
Appendices:
Rebooting ACGAN: Auxiliary Classifier GANs with

Stable Training

A Algorithm

Algorithm 1 : Training ReACGAN

Input: Batch size: N . Temperature: τ . Margin values: mp, mn. Balance coefficient: λ.
Parameters of the generator: θ.
Parameters of the discriminator (feature extractor + adversarial head + linear head): φ.
# of discriminator updates per single generator update: ndis.
Adversarial loss: LAdv [1, 2, 3, 4].
Learning rate: α1, α2. Adam hyperparameters [5]: β1, β2.

Output: Optimized (θ, φ).

1: Initialize (θ, φ)
2: for {1, ..., # of training iterations} do
3: for {1, ..., ndis} do
4: Sample X,yreal = {xi}Ni=1, {yi}Ni=1 ∼ preal(x,y)
5: Sample Z = {zi}Ni=1 ∼ p(z) and yfake = {yfakei }Ni=1 ∼ P (y)
6: LD_Adv ←− LAdv(X,yreal, G(Z,yfake),yfake)
7: LD_Cond ←− LD2D-CE(X,yreal; τ,mp,mn) . Eq. (6) with real images.
8: φ←− Adam(LD_Adv + λLD_Cond, α1, β1, β2)
9: end for

10: Sample Z = {zi}Ni=1 ∼ p(z) and yfake = {yfakei }Ni=1 ∼ P (y)
11: LG_Adv ←− LAdv(G(Z,y

fake),yfake)
12: LG_Cond ←− LD2D-CE(G(Z,y

fake),yfake; τ,mp,mn) . Eq. (6) with fake images.
13: θ ←− Adam(LG_Adv + λLG_Cond, α2, β1, β2)
14: end for

B Software: PyTorch-StudioGAN

Generative Adversarial Network (GAN) is one of the popular generative models for realistic image
generation. Although GAN has been actively studied in the machine learning community, only
a few open-source libraries provide reliable implementations for GAN training. In addition, the
existing libraries do not support various training and test configurations for loss functions, backbone
architectures, regularizations, differentiable augmentations, and evaluation metrics. In this paper,
we expand StudioGAN [6] library, and the StudioGAN provides about 40 implementations of
GAN-related papers as follows:

GANs: DCGAN [7], LSGAN [2], GGAN [4], WGAN-WC [8], WGAN-GP [3], WGAN-DRA [9],
ACGAN [10], Projection discriminator [11], SNGAN [12], SAGAN [13], TACGAN [14], LGAN [15],
BigGAN [16], BigGAN-deep [16], StyleGAN2 [17], CRGAN [18], ICRGAN [19], LOGAN [20],
ContraGAN [21], MHGAN [22], ADCGAN [23], ReACGAN (ours).

Adversarial losses: Logistic loss [17], Non-saturation loss [1], Least square loss [2], Wasserstein
loss [8], Hinge loss [4], Multiple discriminator loss [24], Multi-hinge loss [22].

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Regularizations: Feature matching regularization [25], R1 regularization [24], Weight clipping
regularization [8], Spectral normalization [12], Path length regularization [26, 17], Top-k training [27].

Metrics: IS [25], FID [28], Intra-class FID, CAS [29], Precision and recall [30], Improved precision
and recall [31], Density and coverage [32], SwAV backbone FID [33].

Differentiable augmentations: SimCLR augmentation [34, 35], BYOL augmentation [36, 35],
DiffAugment [37], Adaptive discriminator augmentation (ADA) [38].

Miscellaneous: Mixed precision training [39], Distributed data parallel (DDP), Data parallel (DP),
Synchronized batch normalization [40], Standing statistics [16], Truncation trick [16, 17], Freeze
discriminator (FreezeD) [41], Discriminator driven latent sampling (DDLS) [42], Closed-form
factorization (SeFa) [43].

C Training Details

C.1. Datasets
CIFAR10 [44] is a widely used benchmark dataset for evaluating cGANs. The dataset contains 60k
32× 32 RGB images which belong to 10 different classes. The dataset is split into 50k images for
training and 10k images for testing.

Tiny-ImageNet [45] contains 120k 64×64 RGB images and is split into 100k training, 10k validation,
and 10k test images. Tiny-ImageNet consists of 200 categories, and training GANs on Tiny-ImageNet
is more challenging than CIFAR10 since there is less data (500 images) per class.

CUB200 [46] provides around 12k fine-grained RGB images for 200 bird classes. We apply the
center crop to each image using a square box whose lengths are the same as the short side of the
image, and we resize the images to 128×128 pixels. We train cGANs on CUB200 dataset to identify
the generation ability of cGANs on images with fine-grained characteristics in a limited data situation.

ImageNet [47] provides around 1,281k and 50k RGB images for training and validation. We
preprocess each image in the same way as applied to CUB200.

AFHQ [48] consists of 14,630 and 1,500 numbers of 512 × 512 RGB images for training and
validation. The dataset is divided into 3 different animal classes (cat, dog, and wild animals).

For training and testing, we apply horizontal flip augmentation for all datasets and normalize image
pixel values to a range between -1 and 1.

C.2. Hyperparameter Setup
Selecting proper hyperparameter values greatly affects GAN training. So it might be helpful to
specify details of hyperparameter setups used in our work for future study. In this section, we aim to
provide training specifications as much as possible, and if there exists a missing experimental setup,
it follows configurations and details of StudioGAN implementation [6].

