ∈ (0, 1], the sixth by the fact that ∂x(logβ x − log x) = x−β − 1/x ≤ 0 ∀ β, x ∈ [0, 1), and569

the last line by substituting β = 0 since ∂β
(

logβ x−log x

1−β

)
= 2(x−xβ)−(1−β)(xβ+x) log x

xβ(1−β)3 ≤ 0 ∀ β ∈570

[0, 1), x ∈ (0, 1/d]. For β = 1, applying L’Hôpital’s rule yields571

lim
β→1

∂βHβ(x) = −1

2
lim
β→1

d∑
a=1

xβ(a) log2 x(a)(1− (1− β) log x(a)) = −1

2

d∑
a=1

x(a) log2 x(a)

(33)
which is bounded on [−2d/e2, 0].572
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Lemma B.2. Consider x1, . . . ,xT ∈ 4 s.t. xt(at) = 1 for some at ∈ [d], and let x̄ = 1
T

∑T
t=1 xt573

be their average. For any ε ∈ (0, 1] and β ∈ (0, 1] we have that for every t ∈ [T ]574

Hβ(x̄(ε))−Hβ(x
(ε)
t ) ≤ Hβ(x̄) (34)

where recall that x(ε) = c ε
1−ε

(x) = 1d/d+ (1− ε)(x− 1d/d) = (1− ε)x + ε
d1d.575

Proof. Assume w.l.o.g. that x̄(1) ≤ x̄(2) ≤ . . . ≤ x̄(d) and at = 1, so that x
(ε)
t = e

(ε)
1 . We take the576

derivative577

∂εHβ

(
(1− ε)x̄ +

ε

d
1d

)
− ∂εHβ

(
e

(ε)
1

)
=

d

1− β

d−1∑
a=1

(
1

((1− ε)x̄(a) + ε/d)1−β −
1

(ε/d)1−β

)

+
d

1− β

d−1∑
a=1

(
1

((1− ε) + ε/d)1−β −
1

((1− ε)x̄(d) + ε/d)1−β

)

+
d2

1− β

d−1∑
a=1

x̄(a)

(
1

((1− ε)x̄(d) + ε/d)1−β −
1

((1− ε)x̄(a) + ε/d)1−β

)
(35)

By the assumption that x̄(a) is non-decreasing in a, each of the summands above become non-positive.578

So for ε ∈ (0, 1] the derivative is non-positive, and for ε→ 0+ it goes to −∞. Thus the l.h.s. of the579

bound is monotonically non-increasing in ε for all ε ∈ [0, 1]. The result then follows from the fact580

that for ε = 0 we have Hβ

(
(1− ε)x̄ + ε

d1d
)
−Hβ

(
e

(ε)
1

)
= Hβ(x̄).581

B.2 Implicit exploration bounds582

Lemma B.3. Suppose we play OMDβ,η with regularizer ψβ the negative Tsallis entropy and initial-583

ization x1 ∈ 4 on the sequence of linear loss functions `1, . . . , `T ∈ [0, 1]d. Then for any x ∈ 4 we584

have585
T∑
t=1

〈`t,xt − x〉 ≤ Bβ(x||x1)

η
+
η

β

d∑
a=1

x2−β
t (a)`2t (a) (36)

Proof. Note that the following proof follows parts of the course notes by Luo [37], which we586

reproduce for completeness. The OMD update at each step t involves the following two steps: set587

yt+1 ∈ 4 s.t. ∇φβ(yt+1) = ∇φβ(xt) − η`t and then set xt+1 = arg minx∈4Bβ(x,yt+1) [25,588

Algorithm 14]. Note that by Hazan [25, Equation 5.3] and nonnegativity of the Bregman divergence589

we have590
T∑
t=1

〈`t,xt − x〉 ≤ Bβ(x||x1)

η
+

1

η

T∑
t=1

Bβ(xt||yt+1) (37)

To bound the second term, note that when φβ is the negative Tsallis entropy we have591

Bβ(xt||yt+1)

=
1

1− β

d∑
a=1

(
yβt+1(a)− xβt (a) +

β

y1−β
t+1 (a)

(xt(a)− yt+1(a)

)

=
1

1− β

d∑
a=1

(
(1− β)yβt+1(a)− xβt (a) + β

(
1

x1−β
t (a)

+
1− β
β

η`t(a)

)
xt(a)

)

=

d∑
a=1

(
yβt+1(a)− xβt (a) + ηxt(a)`t(a)

)
(38)
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Plugging the following result, which follows from (1 +x)α ≤ 1 +αx+α(α− 1)x2 ∀ x ≥ 0, α < 0,592

into the above yields the desired bound.593

yβt+1(a) = xβt (a)

(
yβ−1
t+1 (a)

xβ−1
t (a)

) β
β−1

= xβt (a)

(
1 +

1− β
β

ηx1−β
t (a)`t(a)

) β
β−1

≤ xβt (a)

(
1− ηx1−β

t (a)`t(a) +
η2

β
x2−2β
t (a)`t(a)2

)
= xβt (a)− ηxt(a)`t(a) +

η2

β
x2−β
t (a)`t(a)2

(39)

