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A Implementation details

We fully implemented our framework in C++. We ran the validation experiments of our framework
on two workstations with the same CPU and memory characteristics: Intel(R) Xeon(R) Gold 6242
and 512 GB. One workstation is equipped with 4 Nvidia RTX 8000s 48G gpus and the other has 4
Nvidia 48G A6000 gpus. Both of these workstations were running on Ubuntu 18.04 LTS. We used
only one GPU to run our experiments.

We used the root mean squared propagation optimizer (RMSProp), with a learning rate of 0.01, and a
decoder learning rate of 5 · 10−3.

We defined one pass through all the available projections data as one epoch, and ran 30 epochs to
ensure the optimization convergence. We followed the strategy described in Section 3.5 and optimized
the quadtree and the tensor-based density fields for 15 epochs, then we fixed the structure and
optimized only the density fields for another 15 epochs. During the first step we used downsampled
projections (by a factor of 4).

We set the maximum number of quadtree nodes to 70 in real datasets. The tensor dimension size
depends mainly on the volume size to be reconstructed, and the scene complexity. Here, we set the
quadtree size for the real scene as 64, and the depth direction of the dimension size is calculated
according to the ratio of the depth to the width or the height, as:

nZ = nX ·
lZ
lX

(1)

where: nX and nZ are the tesnor dimensions in the X and Z-axis respectively. lX and lZ are the
reconstructed volume size in the X and Z-axis respectively. The feature size was set to 16 to get a
better reconstruction as evaluated in Section 4.

After the parameter tuning search, we found λTV ∈
[
10−5, 10−4

]
, λBCC ∈

[
1 · 10−5, 5 · 10−5

]
,

and λIFP ∈ [0.01, 0.05] worked best.

B Additional experiments using synthetic datasets

The tensor dimensions and the feature size play an important role for the reconstruction quality as
discussed in the main paper. In the Figure I, we illustrate how the tensor dimensions impact the
reconstruction quality of the synthetic data. And in the Figure II, we show the impact of the feature
size.
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Figure I: Illustration of the impact of the tensor dimensions on the reconstruction quality.
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Figure II: Illustration of the impact of the feature size on the reconstruction quality.
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C Additional experiments using real datasets

C.1 Impact of the Boundary Consistency Constraint (BCC)

To validate the effectiveness of the BCC, we illustrate in the Figure III a slice visualization of the
reconstructed tomogram without using the BCC (first row), and the same reconstruction using the
BCC prior (second row). One can notice clearly the discontinuity artifacts between adjacent quatree
nodes when the BCC is not used. However, the use of BCC ensure consistent borders between
adjacent quadtree nodes.
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Figure III: Illustration of the impact of the BCC on the reconstruction result.

C.2 Impact of the Isotropic Fourier Prior (IFP)

In Figure IV, we visualize the impact of the IFP. To make a better comparison, we also add the
results obtained with TensoRF approach. From top to down, we present the visualization of the
reconstructed tomograms for TensoRF, Ours W/O LIFP and Ours. For the TensoRF approach, we
can clearly see the structured artifacts. These artifacts are more accentuated on the boundary areas.
Ours W/O LIFP has less artifacts, due to the partition methods we used, the boundary artifacts do
not impact much on the central region. When we introduce the IFP to the loss function, these artifacts
are completely removed. These artifacts are characterized with strong peaks in Fourier domain along
the vertical and horizontal directions.
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Figure IV: Validataion of the IFP on EMPIAR 10643-40. We also compared with TensoRF. Ours
W/O LIFP has less artifacts, and Ours completely removes the artifacts. The strong peaks in Fourier
domain along the vertical and horizontal directions are reduced a lot.