Table A1 shows hyperparameter setups used in our experiments. The settings (A, C, E, G) are used
for baseline experiments on CIFAR10: BigGAN [16], BigGAN with DiffAug [37], StyleGAN2 [17],
and StyleGAN2 with ADA [38], the setting (I) on Tiny-ImageNet: BigGAN and BigGAN with
DiffAug, the setting (K) on CUB200: BigGAN and BigGAN with DiffAug, the settings (M, N,
P) on ImageNet: ACGAN/SNGAN/ContraGAN, BigGAN/ReACGAN/DiffAug-BigGAN/DiffAug-
ReACGAN with a batch size of 256, and BigGAN with a batch size of 2048, and the setting (R)
on AFHQ: StyleGAN2 with ADA. For ReACGAN experiments, we utilize the settings (B, D, F, H,
J, L, O, Q, S) for experiments on the datasets stated above. To select an appropriate temperature τ
and positive margin mp, we conduct two-stage linear search with the candidates of a tempera-
ture τ ∈ {0.125, 0.25, 0.5, 0.75, 1.0} and a positive margin mp ∈ {0.5, 0.75, 0.9, 0.95, 0.98, 1.0}
while fixing the dimensionalities of feature embeddings to 512, 768, 1024, and 2048 for CIFAR10,
Tiny-ImageNet, CUB200, and ImageNet experiments. We set the balance coefficient λ equal to
the temperature τ except for ImageNet generation experiments. Specifically, we explore the best
temperature value on each dataset and fix the temperature for the linear search on the positive margin.
Linear search results are summarized in Fig. A1, and the results show that ReACGAN provides stable
performances across various temperature and positive margin values.
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Table A1: Hyperparameter setups for cGAN training. The settings (A, C, E, I, K, M, P, R) are
commonly used practices in previous studies [13, 16, 21, 38]

Setting Batch size Adam(α1, α2, β1, β2) [5] ndis (λ, τ ) mp G_Ema [49] Ema start Total iterations

A 64 (2e-4, 2e-4, 0.5, 0.999) 5 - - True 1k 100k
B 128 (2.82e-4, 2.82e-4, 0.5, 0.999) 5 (0.5, 0.5) 0.98 True 1k 100k
C 64 (2e-4, 2e-4, 0.5, 0.999) 5 - - True 1k 200k
D 128 (2.82e-4, 2.82e-4, 0.5, 0.999) 5 (0.5, 0.5) 0.98 True 1k 200k
E 64 (2.5e-3, 2.5e-3, 0.0, 0.99) 1 - - True 0 200k
F 64 (2.5e-3, 2.5e-3, 0.0, 0.99) 2 (0.25, 0.25) 0.98 True 0 200k
G 64 (2.5e-3, 2.5e-3, 0.0, 0.99) 1 - - True 0 800k
H 64 (2.5e-3, 2.5e-3, 0.0, 0.99) 2 (0.25, 0.25) 0.98 True 0 800k

I 1024 (4e-4, 1e-4, 0.0, 0.999) 1 - - True 20k 100k
J 1024 (4e-4, 1e-4, 0.0, 0.999) 1 (0.75, 0.75) 1.0 True 20k 100k

K 256 (2e-4, 5e-5, 0.0, 0.999) 2 - - True 4k 40k
L 256 (2e-4, 5e-5, 0.0, 0.999) 2 (0.25, 0.25) 0.95 True 4k 40k

M 256 (2e-4, 5e-5, 0.0, 0.999) 2 - - True 20k 200k
N 256 (2e-4, 5e-5, 0.0, 0.999) 2 - - True 20k 600k
O 256 (2e-4, 5e-5, 0.0, 0.999) 2 (1.0, 0.5) 0.98 True 20k 600k
P 2048 (2e-4, 5e-5, 0.0, 0.999) 2 - - True 20k 200k
Q 2048 (2e-4, 5e-5, 0.0, 0.999) 2 (0.5, 0.25) 0.90 True 20k 200k

R 64 (2.5e-3, 2.5e-3, 0.0, 0.99) 1 - - True 0 200k
S 64 (2.5e-3, 2.5e-3, 0.0, 0.99) 2 (0.5, 0.5) 0.95 True 0 200k
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Figure A1: FID [28] values of ReACGANs with different temperatures and positive margins. The
dotted lines indicate the best performances on each dataset.

D Proofs of Properties of D2D-CE

In the main paper, we introduce a new objective, the D2D-CE to train ACGAN stably. In this section,
we provide proofs of the properties of D2D-CE. Using the notations defined in the main paper, our
proposed D2D-CE loss can be expressed as follows:

LD2D-CE = − 1

N

N∑
i=1

log

(
exp

(
[f>i vyi −mp]−/τ

)
exp

(
[f>i vyi

−mp]−/τ
)
+
∑

j∈N (i) exp
(
[f>i fj −mn]+/τ

)), (A1)

where i is a sample index andN (i) is the set of indices that indicate the locations of negative samples
in the mini-batch. To understand properties of D2D-CE loss, we can rewrite Eq. (A1) as follows:

LD2D-CE = − 1

N

N∑
i=1

log

(
exp

(
[si −mp]−/τ

)
exp

(
[si −mp]−/τ

)
+
∑

j∈N (i) exp
(
[si,j −mn]+/τ

)). (A2)

Let sq be a similarity between a normalized reference sample embedding fq and the corresponding
normalized proxy vyq , sq,r be a similarity between fq and one of the its negative samples fr, and
a, b ∈ N (q) be arbitrary indices of negative samples. Then, we can summarize the four properties of
D2D-CE loss as follows:
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Property 1. Hard negative mining. If the value of sq,a is greater than sq,b, the derivative of LD2D-CE

w.r.t sq,a is greater than or equal to the derivative w.r.t sq,b; that is ∂LD2D-CE
∂sq,a

≥ ∂LD2D-CE
∂sq,b

≥ 0.