594

Theorem B.1. In Algorithm 1, let OMDη,β be online mirror descent with the Tsallis entropy regular-595

izer ψβ over γ-offset loss estimators, Θk is a subset of [β, β] ⊂ [ 1
log d , 1], and596

Ut(x, η, β) =
Bβ(x̂

(ε)
t ||x)

η
+
ηdβm

β
(40)

where x̂
(ε)
t = (1− ε)x̂t + ε1d/d. Note that U (ρ)

t (x, η, β) = Ut(x, η, β) + ρ2(d1−β−1)
η(1−β) . Then there597

exists settings of η, η, α, λ s.t. for all ε, ρ, γ ∈ (0, 1) we have w.p. ≥ 1− δ that598

T∑
t=1

m∑
i=1

`t,i(at,i)− `t,i(̊at)

≤ (ε+ γd)mT +
2 +

√
d log d
em

γ
log

5

δ
+

8d
√
m

ρ

(
1k>1

√
T log

5k

δ
+

1 + log(T + 1)

16ρ

)

+ min
β∈[β,β],η>0

8
(
d
ε

)2−β
(1 + log T )

η
+

(
Ĥβ

η
+
ηdβm

β
+
Lη(β − β)

2k
+ dmin

{
ρ2

2η
, ρ
√
m

})
T

(41)

for Lη =
(

log d
ε

η + ηm log2 d
)
d.599

Proof. In this setting we have g(β) = dβ/β, f(β) = 0, D2
β = d1−β−1

1−β , D ≤
√
d/2, M = d

√
m,600

F = 0, S = (d/ε)2−β , and K = 1. We have that601

T∑
t=1

m∑
i=1

`t,i(at,i)− `t,i(̊at)

=

T∑
t=1

m∑
i=1

〈ˆ̀t,i,xt,i〉 − `t,i(̊at) + γ

d∑
a=1

ˆ̀
t,i(a)

≤
T∑
t=1

Bβt(x̂
(ε)
t ||xt,1)

ηt
+

m∑
i=1

〈ˆ̀t,i, x̂(ε)
t 〉 − `t,i(̊at) +

ηt
βt

d∑
a=1

x2−βt
t,i (a)ˆ̀2

t,i(a) + γ

d∑
a=1

ˆ̀
t,i(a)

≤ εmT +

T∑
t=1

Bβt(x̂
(ε)
t ||xt,1)

ηt
+

m∑
i=1

〈ˆ̀t,i, x̂(ε)
t 〉 − 〈`t,i, x̊

(ε)
t 〉

+

T∑
t=1

ηt
βt

m∑
i=1

d∑
a=1

x1−βt
t,i (a)ˆ̀

t,i(a) + γ

d∑
a=1

ˆ̀
t,i(a)

(42)

where the equality follows similarly to Luo [37] since 〈ˆ̀t,i,xt,i〉 = `t,i(at,i)− γ
∑d
a=1

ˆ̀
t,i(a), the602

first inequality follows by Lemma B.3 and the second by Hölder’s inequality and the definitions of603
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ˆ̀
t,i and x̂

(ε)
t,i . We next apply the optimality of ât for

∑m
i=1

ˆ̀
t,i to get604

T∑
t=1

m∑
i=1

`t,i(at,i)− `t,i(̊at)

≤ εmT +

T∑
t=1

Bβt(x̂
(ε)
t ||xt,1)

ηt
+ (1− ε)

m∑
i=1

ˆ̀
t,i(̊at)− `t,i(̊at) +

ε

d

d∑
a=1

ˆ̀
t,i(a)− `t,i(a)

+

T∑
t=1

ηt
βt

m∑
i=1

d∑
a=1

x1−βt
t,i (a)ˆ̀

t,i(a) + γ

d∑
a=1

ˆ̀
t,i(a)

≤ εmT +
1 + ε

d + η
β + γ

2γ
log

5

δ
+

T∑
t=1

Bβt(x̂
(ε)
t ||xt,1)

ηt

+

T∑
t=1

ηt
βt

m∑
i=1

d∑
a=1

x1−βt
t,i (a)`t,i(a) + γ

d∑
a=1

`t,i(a)

≤ εmT +
2 +

√
d log d
em

γ
log

5

δ
+ γdmT +

T∑
t=1

Bβt(x̂
(ε)
t ||xt,1)

ηt
+
ηtd

βtm

βt

(43)
where the the second inequality follows by Neu [42, Lemma 1] applied to each of the last four terms605

and the fifth by the definition of `t,i and using maxβ∈[ 1
log d ,1] η(β) ≤

√
d

em log d . Substituting into606

Theorem A.1 and simplifying yields the result except with V̂ 2
β = 1

T

∑T
t=1 ψβ(x̂

(ε)
t )− ψβ(ˆ̄x

(ε)
) in607

place of Ĥβ , but the former is bounded by the latter by Lemma B.2.608

Corollary B.1. Let β = β = 1. Then w.h.p. we can ensure task-averaged regret at most609