C.3 Reconstruction results for EMPIAR 10643-51 dataset

As mentioned in the main paper, we also evaluated our reconstruction framework on another serie of
the EMPIAR 10643 dataset. We illustrate in the following some of the results that we obtained using
this dataset: EMPIAR 10643-51. Figure V shows a comparison of our resonstruction with different
baseline methods: (1) SART+TV, a well established iterative reconstruction technique SART
combined with a total variation prior. (2) Kniesel et al., an implicit neural representation for cryo-ET
proposed by [2]. (3) I-NGP, a reimplementation of Instant-NGP [4] for cryo-ET reconstruction.
(4) TensoRF, a reimplementation of Tensor Radiance Fields [1] for cryo-ET reconstruction. This
comparison shows that our reconstruction yields a less noisy reconstruction while it allows a better
details recovery.

We also illustrate in Figure VII, the artifacts removal using the IFP on this dataset.

Furthermore, as for the two datasets presented in the main paper, we conducted a profile analysis
shown in Figure VI.
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Figure V: Reconstruction results of the HIV-1 (EMPIAR 10643-51).
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Figure VI: Intensity profile along the red line in the zoomed regions of the reconstruction of EMPIAR
10643-51 dataset.
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Figure VII: Artifacts comparison with TensoRF, Ours W/O LIFP , and Ours on EMPIAR 10643-51
dataset. Ours W/O LIFP has less artifacts than TensoRF approach, while Ours completely removes
those artifacts.
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C.4 Selection of CNR and ENL regions

In the main paper we introduce the Contrast-to-Noise Ratio (CNR) and the Equivalent Number of
Look(ENL) metrics [3] to evaluate the effectiveness of our method. These two metrics are defined as
follows:

CNR =
1

Npr

∑ µf − µu√
0.5(σ2

f + σ2
u)

(2)

where Npr is the number of paired regions selected to compute the CNR. µf and σ2
f refer to the mean

and variance in the selected regions containing features. µu and σ2
u are the mean and variance in the

selected uniform regions. We illustrate these selected regions in the Figure VIII using the red boxes.

ENL =
1

Nr

∑ µ2
r

σ2
r

(3)

where Nr is the number of regions selected to compute the ENL. µr and σ2
r refer to the mean and

variance in the selected homogeneous regions. The selected regions to compute this metric correspond
to the purple boxes in Figure VIII.

The CNR evaluates how the denoiser strategy increases the contrast between the region of interest
and the background. The ENL metric measures the smoothness in the homogeneous regions.

We manually selected the CNR region pairs and ENL regions, and applied the selection to all the
other methods. Here, we chose a 3D volume with a depth of 10 to the rectangle regions to evaluate
the reconstructed volume.

(a) 10643 40 (b) 10643-51

Figure VIII: ENR CNL region choice

6



C.5 Slice view for EMPIAR 10643-40 dataset

In the Figure IX, we show a visualization of different slices from our reconstruction of the EMPIAR
10643-40 dataset. One can notice the consistency of the reconstruction over different slices.

Figure IX: Visualization of different slices from the tomogram obtained when reconstrctinf the
EMPIAR 10643-40 dataset.

D Running time and memory consumption

Figure X: Comparison of the number of pa-
rameters used and the training time, for the
learning-based approaches used in our com-
parison.

We compare in the Figure X the total exe-
cution time needed to perform the training
and reconstruction, as well as the number of
parameters to be trained in each approach.
In this figure, we did not report the run-
ning time and parameter number needed
in SART+TV, as this approach is not a
learning-based approach. The running time
for SART+TV after acceleration is around
4 hours, on our workstation Section A. We
can see that Kniesel et al. needs fewer pa-
rameters, but consumes 40 times more com-
putation time than other approaches. Our
approach uses a similar number of parame-
ters than I-NGP, and around half in compar-
ison to TensoRF, but yields better results as
shown in the main paper and the supplemen-
tary.

E 4K-size reconstruction results

We ran our code on the original EMPIAR 100643-40 datasets with 4096×4096 resolution projections,
and visualize the result in this section. For this experiment, we select a tensor dimensions equals to:
180×180×230. The total number of parameters is evaluated to be around 144.95 million parameters,
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and it took around one day to finalize the reconstruction. Two slices of the resulted tomogram are
represented in Figure XI.

Figure XI: Visualization of two slices from the tomogram obtained using the original 4K projections
of the EMPIAR 10643-40 dataset.
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