Property 2. Positive suppression. If sq −mp ≥ 0, the derivative of LD2D-CE w.r.t sq is 0.
Property 3. Negative suppression. If sq,r −mn ≤ 0, the derivative of LD2D-CE w.r.t sq,r is 0.
Property 4. If sq −mp ≥ 0 and sq,r −mn ≤ 0 are satisfied, LD2D-CE has the global minima of
1
N

∑N
i=1 log (1 + |N (i)|).

Proof of Property 1. By expanding Eq. (A2), we have the following equation:

LD2D-CE =− 1

τN

N∑
i=1

[si −mp]−︸ ︷︷ ︸
Positive attraction

+
1

N

N∑
i=1

log

(
exp

(
[si −mp]−/τ

)
+
∑

j∈N (i)

exp
(
[si,j −mn]+/τ

))
︸ ︷︷ ︸

Negative repulsion

. (A3)

Based on this, we calculate the derivative of LD2D-CE w.r.t sq,r as follows:

∂LD2D-CE

∂sq,r
=

1si,j−mn>0(i = q, j = r) exp
(
(sq,r −mn)/τ

)
τN

(
exp

(
[sq −mp]−/τ

)
+
∑

j∈N (q) exp
(
[sq,j −mn]+/τ

)) . (A4)

Since we assume sq,a > sq,b is satisfied, the derivative of ∂LD2D-CE
∂sq,a

is greater than ∂LD2D-CE
∂sq,b

except
when the indicator functions 1si,j−mn>0(i = q, j = a) and 1si,j−mn>0(i = q, j = b) are 0.
Note that the value of the derivative ∂LD2D-CE

∂sq,r
exponentially increases as the similarity sq,r linearly

increases, and this means that LD2D-CE conducts hard negative mining.

Proof of Property 2. Based on Eq. (A3), we can derive the derivative of LD2D-CE w.r.t sq as follows:

∂LD2D-CE

∂sq
=− 1

τN
1si−mp<0(i = q)

+
1si−mp<0(i = q)exp

(
(sq −mp)/τ

)
τN

(
exp

(
[sq −mp]−/τ

)
+
∑

j∈N (q) exp
(
[sq,j −mn]+/τ

)) . (A5)

Since the indicator function 1si−mp<0(i = q) gives 0 value when sq −mp ≥ 0, the derivative of
LD2D-CE w.r.t sq is 0 when sq −mp ≥ 0 is satisfied.

Proof of Property 3. Based on Eq. (A4), the derivative of LD2D-CE w.r.t sq,r is 0 when sq,r−mn ≤ 0.

Proof of Property 4. We can get the global minima of LD2D-CE by plugging in 0 values inside of the
exponential components in Eq. (A3) as follows:

LD2D-CE =
1

N

N∑
i=1

log

(
exp

(
0
)
+
∑

j∈N (i)

exp
(
0
))

=
1

N

N∑
i=1

log (1 + |N (i)|). (A6)

E Additional Experimental Results

Gradients Exploding Problem in ACGAN. We conduct additional experiments regarding the
gradient exploding problem of ACGAN using CUB200 dataset, and the results can be seen in Fig. A2.
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Figure A2: Merits of integrating feature normalization and data-to-data relationship consideration.
The experiments are conducted using CUB200 [46] dataset. (a) Average norms of input feature maps,
(b) average norms of gradients of classification losses, and (c) trends of FID scores. Compared to AC-
GAN [10], the proposed ReACGAN does not experience the early-training collapse problem caused
by excessively large norms of feature maps and gradients. In addition, ReACGAN can converge to a
better equilibrium by considering data-to-data relationships with easy sample suppression.
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Figure A3: Trends of the probability values from the classifiers trained on Tiny-ImageNet [45] and
CUB200 [46] datasets.

Same as the experimental results using Tiny-ImageNet (Fig. 2 in the main paper), normalizing feature
maps resolves the early-training collapse problem. Also, considering data-to-data relationships brings
extra performance gain with easy positive and negative sample suppression.

ACGAN Focuses on Classifier Training instead of Adversarial Learning. To identify ACGAN is
prone to being biased toward classifying categories of images instead of discriminating the authenticity
of given samples, we track the trend of classifier’s target probabilities as the training progresses using
Tiny-ImageNet and CUB200 datasets. As can be seen in Fig. A2, A3, and Fig. 2 in the main paper,
classifier’s target probabilities continuously increase, but the FID scores do not decrease as of certain
points in time. Therefore the experimental results imply that ACGAN training is likely to become
biased toward label classification instead of adversarial training.