2

√
Ĥ1dm+ Õ

(
d
√
m+ d

2
3m

2
3

3
√
T

)
(44)

so long as mT ≥ d2 or alternatively ensure610

min

{
2

√
Ĥ1dm+ Õ

(
d

3
4m

3
4 + d

√
m

4
√
T

)
, 2
√
dm log d+ Õ

(
d

3
2
√
m√
T

)}
(45)

so long as mT ≥ d.611

Proof. Applying Theorem B.1, simplifying, and dividing by T yields task-averaged regret at most612

(ε+ γd)m+
2 +

√
d log d
em

γT
log

5

δ
+

(
1 + log(T + 1)

2ρ2T
+ min

{
ρ2

η
√
m
, ρ

})
d
√
m

+ min
η>0

8d(1 + log T )

εηT
+

(
Ĥ1

η
+ ηdm

) (46)

Set γ = 1√
dmT

. Then set ε = 3

√
d2

mT and ρ = 1
3√
T

, and use η =

√
Ĥ1

dm + 1
3√
dmT

to get the first result.613

Otherwise, set ε =
√

d
mT and ρ = 1

4√
T

, and use the better of η =

√
Ĥ1

dm + 1
4√
dmT

and η =
√

log d
dm614

to get the second.615

Corollary B.2. Let β = 1
2 and β = 1 and assume mT ≥ d

5
2 . Then w.h.p. we can ensure616

task-averaged regret at most617

min
β∈[ 1

2 ,1]
2

√
Ĥβdβm/β + Õ

(
d

5
7m

5
7

T
2
7

+
d
√
m

4
√
T

)
(47)

using k =
⌈

4
√
d
√
T
⌉

.618
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Proof. Applying Theorem B.1, simplifying, and dividing by T yields task-averaged regret at most619

(ε+ γd)m+
2 +

√
d log d
em

γT
log

5

δ
+

8d
√
m

ρ

√ log 5k
δ

T
+

1 + log(T + 1)

16ρT


+ min
β∈[β,β],η>0

8d
3
2 (1 + log T )

ε
3
2 ηT

+

(
Ĥβ

η
+
ηdβm

β
+

d

4k

(
log d

ε

η
+ ηm log2 d

)
+ ρd

√
m

)
(48)

Set γ = 1√
dmT

, ε = d
5
7

(mT )
2
7

, ρ = 1
4√
T

, and use η =

√
βĤβ
mdβ

+ 1

(dmT )
2
7

to get the result.620

Corollary B.3. Let β = 1
log d and β = 1 and assume mT ≥ d3. Then w.h.p. we can ensure621

task-averaged regret at most622

min
β∈(0,1]

2

√
Ĥβdβm/β + Õ

(
d

3
4m

3
4 + d

√
m

4
√
T

)
(49)

using k =
⌈

4
√
d
√
T
⌉

.623

Proof. Applying Theorem B.1, dividing by T , and simplifying yields624

(ε+ γd)m+
2 +

√
d log d
em

γT
log

5

δ
+

8d
√
m

ρ

√ log 5k
δ

T
+

1 + log(T + 1)

16ρT


+ min
β∈[β,β],η>0

8d2(1 + log T )

ε2ηT
+

(
Ĥβ

η
+
ηdβm

β
+

d

2k

(
log d

ε

η
+ η log2 d

)
+ ρd

√
m

) (50)

Note that Ĥβ and dβ

β are both decreasing on β < 1
log d , so β in the chosen interval is optimal over all625

β ∈ (0, 1]. Set γ = 1√
dmT

, ε = d
3
4

4√
mT

, ρ = 1
4√
T

, and use η =

√
βĤβ
mdβ

+ 1
4√
dmT

to get the result.626

C Guaranteed exploration627

C.1 Best-arm identification628

Lemma C.1. Suppose for ε > 0 we run OMD on task t ∈ [T ] with initialization xt,1 ∈ 4(ε),629

regularizer ψβt + I4(ε) for some βt ∈ (0, 1], and unbiased loss estimators (γ = 0). If Assumption 3.1630

holds and m > 28d log d
3ε∆2 then x̂t = x̊t w.p. ≥ 1− dκ, where κ = exp

(
− 3ε∆2m

28d

)
.631

Proof. We extend the proof by Abbasi-Yadkori et al. [1, Appendices B and F] to arbitrary lower632

bounds ε/d on the probability. First, since 0 ≤ ˆ̀
t,i(a) ≤ d

ε `t,i(a) we have that633

−d
ε
≤ −1 ≤ −`t,i(a) ≤ ˆ̀

t,i(a)− `t,i(a) ≤
(
d

ε
− 1

)
`t,i(a) ≤ d

ε
(51)

and so |ˆ̀t,i(a) − `t,i(a)| ≤ d
ε . Therefore since the variance of the estimated losses is a scaled634

Bernoulli we have that635

Var(ˆ̀
t,i(a)− `t,i(a)) = Var(ˆ̀

t,i(a)) = xt,i(a)(1− xt,i(a))

(
`t,i(a)

xt,i(a)

)2

≤
`2t,i(a)

xt,i(a)
≤ d

ε
(52)
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We can thus apply a martingale concentration inequality of Fan et al. [23, Corollary 2.1] to the636

martingale difference sequence (MDS) εd (ˆ̀
t,i(a)− `t,i(a)) ∈ [− ε

d , 1] to obtain637

Pr

(
m∑
i=1

ˆ̀
t,i(a)− `t,i(a) ≥ m∆a

2

)
= Pr

(
ε

d

m∑
i=1

ˆ̀
t,i(a)− `t,i(a) ≥ εm∆a

2d

)

≤ Pr

max
j∈[m]

ε

d

m∑
i=j

ˆ̀
t,i(a)− `t,i(a) ≥ εm∆a

2d


≤ exp

(
−

2
(
εm∆a

2d

)2
min

{
m(1 + ε/d)2, 4(εm/d+ εm∆a

6 )
})

≤ exp

(
−

2
(
εm∆a

2d

)2
4(εm/d+ εm∆a

6 )

)

= exp

(
− 3εm∆2

a

4d(6 + ∆a)

)
≤ exp

(
−3εm∆2

a

28d

)

(53)

where ∆a = 1
m |
∑m
i=1 `t,i(a)−mina′ 6=a

∑m
i=1 `t,i(a

′)| is the per-arm loss gap in the last step we638

apply ∆a ≤ 1. For the symmetric MDS − ε
d ≤ `t,i(a)− ˆ̀

t,i(a) ≤ 1 we have639

Pr

(
m∑
i=1

ˆ̀
t,i(a)− `t,i(a) ≤ −m∆a

2

)
= Pr

(
m∑
i=1

`t,i(a)− ˆ̀
t,i(a) ≥ m∆a

2

)

≤ exp

(
−

2
(
m∆a

2

)2
4
(
dm
ε + m∆a

6

))

≤ exp

(
− 3εm∆2

a/d

4(6 + ε∆a/d)

)
≤ exp

(
−3εm∆2

a

28d

)
(54)

We can then conclude that640

Pr (x̂t 6= x̊t)

≤ Pr

(
∃ a 6= ått :

m∑
i=1

ˆ̀
t,i(a) ≤

m∑
i=1

`t,i(̊at)

)

≤ Pr

(
m∑
i=1

ˆ̀
t,i(̊at) ≥

m∑
i=1

`t,i(̊at) +
m∆åt

2
∨ ∃ a 6= åt :

m∑
i=1

ˆ̀
t,i(a) ≤

m∑
i=1

`t,i(a)− m∆a

2

)

≤ Pr

(
m∑
i=1

ˆ̀
t,i(̊at) ≥

m∑
i=1

`t,i(̊at) +
m∆åt

2

)
+
∑
a 6=åt

Pr

(
m∑
i=1

ˆ̀
t,i(a) ≤

m∑
i=1

`t,i(a)− m∆a

2

)

≤ exp

(
−

3εm∆2
åt

28d

)
+
∑
a 6=åt

exp

(
−3εm∆2

a

28d

)

≤ d exp

(
−3εm∆2

28d

)
(55)

where the second-to-last line follows by substituting the bounds (53) and (54) into the left and right641

terms, respectively.642
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Lemma C.2. Suppose on each task t ∈ [T ] we run OMD as in Lemma C.1. Then for any β ∈ (0, 1]643

we have 1
T E
∑T
t=1 ψβ(x̂

(ε)
t )− ψβ(ˆ̄x

(ε)
) ≤ −ψβ (̊x̄) + 3dκβ

1−β

((
d
ε

)1−β − 1
)

.644

Proof. We consider the expected divergence of the best initialization under the worst-case distribution645

of best arm estimation, which satisfies Lemma C.1 and (55). We have by Claim A.1 and the mean-as-646

minimizer property of Bregman divergences that647

1

T
E

T∑
t=1

ψβ(x̂
(ε)
t )− ψβ(ˆ̄x

(ε)
) = E min

x∈4(ε)

1

T

T∑
t=1

Bβ

(
x̂

(ε)
t ||x

)
≤ min

x∈4(ε)
E

1

T

T∑
t=1

Bβ

(
x̂

(ε)
t ||x

)
= min

x∈4(ε)

1

T

T∑
t=1

d∑
a=1

P(a = ât)Bβ

(
e(ε)
a ||x

)
≤ max

pt∈4,∀t∈[T ]
pt(a)≤2κ,∀t∈[T ],a 6=åt

1−dκ≤pt(a),∀t∈[T ],a=åt

min
x∈4(ε)

1

T

T∑
t=1

d∑
a=1

pt(a)Bβ

(
e(ε)
a ||x

)
(56)

To simplify the last expression, we define p̄ = 1
T

∑T
t=1 pt and again apply the (weighted) mean-as-648

minimizer property, followed by Claim A.1:649

min
x∈4(ε)

1

T

T∑
t=1

d∑
a=1

pt(a)Bβ

(
e(ε)
a ||x

)
= min

x∈4(ε)

d∑
a=1

p̄(a)Bβ

(
e(ε)
a ||x

)
=

d∑
a=1

Bβ

(
e(ε)
a ||p̄(ε)