Can ReACGAN Approximate a Mixture of Gaussian Distributions Whose Supports Overlap?
We conduct distribution approximation experiments using a 1-D mixture of Gaussian distribu-
tions (MoG). The experiments are proposed by Gong et al. [14] and are devised to identify if a
given GAN can estimate any true data distribution, even the mixture of Gaussians with overlapped
supports. Although ReACGAN has shown successful outputs on real images, ReACGAN fails to
estimate the 1-D MoG, resulting in poor approximation ability similar to ACGAN (see Fig. A4).
However, this phenomenon is not weird because ReACGAN follows the same optimization process
as ACGAN does, which inherently reduces a conditional entropy H(y|x). As the result, ACGAN
can only accurately approximate marginal distributions generated by conditional distributions with
non-overlapped supports.

To deal with this problem, Gong et al. [14] have suggested using a twin auxiliary classifier (TAC) on
the top of the discriminator and have demonstrated that TAC enables ACGAN to exactly estimate the
1-D MoG. Therefore, ReACGAN can be reinforced by introducing TAC, and the experimental result
verifies that ReACGAN can approximate the 1-D MoG exactly (see Fig. A4).
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Figure A4: Comparison with ACGAN [10], Projection discriminator [11], TACGAN [14], ReAC-
GAN, and ReACGAN + TAC on a synthetic 1-D MoG dataset [14]. We conduct all experiments
using the same setup specified in the paper [14].

Table A2: Experiments to identify the effectiveness of ReACGAN with TAC [14] on CIFAR10 [44]
and Tiny-ImageNet [45] datasets.

Dataset
ACGAN [10] TACGAN [14] ReACGAN ReACGAN + TAC [14]

IS ↑ FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑ FID ↓
CIFAR10 [44] 9.84 8.45 9.78 8.01 9.89 7.88 9.70 7.94
Tiny-ImageNet [45] 6.00 96.04 7.62 65.99 14.06 27.10 13.71 26.14

Finally, to validate the effectiveness of TAC for ReACGAN on real datasets, we perform CIFAR10
and Tiny-ImageNet generation experiments. Contrary to our expectations, Table A2 shows that
ReACGAN + TAC provides comparable or marginally better results on CIFAR10 and Tiny-ImageNet
datasets over the ReACGAN. We speculate that this is because benchmark datasets are highly refined
and might follow a mixture of non-overlapped conditional distributions.

Effect of D2D-CE for Different GAN Architectures. We perform additional experiments to identify
the effect of D2D-CE loss for different GAN architectures. We utilize a deep convolutional neural
network (Deep CNN) [7] and a ResNet-style network (ResNet) [3] to train GANs on CIFAR10
and Tiny-IamgeNet datasets. The experimental results show that ReACGAN provides consistent
generation results on different architectures (see Table A3).

Table A3: Experiments for investigating the effect of D2D-CE for different architectures using
CIFAR10 [44] and Tiny-ImageNet [45] datasets. We report only FID [28] for a compact expression.

Conditioning method Deep CNN [7] on CIFAR10 [44] ResNet [3] on CIFAR10 [44] ResNet [3] on Tiny-ImageNet [45]

AC [10] 20.35 13.04 87.84
PD [11] 19.49 13.47 47.88
2C [21] 21.47 14.38 40.56
D2D-CE (ReACGAN) 18.94 12.47 40.89

Effect of Number of Negative Samples on ReACGAN Training. We investigate how the number
of negative samples affects the generation performance of ReACGAN using CIFAR10 and Tiny-
ImageNet datasets. First, we compute pairwise similarities between all negative samples in the
mini-batch. Then, we drop similarities between negative samples using a randomly generated mask
whose element has a value of 0 according to the pre-defined probability p and otherwise has a
value of 1. For example, p = 0.1 will lead approximately 10% of the total similarities between
negative samples not to account for calculating the denominator part of D2D-CE loss. As can be
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Table A4: Ablation study on the number of negative samples. FID score [28] is used for evaluation.

Dataset
Masking probability p for negative samples in Eq. (6)

p = 1.0 0.8 0.6 0.4 0.2 0.0

CIFAR10 [44] 11.15 8.07 8.11 7.83 8.01 7.88
Tiny-ImageNet [45] 60.74 30.04 28.64 28.59 28.68 27.10

seen in Table A4, D2D-CE loss benefits from more negative samples. This implies that the more the
data-to-data relations are provided, the richer supervision signals for conditioning become, resulting
in better image generation results. In addition, from the optimization point of view, the generator and
discriminator can receive gradient signals at an exponential rate as the number of negative samples
increases linearly.

Are There Any Possible Prescriptions for Preventing the Gradient Exploding Problem? In
the main paper, we verify that simply normalizing feature embeddings onto a unit hypersphere
resolves ACGAN’s early-training collapse problem. In this section, we explore if there exist other
cures for resolving the early-training collapse problem: (1) lowering classification strength, (2)
gradient clipping, and (3) feature clipping. The experimental results (Table A5) indicate that lowering
classification strength and normalizing feature maps can prevent ACGAN training from collapsing
at the early training phase. However, we cannot succeed in training ACGAN by clipping gradients
of the classifier. We speculate that this is because gradient clipping restricts not only the norms
of feature maps but also the class probability values; thus, ACGAN can be updated by inaccurate
gradients and ends up collapsing. Among those methods, the normalization and D2D-CE present
better performances than the others, demonstrating the effectiveness of our proposals.

Table A5: Experiments for studying available cures for preventing the gradient exploding problem in
ACGAN. FID [28] scores are reported for evaluation. λ is a balance coefficient between adversarial
learning and classifier training.