)
= ψβ(e

(ε)
1 )− ψβ(p̄(ε))

(57)

By substituting into the previous inequality, we can bound the expected divergence for the worst-case650

pt as follows:651

1

T
E

T∑
t=1

ψβ(x̂
(ε)
t )− ψβ(ˆ̄x

(ε)
) ≤ ψβ

(
e

(ε)
1

)
+ max

pt∈4,∀t∈[T ]
pt(a)≤2κ,∀t∈[T ],a6=åt

1−dκ≤pt(a),∀t∈[T ],a=åt

−ψβ(p̄(ε))

≤ ψβ
(
e

(ε)
1

)
+ max∑T

t=1

∑d
a=1 pt(a)=T∑T

t=1 pt(a)≥(1−dκ)̊x̄(a)T,∀a∑T
t=1 pt(a)≤(2κ(1−̊x̄(a))T +̊x̄(a)T ),∀a

−ψβ(p̄(ε))

= ψβ

(
e

(ε)
1

)
− min

p̄∈4
p̄(a)≥(1−dκ)̊x̄(a),∀a

p̄(a)≤2κ+(1−2κ)̊x̄(a),∀a

ψβ(p̄(ε))

(58)

We use the shorthand h(x) = ψβ
(
(1− ε)x + ε

d1d
)
. We have652

−∂x(a) (ψβ(x)) = ∂x(a)

(
1

(1− β)

(
d∑
b=1

x(b)β − 1

))

= ∂x(a)

(
1

(1− β)

(
d∑
b=1

x(b)β + βd1−β(1−
d∑
b=1

x(b))− 1

))

=
β

1− β
·
(
x(a)β−1 − d1−β)

(59)
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and therefore653

‖∇h(x)‖∞ = max
a=1,...,d

∣∣∣∂x(a)ψβ

(
(1− ε)x +

ε

d
1d

)∣∣∣
≤ β

1− β
max

a=1,...,d

∣∣((1− ε)x(a) + ε/d)β−1 − d1−β∣∣
≤ β

1− β

((
d

ε

)1−β

− 1

)
= β logβ

(
d

ε

) (60)

Finally, by convexity of h we have654

min
p̄∈4

p̄(a)≥(1−dκ)̊x̄(a),∀a
p̄(a)≤2κ+(1−2κ)̊x̄(a),∀a

h(p̄) ≥ h(̊x̄)− ‖∇h(̊x̄)‖∞ max
p̄∈4

p̄(a)≥(1−dκ)̊x̄(a),∀a
p̄(a)≤2κ+(1−2κ)̊x̄(a),∀a

‖p̄−˚̄x‖1

≥ h(̊x̄)− 3dκ‖∇h(̊x̄)‖∞

≥ h(̊x̄)− 3dκβ logβ

(
d

ε

) (61)

so we can substitute into (58) to get655

1

T
E

T∑
t=1

ψβ(x̂
(ε)
t )− ψβ(ˆ̄x

(ε)
) ≤ −ψβ (̊x̄

(ε)
) +

3dκβ

1− β

((
d

ε

)1−β

− 1

)
(62)

Applying Lemma B.2 completes the proof.656

C.2 Guaranteed exploration bounds657

Lemma C.3. Suppose we play OMDβ,η with initialization x1 ∈ 4(ε), regularizer ψβ+I4(ε) for some658

β ∈ (0, 1], and unbiased loss estimators (γ = 0) on the sequence of loss functions `1, . . . , `T ∈ [0, 1]d.659

Then for any å ∈ [d] we have expected regret660

E
T∑
t=1

`t(at)− `t(̊a) ≤ EBβ(x̂(ε)||x1)

η
+
ηdβm

β
+ εm (63)

for x̂ the estimated optimum of the loss estimators ˆ̀
1, . . . , ˆ̀

T .661

Proof.

E
T∑
t=1

`t(at)− `t(̊a) = E
T∑
t=1

`t(at)− 〈`t, x̊〉

≤ E
T∑
t=1

`t(at)− 〈`t, x̊(ε)〉+ εm

= E
m∑
t=1

ˆ̀
t(at)− 〈ˆ̀t, x̊(ε)〉+ εm

≤ E
m∑
t=1

ˆ̀
t(at)− 〈ˆ̀t, x̂(ε)〉+ εm

≤ E

(
Bβ(x̂(ε)||x1)

η
+
η

β

T∑
t=1

d∑
a=1

ˆ̀2
t (a)x2−β

t (a)

)
+ εm

≤ EBβ(x̂(ε)||x1)

η
+
ηdβm

β
+ εm

(64)

where the second inequality follows by optimality of x̂ for the estimated losses ˆ̀
t, the third by662

Lemma B.3 constrained to 4(ε), and the fourth similarly to Theorem B.1 (note both are also663

effectively shown in Luo [37]).664
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Theorem C.1. In Algorithm 1, let OMDη,β be online mirror descent with the regularizer ψβ + I4(ε)665

over unbiased (γ = 0) loss estimators, Θk is a subset of [β, β] ⊂ [ 1
log d , 1], and666

Ut(x, η, β) =
Bβ(x̂

(ε)
t ||x)

η
+
ηdβm

β
(65)

where x̂
(ε)
t = (1− ε)x̂t + ε1d/d. Note that U (ρ)

t (x, η, β) = Ut(x, η, β) + ρ2(d1−β−1)
η(1−β) . Then under667

Assumption 3.1 there exists settings of η, η, α, λ s.t. for all ε, ρ ∈ (0, 1) we have that668

E
1

T

T∑
t=1

m∑
i=1

`t,i(at,i)− `t,i(̊at)

≤ εm+
8d
√
m

ρ

(
1k>1

√
log k

T
+

1 + log(T + 1)

16ρT

)

+ min
β∈[β,β],η>0

8
(
d
ε

)2−β
(1 + log T )

ηT
+
hβ(∆)

η
+
ηdβm

β
+
Lη(β − β)

2k
+ dmin

{
ρ2

2η
, ρ
√
m

}
(66)

for Lη =
(

log d
ε

η + ηm log2 d
)
d and hβ(∆) = (Hβ + 56

dm )ι∆ + d1−β−1
1−β (1 − ι∆) for ι∆ =669

1m≥ 75d
ε∆2 log d

ε∆2
.670

Proof. By Lemma C.3 we have671

E
T∑
t=1

m∑
i=1

`t,i(at,i)− `t,i(̊at) ≤ εmT + E
T∑
t=1

Bβt(x̂
(ε)
t ||xt,1)

ηt
+
ηtd

βtm

βt
(67)

Since we have the same environment-dependent quantities as in Theorem B.1, we can substitute the672

above bound into Theorem A.1 and then apply the Lemma C.2 bound673

EV̂ 2
β ≤ Hβ +

3dκβ

1− β

((
d

ε

)1−β

− 1

)
≤ Hβ +

3d2

ε
exp

(
−3ε∆2m

28d

)
= Hβ +

3ε∆2

d2
exp

(
4 log

d

ε∆2
− 3ε∆2m

28d

)
≤ Hβ +

3ε∆2/d2

3ε∆2m
28d − 4 log d

ε∆2

≤ Hβ +
56

dm

(68)

where the last line follows by assuming m ≥ 75d
ε∆2 log d

ε∆2 . If this condition does not hold, then we674

apply the default bound of EV̂ 2
β ≤= 1

T

∑T
t=1 ψβ(x̂t)− ψβ(ˆ̄x) ≤ d1−β−1

1−β .675

Corollary C.1. Let β = β = 1. Then for known ∆ and assuming m ≥ 75d
∆2 log d

∆2 we can ensure676

expected task-averaged regret at most677

2
√
H1dm+ 56 +

75d

∆2
W
(m

75

)
+ Õ

(
d

3
2m

3
4

√
T

+
d∆2m2

T

)
(69)

where W is the Lambert W -function, while for unknown ∆ we can ensure expected task-averaged678

regret at most679

2
√
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3

∆
3

√
50dm log d log

d2m2

150∆6 log d
+ Õ

(
d

3
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3
4

√
T
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d

4
3m

5
3

T

)
(70)

so long as m2 ≥ 150d log d.680
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Proof. Applying Theorem C.1 and simplifying yields681

εm+
8d
√
m(1 + log(T + 1))

16ρ2T
+ min

η>0

8d(1 + log T )

εηT
+
h1(∆)

η
+ ηdm+

dρ2

2η
(71)

Then substitute η =
√

h1(∆)
dm and set ρ = 4

√
1

dT
√
m

and ε = 75d
∆2mW (m75 ) (for known ∆) or682

ε = 3

√
150d log d

m2 (otherwise).683

Corollary C.2. Let β = 1
2 and β = 1. Then for known ∆ and assuming m ≥ 75d

∆2 log d
∆2 we can684

ensure task-averaged regret at most685
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2 ,1]
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)
(72)

using k = d 3
√
d2mT e, while for unknown ∆ we can ensure expected task-averaged regret at most686
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β∈[ 1

2 ,1]
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3
√
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+
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5
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5
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T
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+
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3
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)
(73)

so long as m ≥ 5d
√

6.687

Proof. Applying Theorem C.1 and simplifying yields688

εm+
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√
m

ρ
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log k

T
+

1 + log(T + 1)

16ρT

)

+ min
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8d
3
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ε
3
2 ηT

+
hβ(∆)

η
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ηdβm

β
+

d

4k

(
log d

ε

η
+ ηm log2 d

)
+
dρ2

2η

(74)

Then substitute η =
√

hβ(∆)
dβm/β

and set ρ = 3

√
1

d
√
mT

and ε = 75d
∆2mW (m75 ) (for known ∆) or689

ε = 3

√
150d2

m2 (otherwise).690

Corollary C.3. Let β = 1
log d and β = 1. Then for known ∆ and assuming m ≥ 75d

∆2 log d
∆2 we can691

ensure task-averaged regret at most692
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using k = d 3
√
d2mT e, while for unknown ∆ we can ensure expected task-averaged regret at most693
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so long as m ≥ 5d
√

6.694

Proof. Applying Theorem C.1 and simplifying yields695
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8d
√
m