Dataset λ = 0.25 λ = 0.5 λ = 0.75 λ = 1 Normalization Feature clipping Gradient clipping D2D-CE

CIFAR100 [44] 12.30 13.61 15.60 16.92 13.17 17.47 40.23 12.25
Tiny-ImageNet [45] 62.86 92.05 104.34 98.75 28.04 57.65 108.30 27.10

Training Time per 100 Generator Updates. We investigate training times of BigGAN, ContraGAN,
and ReACGAN on ImageNet using 8 Nvidia V100 GPUs. The batch size is set to 2048. We identify
that ReACGAN brings in a slight computational overhead and takes about 1.05∼1.1 longer time than
the other GANs. Specifically, BigGAN takes 17m 37s, ContraGAN 18m 24s, and ReACGAN 18m
52s per 100 generator updates.

F Analysis of the differences between ReACGAN and ContraGAN

This section explains the differences between ReACGAN and ContraGAN [21] from a mathematical
point of view. Kang and Park [21] have proposed the conditional contrastive loss (2C loss), which is
formulated from NT-Xent loss [34], and developed contrastive generative adversarial networks (Con-
traGAN) for conditional image generation. Using the notations used in our main paper, we can write
down 2C loss as follows:

L2C = − 1

N

N∑
i=1

log

(
exp

(
f>i vyi/τ) +

∑
np∈P(i) exp(f

>
i fnp

/τ)

exp
(
f>i vyi

/τ
)
+
∑

j∈{1,...,N}\{i} exp
(
f>i fj/τ

)), (A7)

where P(i) is the set of indices that indicate locations of positive samples in the mini-batch. To
clearly identify how each sample embedding updates, we start by considering 2C loss on a single
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sample. We can rewrite a single sample version of Eq. (A7) as follows:

L
′

2C =− 1

N
log

(
exp

(
f>q vyq

/τ) +
∑

np∈P(q)

exp(f>q fnp
/τ)

)
︸ ︷︷ ︸

Positive attraction

+
1

N
log

(
exp

(
f>q vyq

/τ
)
+

∑
j∈{1,...,N}\{q}

exp
(
f>q fj/τ

))
︸ ︷︷ ︸

Negative repulsion

. (A8)

Using Eq. (A8), we can calculate the derivative of L′

2C w.r.t fq as follows:

∂L′

2C

∂fq
=−

exp(f>q vyq
/τ)vyq

+
∑

np∈P(q) exp (f
>
q fnp

/τ)fnp

τN

(
exp(f>q vyq

/τ) +
∑

np∈P(q) exp (f
>
q fnp

/τ)

)
+

exp(f>q vyq
/τ)vyq

+
∑

j∈{1,...,N}\{q} exp (f
>
q fj/τ)fj

τN

(
exp(f>q vyq

/τ) +
∑

j∈{1,...,N}\{q} exp (f
>
q fj/τ)

) . (A9)

To understand Eq. (A9) more intuitively, we replace the denominator terms of Eq. (A9) with A and B
and re-organize the equation as follows:

∂L2C

∂fq
=−

exp(f>q vyq/τ)vyq +
∑

np∈P(q) exp (f
>
q fnp/τ)fnp

τNA

+
exp(f>q vyq

/τ)vyq
+
∑

j∈{1,...,N}\{q} exp (f
>
q fj/τ)fj

τNB

=− 1

τN

(exp(f>q vyq/τ)vyq +

(P) Positive samples︷ ︸︸ ︷∑
np∈P(q)

exp (f>q fnp/τ)fnp

A
−

exp(f>q vyq
/τ)vyq

B

)
︸ ︷︷ ︸

Positive attraction

+
1

τN

(∑nq∈N (q) exp (f
>
q fnq

/τ)fnq
+

(F) False negative samples︷ ︸︸ ︷∑
j∈{1,...,N}\({q}∪N (q))

exp (f>q fj/τ)fj

B

)
︸ ︷︷ ︸

Negative repulsion

.

(A10)

The above equation implies that the positive samples (P) in Eq (A10) can cause easy positive mining,
i.e., if a similarity f>q fnp

has a large value, the gradient ∂L2C
∂fq

can be biased towards fnp
direction

with large magnitude. In addition, the false-negative samples (F) can attenuate the negative repulsion
force, which is already being addressed in the contrastive learning community [50, 51, 52]. Unlike
2C loss, our D2D-CE loss does not experience the easy positive mining and the attenuation caused by
false-negative samples. To demonstrate this, we write down D2D-CE loss as follows:

LD2D-CE = − 1

N

N∑
i=1

log

(
exp ([f>i vyi

−mp]−/τ)

exp
(
[f>i vyi

−mp]−/τ
)
+
∑

j∈N (i) exp
(
[f>i fj −mn]+/τ

)).
(A11)
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In the same way as before, we can expand a single sample version of Eq. (A11) as follows:

LD2D-CE =− 1

τN
[f>q vyq

−mp]−︸ ︷︷ ︸
Positive attraction

+
1

N
log

(
exp

(
[f>q vyq

−mp]−/τ
)
+

∑
j∈N (q)

exp
(
[f>q fj −mn]+/τ

)
︸ ︷︷ ︸

Negative repulsion

. (A12)

Based on Eq. (A12), we can calculate the derivative of LD2D-CE w.r.t fq as follows:

∂LD2D-CE

∂fq
=− 1

τN
1f>

i vyi
−mp<0(i = q)vyq

+
1

τN

(
1f>

i vyi
−mp<0(i = q) exp

(
(f>q vyq

−mp)/τ
)
vyq

exp
(
[f>q vyq

−mp]−/τ
)
+
∑

j∈N (q) exp
(
[f>q fj −mn]+/τ

))

+
1

τN

( ∑
j∈N (q) 1f>

i fj−mn>0(i = q) exp
(
(f>q fj −mn)/τ

)
fj

exp
(
[f>q vyq −mp]−/τ

)
+
∑

j∈N (q) exp
(
[f>q fj −mn]+/τ

))

=−
1f>

i vyi
−mp<0(i = q)

τN

(
vyq −

exp
(
(f>q vyq

−mp)/τ
)
vyq

C

)
︸ ︷︷ ︸

Positive attraction

+
1

τN

(∑
j∈N (q) 1f>

i fj−mn>0(i = q) exp
(
(f>q fj −mn)/τ

)
fj

C

)
︸ ︷︷ ︸

Negative repulsion

, (A13)

where C = exp
(
[f>q vyq −mp]−/τ

)
+
∑

j∈N (q) exp
(
[f>q fj −mn]+/τ

)
. Unlike 2C loss, D2D-

CE loss does not contain multiple positive samples in the positive attraction bracket and only consists
of negative samples in the negative repulsion part, which means that D2D-CE loss does not perform
easy-positive mining and does not attenuate the negative repulsion force.

Table A6: Top-1 and Top-5 ImageNet classification accuracies on generated images from AC-
GAN [10], BigGAN [16], ContraGAN [21], and ReACGAN (ours). We use ImageNet pre-trained
Inception-V3 model [53] as a classifier. To generate images from GANs, we use the best checkpoints
saved during 200k generator updates.

Real data (validation) ACGAN [10] BigGAN [16] ContraGAN [21] ReACGAN

Top-1 Accuracy (%) 70.822 62.412 29.994 2.866 23.210
Top-5 Accuracy (%) 89.574 84.899 53.842 11.482 51.602

IS [25] ↑ 173.33 62.99 28.63 25.25 50.30
FID [28] ↓ - 26.35 24.68 25.16 16.32

To compare the conditioning performance of ReACGAN with other cGANs, we calculate Top-1 and
Top-5 classification accuracies on ImageNet [47] using the pre-trained Inception-V3 network [53].
The results are summarized in Table A6. Although ReACGAN has a lower FID value and higher
IS score compared with BigGAN [16] and ContraGAN [21], the top-1 and top-5 accuracies of
ReACGAN are slightly below that of BigGAN. This implies that ReACGAN tends to approximate
overall distribution with a slight loss of the exact conditioning. On the other hand, ContraGAN
fails to perform conditional image generation, and it provides 2.866 % Top-1 accuracy on ImageNet
dataset. This indicates that ContraGAN is likely to generate undesirably conditioned but visually
satisfactory images (see Fig. A10, A14, A18, and A21 for quantitative results). One more interesting
point is that although generated images from ACGAN give the best classification accuracy, they show
a poor FID value compared with the others. This implies that ACGAN generates well-classifiable
images without considering the diversity and fidelity of generated samples (see Fig. A12).
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G Potential Negative Societal Impacts

The success in generating photo-realistic images in GANs [16, 26, 17] has attracted a myriad of
applications to be developed, such as photo editing (filtering [54], stylization [55] and object re-
moval [56]), image translation (sketch → clip art [57], photo → cartoon [58]), image in-painting [59],
and image extrapolation to arbitrary resolutions [60]. While, in most cases, GANs are helpful for
content creation or fast prototyping, there exist potential threats that one can maliciously use the
synthesized results to deceive others. A well-known example is deepfake [61], where a person in
the video appears with the voice and appearance of a celebrity and conveys a message to deceive or
confuse others, e.g., fake news. Other examples include sexual harnesses [62] and hacking machine
vision applications.

As an effort to circumvent the negative issues, a number of techniques have been proposed. Masi et
al. [63] have utilized color and frequency information to detect deepfake. Naseer et al. [64] have
developed a general defense method from self-attacking via feature perturbation. We anticipate
that further development of synthetic image detection techniques, well-established policies on
the technique, and ethical awareness of researchers/developers will enable us to enjoy the broad
applicability and benefits of GANs.

H Computation resources

In this section, we provide a summary of the total number of performed experiments, computing
resources, and approximated training time spent on our research in Table A7. Since we have conducted
a lot of experiments with various configurations using different resources, we divide our experiments
into 16 divisions and calculate approximate time spent on each division of experiments.

Table A7: Approximate total training time (days) provided for reference.