ρ
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log k

T
+
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16ρT

)

+ min
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ε2ηT
+
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d
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ε
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Then substitute η =
√

hβ(∆)
dβm/β

and set ρ = 3

√
1

d
√
mT

and ε = 75d
∆2mW (m75 ) (for known ∆) or696

ε = 3

√
150d2

m2 (otherwise).697
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Corollary C.4. Let β = 1
log d and β = 1. Then for unknown ∆ and assuming m ≥ max{d 3

4 , 56}698

we can ensure task-averaged regret at most699
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(78)

using k = d 3
√
d2mT e.700

Proof. Applying Theorem C.1 and simplifying yields701
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8d
√
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ρ
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log k

T
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16ρT
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Then substitute η =
√

hβ(∆)
dβm/β

and set ρ = 3

√
1

d
√
mT

and ε =
√
d

3√
m2

.702

D Online learning with self-concordant barrier regularizers703

D.1 General results704

Lemma D.1. Let K ⊂ Rd be a convex set and ψ : K◦ 7→ Rd be a self-concordant barrier. Suppose705

`1, . . . , `T are a sequence of loss functions satisfying |〈`t,x〉| ≤ 1 ∀ x ∈ K. Then if we run OMD706

with step-size η > 0 as in Abernethy et al. [2, Alg. 1] on the sequence of estimators ˆ̀
t our estimated707

regret w.r.t. any x ∈ Kε for ε > 0 will satisfy708

T∑
t=1

〈ˆ̀t,xt − x〉 ≤ B(x||x1)

η
+ 32d2ηT (80)

Proof. The result follows from Abernethy et al. [2] by stopping the derivation on the second inequality709

below Equation 10.710

Definition D.1. For any convex set K and any point y ∈ K, πy(x) = inf
t≥0,y+ x−y

t ∈K
t is the711

Minkowski function with pole y.712

Lemma D.2. For any x ∈ K ⊂ Rd and ψ : K◦ 7→ R a ν-self-concordant regularizer with minimum713

x1 ∈ K◦, the quantity ψ(cε(x)) is ν
√

2-Lipschitz w.r.t. ε ∈ [0, 1].714

Proof. Consider any ε, ε′ ∈ [0, 1] s.t. ε′ − ε ∈ (0, 1
2 ] Note that for t = ε′−ε

1+ε we have715

cε′(x) +
cε′(x)− cε(x)

t
= x1 +

x− x1

1 + ε′
+

x1 + x−x1

1+ε − x1 − x−x1

1+ε′

t
= x ∈ K (81)

so πcε′ (x)(cε(x)) ≤ ε′−ε
1+ε ≤ ε′ − ε. Therefore by Nesterov and Nemirovskii [41, Prop. 2.3.2] we716

have717

ψ(cε(x))−ψ(cε′(x)) ≤ ν log

(
1

1− πcε′ (x)(cε(x))

)
≤ ν log

(
1

1 + ε− ε′

)
≤ ν(ε′−ε)

√
2 (82)

where for the last inequality we used − log(1− x) ≤ x
√

2 for x ∈ [0, 1
2 ]. The case of ε′ − ε ∈ (0, 1]718

follows by considering ε′′ = ε′+ε
2 and applying the above twice.719
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Theorem D.1. In Algorithm 1, let OMDη,ε be online mirror descent over loss estimators specified in720

Abernethy et al. [2] with a ν-self-concordant barrier regularizer ψ : K◦ 7→ R that satisfies ν ≥ 1721

and ‖∇2ψ(x1)‖2 = S1 ≥ 1. Let Θk be a subset of [ 1
m , 1] and722

Ut(x, η, ε) =
B(cε(x̂)||x)

η
+ 32ηd2 + εm (83)

Note that U (ρ)
t (x, η, ε) = Ut(x, η, ε) + 9ν

3
2 ρ2Km

√
S1

η . Then there exists settings of η, η, α, λ s.t. for723

all ε, ρ ∈ (0, 1) we have expected task averaged regret at most724
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3
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7dm
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2K
√
ν3S1

(
7
√
T log k +

1 + log(T + 1)

ρ

)
(84)

Proof. Let ε = 1
m . For any ε ∈ [ε, 1] and x ∈ K we have πx1(cε(x)) ≤ 1

1+ε , so by Nesterov and725

Nemirovskii [41, Prop. 2.3.2] we have726

‖∇2ψ(cε(x))‖2 ≤
(

1 + 3ν

1− πx1
(cε(x))

)2

‖∇2ψ(x1)‖2 ≤
64ν2S1

ε2
(85)

Thus S = maxx,y∈K,ε∈[ε,1] ‖∇2ψ(cε(x))‖2 = 64ν2S1

ε2 and also727

D2
ε = max

x,y∈K
B(cε(x)||cε(y))

= max
x,y∈K

ψ(cε(x))− ψ(cε(y))− 〈∇ψ(cε(y)),x− y〉
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)
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≤ ν log
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3
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√
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3
2K
√
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(86)

where the first inequality follows by Nesterov and Nemirovskii [41, Prop. 2.3.2] and the definition728

of a self-concordant barrier [2, Def. 5]. In addition, we have g(ε) = 32d2, f(ε) = ε, M =729

12d
√

2Km/ε 4
√
ν3S1, and F = 1. We have730

E
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〈ˆ̀t,i,xt,i − cεt(x̂t)〉

≤
T∑
t=1

EB(cεt(x̂t||xt,1)

ηt
+ (32ηtd

2 + εt)m

(87)

where the first inequality follows by Abernethy et al. [2, Lem. 8], the second by Abernethy et al. [2,731

Lem. 3], the third by optimality of x̂t, and the fourth by Lemma D.1. Substituting into Theorem A.1732

and simplifying yields the result.733
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D.2 Specialization to the unit sphere734

Corollary D.1. Let K be the unit sphere with the self-concordant barrier ψ(x) = − log(1− ‖x‖22).735

Then Algorithm 1 attains expected task-averaged regret bounded by736

Õ
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dm
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+
dm
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2ε+ ε2

)
+ εm (88)

using k =
⌈√

T
⌉

.737

Proof. Using the fact the ν = 1 and K = S1 = 2, we apply Theorem D.1 and simplify to obtain738

E min
ε∈[ 1

m ,1],η>0

V̂ 2
ε

η
+ 32ηd2m+ εm+ Õ
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Then substitute η = V̂ε
4
√

2dm
+
√
m

d
4√
T

, set ρ = 1
4√
T

, and note that739

EV̂ε = E
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 1− ‖cε(ˆ̄x)‖22
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√∏T
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1− (1 + ε)−2

)

≤

√
log

(
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1− E‖ˆ̄x‖22
2ε+ ε2

) (90)

where we use the fact that ‖x̂t‖2 = 1 and the inequality is Jensen’s.740

D.3 Specialization to polytopes, specifically the bandit online shortest-path problem741

As a last application, we apply our meta-BLO result to the shortest-path problem in online742

optimization [49, 30]. In its bandit variant [8, 17], at each step i = 1, . . . ,m the player must choose743

a path pi from a fixed source u ∈ V to a fixed sink v ∈ V in a directed graph G(V,E). At the same744

time the adversary chooses edge weights `i ∈ R|E| and the player suffers the sum
∑
e∈pt `i(e) of745

the weights in their chosen path pt. This can be relaxed as BLO over vectors x in a set K ⊂ [0, 1]|E|746

defined by a set C of O(|E|) linear constraints (a, b) 〈a,x〉 ≤ b enforcing flows from u to v; u to747

v paths can be sampled from any x ∈ K in an unbiased manner [2, Proposition 1]. In the single-task748

case the BLO method of Abernethy et al. [2] has O(|E| 32
√
m) regret on this problem.749

In the multi-task case consider a sequence of t = 1, . . . , T shortest path instances, each with m750

adversarial edge loss vectors `t,i. The goal is to minimize average regret across instances. This setup751

may be viewed as learning a prediction of the optimal path, as in the algorithms with predictions752

paradigm in beyond-worst-case-analysis [39]; in particular, we have incorporated predictions into753

the algorithm of Abernethy et al. [2] via the meta-initialization approach and now present the754

learning-theoretic result for an end-to-end guarantee [33].755

Corollary D.2 (c.f. Cor. D.3). For multi-task bandit online shortest path, Algorithm 1 with regularizer756

ψ(x) = −
∑

a,b∈C log(b− 〈a,x〉) attains the following expected average regret across instances757
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+εm (91)

Here the asymptotic regret scales with the sum across all constraints a, b ∈ C of the log of the ratio758

between the arithmetic and geometric means across tasks of the distances b− 〈a, cε(x̂t)〉 from the759

estimated optimum flow cε(x̂t) to the constraint boundary. As it is difficult to separate the effect of the760

offset ε, we do not state an explicit task-similarity measure like in our previous settings. Nevertheless,761

since the arithmetic and geometric means are equal exactly when all entries are equal—and otherwise762

the former is larger—the bound does show that regret is small when the estimated optimal flows763

x̂t for each task are at similar distances from the constraints. Indeed, just as on the sphere, if the764

estimated optima are all the same then setting ε = 1
m again yields constant averaged regret.765
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Corollary D.3. Let K = {x ∈ [0, 1]|E| : 〈a,x〉 ≤ b ∀ (a, b) ∈ C} be the set of flows from u to v766

on a graph G(V,E), where C ⊂ R|E| × R is a set of O(|E|) linear constraints. Suppose we see T767

instances of the bandit online shortest path problem with m timesteps each. Then sampling from768

probability distributions over paths from u to v returned by running Algorithm 1 with regularizer769

ψ(x) = −
∑

a,b∈C log(b− 〈a,x〉) attains the following expected average regret across instances770
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(92)
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Proof. Using the fact that d = |E|, ν = O(|E|), K =
√
|E|, and S1 ≤

∑
a,b∈C

‖aaT ‖2
(〈a,1|E|/|E|〉−b)2 =772

O(|E|3), we apply Theorem D.1 and simplify to obtain773
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Then substitute η = V̂ε
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