Division of experiments GPU Type Days # of experiments Approximate Time (days)

CIFAR10 [44] RTX 2080 Ti 0.75 100 75
CIFAR10 [44] + CR [18] RTX 2080 Ti 1.17 9 10.53
CIFAR10 [44] + DiffAug [37] RTX 2080 Ti 2.04 9 18.36
CIFAR10 [44] + StyleGAN2 [17] TITAN Xp×2 2.58 2 5.16
CIFAR10 [44] + StyleGAN2 [17] + ADA [38] TITAN Xp×2 9.52 2 19.04

Tiny-ImageNet [45] TITAN RTX×4 1.54 84 132.44
Tiny-ImageNet [45] + CR [18] TITAN RTX×4 1.42 9 12.78
Tiny-ImageNet [45] + DiffAug [37] TITAN RTX×4 2.83 9 25.47

CUB200 [46] TITAN RTX×4 1.63 24 39.12
CUB200 [46] + CR [18] TITAN RTX×4 0.92 9 8.28
CUB200 [46] + DiffAug [37] TITAN RTX×4 0.67 9 6.03

ImageNet [47] (200k iter., B.S.=256) Tesla V100×4 4.17 6 25.02
ImageNet [47] (600k iter., B.S.=256) Tesla V100×4 12.51 2 25.02
ImageNet [47] + DiffAug [37] (600k iter., B.S.=256) A100×4 12.43 2 24.86
ImageNet [47] (B.S.=2048) Tesla V100×8 26.90 2 53.80

AFHQ [48] + StyleGAN2 [17] + ADA [38] A100×4 1.96 2 3.92

Total 280 484.83

I Standard Deviations of Experiments

We run all the experiments three times with random seeds and report the averaged best performances
for reliable evaluation with the lone exception of ImageNet experiments. This section provides
standard deviations for reference.
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Table A8: Comparisons with classifier-based GANs [10, 21] and projection-based GANs [12, 16, 13]
on CIFAR10 [44], Tiny-ImageNet [45], and CUB200 [46] datasets using IS [25], FID [28], F0.125
and F8 [30] metrics. We report the standard deviations of three different runs in this table.

Method
CIFAR10 [44] Tiny-ImageNet [45] CUB200 [46]

IS ↑ FID ↓ F0.125 ↑ F8 ↑ IS ↑ FID ↓ F0.125 ↑ F8 ↑ IS ↑ FID ↓ F0.125 ↑ F8 ↑
SNGAN∗ [12] - - - - - - - - - - - -
BigGAN∗ [16] - - - - - - - - - - - -
ContraGAN∗ [21] - - - - - - - - - - - -
ACGAN [10] 0.06 0.02 0.001 0.000 0.12 8.04 0.021 0.048 0.73 9.20 0.036 0.102
SNGAN [12] 0.02 0.20 0.002 0.004 0.16 0.84 0.009 0.022 0.35 2.08 0.020 0.010
SAGAN [13] 0.06 0.45 0.003 0.004 0.52 6.97 0.056 0.034 0.20 11.62 0.070 0.039
BigGAN [16] 0.08 0.04 0.001 0.004 2.35 4.48 0.014 0.068 0.11 2.83 0.020 0.008
ContraGAN [21] 0.07 0.09 0.000 0.001 0.34 0.57 0.001 0.011 0.13 1.36 0.008 0.021
ReACGAN 0.10 0.07 0.001 0.002 0.07 0.56 0.003 0.009 0.09 0.80 0.007 0.009

BigGAN + CR∗ [18] - - - - - - - - - - - -
BigGAN [16] + CR [18] 0.15 0.09 0.001 0.001 0.47 0.15 0.003 0.002 0.00 0.85 0.004 0.003
ContraGAN [21] + CR [18] 0.28 0.94 0.003 0.015 0.41 0.46 0.001 0.001 0.07 0.15 0.004 0.003
ReACGAN + CR [18] 0.16 0.02 0.001 0.001 0.16 0.82 0.001 0.005 0.07 0.45 0.003 0.003
BigGAN + DiffAug∗ [37] - - - - - - - - - - - -
BigGAN [16] + DiffAug [37] 0.16 0.06 0.001 0.000 0.87 0.81 0.001 0.002 0.18 1.10 0.004 0.001
ContraGAN [21] + DiffAug [37] 0.07 0.08 0.001 0.000 0.78 0.31 0.002 0.001 0.07 0.15 0.004 0.003
ReACGAN + DiffAug [37] 0.04 0.12 0.000 0.002 0.12 0.14 0.002 0.001 0.05 0.66 0.002 0.001

Table A9: Experiments on the effectiveness of D2D-CE loss compared with other conditioning losses.

Conditioning Method
CIFAR10 [44] Tiny-ImageNet [45] CUB200 [46]

IS ↑ FID ↓ F0.125 ↑ F8 ↑ IS ↑ FID ↓ F0.125 ↑ F8 ↑ IS ↑ FID ↓ F0.125 ↑ F8 ↑

BigGAN w/o Condition [16]
0.12 0.20 0.001 0.001 0.79 11.69 0.055 0.097 0.23 7.00 0.031 0.015(Abbreviated to Big)

Big + AC [10] 0.06 0.02 0.001 0.000 0.12 8.04 0.021 0.048 0.73 9.20 0.036 0.102
Big + PD [11] 0.08 0.04 0.001 0.004 2.35 4.48 0.014 0.068 0.11 2.83 0.020 0.008
Big + MH [22] 0.12 0.04 0.000 0.002 0.72 15.42 0.102 0.056 0.42 40.23 0.124 0.087
Big + 2C [21] 0.07 0.09 0.000 0.001 0.34 0.57 0.001 0.011 0.13 1.36 0.008 0.021
Big + D2D-CE (ReACGAN) 0.10 0.07 0.001 0.002 0.07 0.56 0.003 0.009 0.09 0.80 0.007 0.009

Table A10: Experiments to identify the consistent performance of D2D-CE on adversarial loss
selection.

Adversarial Loss Conditioning CIFAR10 [44] Tiny-ImageNet [45]

Method IS ↑ FID ↓ F0.125 ↑ F8 ↑ IS ↑ FID ↓ F0.125 ↑ F8 ↑

Non-Saturation [1]
PD [11] 0.10 0.12 0.001 0.002 0.41 1.56 0.029 0.032
2C [21] 0.07 0.08 0.001 0.006 0.98 6.72 0.020 0.034
D2D-CE 0.07 0.06 0.001 0.001 0.67 3.09 0.011 0.028

Least Square [2]
PD [11] 0.08 0.26 0.001 0.002 0.49 0.72 0.008 0.006
2C [21] 0.29 1.28 0.002 0.012 3.01 14.32 0.082 0.123
D2D-CE 0.05 0.23 0.002 0.002 2.56 16.55 0.105 0.172

W-GP [3]
PD [11] 0.30 2.82 0.010 0.024 2.05 37.22 0.261 0.234
2C [21] 0.27 7.35 0.056 0.031 2.20 33.35 0.187 0.190
D2D-CE 0.41 6.75 0.015 0.043 2.43 20.38 0.086 0.155

Hinge [4]
PD [11] 0.08 0.04 0.001 0.004 2.35 4.48 0.014 0.068
2C [21] 0.07 0.09 0.000 0.001 0.34 0.57 0.001 0.011
D2D-CE 0.10 0.07 0.001 0.002 0.07 0.56 0.003 0.009
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Table A11: Ablation study on normalization, data-to-data consideration, and easy negative and
positive sample suppression.

Ablation
Tiny-ImageNet [45] CUB200 [46]

IS ↑ FID ↓ F0.125 ↑ F8 ↑ IS ↑ FID ↓ F0.125 ↑ F8 ↑
ACGAN [10] 0.12 8.04 0.021 0.048 0.73 9.20 0.036 0.102
+ Normalization - - - - - - - -
+ Data-to-data (Eq. (5)) - - - - - - - -
+ Suppression (Eq. (6)) 0.07 0.56 0.003 0.009 0.09 0.80 0.007 0.009

- Data-to-data - - - - - - - -

Table A12: Experiments for investigating the effect of D2D-CE for different architectures using
CIFAR10 [44] and Tiny-ImageNet [45] datasets.

Conditioning method Deep CNN [7] on CIFAR10 [44] ResNet [3] on CIFAR10 [44] ResNet [3] on Tiny-ImageNet [45]

AC [10] 0.02 0.11 0.34
PD [11] 0.67 0.25 1.29
2C [21] 1.28 1.33 0.18
D2D-CE (ReACGAN) 0.03 0.23 0.29

Table A13: Ablation study on the number of negative samples.

Dataset
Masking probability p for negative samples in Eq. (6)

p = 1.0 0.8 0.6 0.4 0.2 0.0

CIFAR10 [44] 0.33 0.04 0.11 0.13 0.05 0.07
Tiny-ImageNet [45] 8.62 1.82 0.76 0.92 0.87 0.56

J Qualitative Results

We provide images that are generated by our ReACGAN and baseline approaches (ContraGAN [21],
BigGAN [16], and ACGAN [10]).

cat

dog

wild
animals

Figure A5: Generated images on AFHQ [48] dataset using StyleGAN2 [17] + ADA [38] + D2D-
CE (ReACGAN) (FID=4.95).
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Figure A6: Generated images on AFHQ [48] dataset using StyleGAN2 [17] + ADA [38] (FID=4.99).
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Figure A7: Generated images on ImageNet [47] dataset using ReACGAN and the batch size of
2048 (FID=8.23).
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Figure A8: Generated images on ImageNet [47] dataset using BigGAN [16] and the batch size of
2048 (FID=7.89).
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Figure A9: Generated images on ImageNet [47] dataset using ReACGAN and the batch size of
256 (FID=13.98).
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Figure A10: Generated images on ImageNet [47] dataset using ContraGAN [21] and the batch size
of 256 (FID=25.16).
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Figure A11: Generated images on ImageNet [47] dataset using BigGAN [16] and the batch size of
256 (FID=16.36).

15



hen

japanese
spaniel

chain
saw

teddy
bear

dome

mush
-room

Figure A12: Generated images on ImageNet [47] dataset using ACGAN [10] and the batch size of
256 (FID=26.35).
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Figure A13: Generated images on CUB200 [46] dataset using ReACGAN (FID=14.67).
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Figure A14: Generated images on CUB200 [46] dataset using ContraGAN [21] (FID=20.89).
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Figure A15: Generated images on CUB200 [46] dataset using BigGAN [16] (FID=17.80).
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Figure A16: Generated images on CUB200 [46] dataset using ACGAN [10] (FID=61.29).
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Figure A17: Generated images on Tiny-ImageNet [45] dataset using ReACGAN (FID=26.82).
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Figure A18: Generated images on Tiny-ImageNet [45] dataset using ContraGAN [21] (FID=28.41).
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Figure A19: Generated images on Tiny-ImageNet [45] dataset using BigGAN [16] (FID=31.92).
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Figure A20: Generated images on Tiny-ImageNet [45] dataset using ACGAN [10] (FID=61.50).
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(a) ReACGAN (FID=7.81)

(c) BigGAN [16] (FID=8.05) (d) ACGAN [10] (FID=8.47)

(b) ContraGAN [21] (FID=8.18)
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Figure A21: Generated images on CIFAR10 [44] dataset.
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