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MM-Forecast: A Multimodal Approach to Temporal Event
Forecasting with Large Language Models
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ABSTRACT

We study an emerging and intriguing problem of multimodal tem-
poral event forecasting with large language models. Compared to
using text or graph modalities, the investigation of utilizing images
for temporal event forecasting has received less attention, particu-
larly in the era of large language models (LLMs). To bridge this gap,
we are particularly interested in two key questions of: 1) why im-
ages will help in temporal event forecasting, and 2) how to integrate
images into the LLM-based forecasting framework. To answer these
research questions, we propose to identify two essential functions
that images play in the scenario of temporal event forecasting, i.e.,
highlighting and complementary. Then, we develop a novel
framework, named MM-Forecast. It employs an Image Function
Identification module to recognize these functions as verbal de-
scriptions using multimodal large language models (MLLMs), and
subsequently incorporates these function descriptions into LLM-
based forecasting models. To evaluate our approach, we construct
a new multimodal dataset, MidEast-TE-mm, by extending an ex-
isting event dataset MidEast-TE with images. Empirical studies
demonstrate that our MM-Forecast can correctly identify the image
functions, and further more, incorporating these verbal function
descriptions significantly improves the forecasting performance.
The dataset, code, and prompt will be released upon acceptance.

CCS CONCEPTS

« Information systems — Multimedia and multimodal re-
trieval; « Computing methodologies — Temporal reasoning,.

KEYWORDS

Temporal Event Forecasting, Multimodal Event Forecasting

1 INTRODUCTION

Temporal event forecasting aims to predict future events according
the observed events in history. The forecasting of critical events,
such as pandemic outbreak, civil unrest, and international conflicts,
can help shape policies in advance and minimize potential impacts.
Due to its great potential application value, temporal event forecast-
ing [5, 14, 20, 26, 27, 29] has garnered increasing attention from both
the academic and industrial community in recent years. Despite

Unpublished working draft. Not for distribution.
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Figure 1: Illustration of our motivation about why images
will help in temporal event forecasting. We identify two es-
sential functions of images, i.e., highlighting and complemen-
tary. By offering auxiliary highlighting or complementary
information, images enhance the understanding of temporal
events, thus boosting the forecasting performance.

promising progress, current methods have ignored the rich mul-
timodal information, e.g., images, remaining to be an unexplored
research gap.

With the enormous success of Large Language Models (LLMs),
an increasing number of studies [16, 22, 25, 38] have been exploring
LLMs for the task of temporal event forecasting to enhance the
forecasting accuracy. These pioneering works explore the appli-
cation of LLMs in the task of temporal event forecasting, leverag-
ing techniques such as in-context learning (ICL) [16], instruction
tuning [25, 38], and retrieval-augmented generation (RAG) [33].
Compared to traditional methods, LLM-based methods offer sev-
eral advantages in terms of effectiveness, flexibility, and scalability.
Traditional non-LLM methods [15, 20, 27, 29], whether based on
structured or unstructured data, typically require large-scale well-
annotated datasets. Moreover, model selection is often a challenge
for these traditional techniques due to high computational costs.
Additionally, traditional methods generally require separate train-
ing for different datasets, as a result, they often struggle to make
fast adaptation w.r.t. frequent changing in dataset and temporal
shifts. Therefore, the application of LLMs to the task of tempo-
ral event forecasting holds significant potential and promise [16].
However, all of the existing LLM-based methods only consider a
single modality, such as text [16] or graph [25], while ignoring the
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prevalent visual modality, i.e., images. Some previous works have
justified that images are helpful in multimodal event detection and
extraction [19, 36], while none of them investigate images’ utility
in temporal event forecasting.

To bridge this gap, we aim to integrate images into temporal
event forecasting and construct multimodal temporal event fore-
casting models. However, it is a non-trivial objective due to the
following challenges. First, it is necessary to investigate the func-
tion between visual information and other modal information, i.e.,
the interplay between visual and textual modalities. Next, we need
to figure out how this function between the two modalities can
contribute to the task of temporal event forecasting. Second, while
prior work [36] has explored the image function in related tasks
such as event extraction, these approaches typically require large
amounts of labeled training data. Additionally, they often struggle
to generalize effectively to other task definitions. Therefore, there
is a pressing need to design an effective method to identify the
function between modalities and seamlessly integrating them into
LLM-based forecasting models.

To address the aforementioned issues, we propose a novel frame-
work for multimodal temporal event forecating, named as MM-
Forecast. Specifically, we identify two essential functions of images,
i.e,, the highlighting and complementary. As illustrated in Figure 1,
when the function of associated image is highlighting, the image
serves to emphasize key events. In contrast, when the function of
associated image is complementary, the image provides supplemen-
tary information that complements the textual content. In order
to recognize these two types of functions, we propose an Image
Function Identification module that is based on Multimodal LLMs
(MLLMs) due to their superior multimodal understanding and rea-
soning capabilities in zero-shot settings. The proposed module is de-
signed to recognize the function of images in historical events, and
then transform this information into verbal descriptions that can be
seamlessly integrated into the LLM-based event forecasting model.
To demonstrate the scalability of our approach, we have integrated
it into two distinct LLM-based forecasting models, i.e., one based
on the in-context learning (ICL) method [16], and the other based
on the retrieval-augmented generation (RAG) technique [17]. In
order to evaluate our approach, we construct an exploratory dataset
by engaging images into an existing dataset MidEast-TE [27]. We
name this new dataset MidEast-TE-multimodal (short as MidEast-
TE-mm). In the final evaluation, with the enhancement of visual
information, the temporal event forecasting task achieves superior
forecasting accuracy compared to the unimodal approach. The ex-
perimental results illustrate that our method accurately recognizes
the function of images in various aspects. Furthermore, the find-
ings demonstrate that multimodal temporal forecasting represents
a potential and promising research direction worthy of further
exploration. The main contributions are as follows:

e To the best of our knowledge, this is the first comprehensive in-
vestigation into the integration of visual information for temporal
event forecasting in the era of LLMs.

o We identify the function of images within the context of temporal
event forecasting, and design an overall framework to recognise
and integrate these visual information into LLM-based forecast-
ing models.

Anonymous Authors

o Extensive experiments illustrate that our framework accurately
identifies the function of images and demonstrate that visual
information can enhance the performance of temporal event
forecasting. Furthermore, these findings have led to several note-
worthy and valuable directions for future research.

2 RELATED WORKS

The related works in this paper are surveyed from two perspec-
tives: existing approaches to temporal event forecasting, and the
application of large language models (LLMs) and multimodal LLMs
(MLLMs) for event analysis.

2.1 Temporal Event Forecasting

Temporal event forecasting centers on predicting future event oc-
currences based on the historical events. The existing approaches
can be classified into three main paradigms based on the event
format: time series, structured events, unstructured events.

For the time series paradigm, existing works [2, 21, 28] typically
represent events as an ordered sequence of data points that describe
the progression of actions or occurrences. However, this approach
inherently fails to represent multiple relationships between entities.
Alternatively, another branch of works [8, 32, 34, 39] focus on the
prediction of structured events, i.e., using graph to represent events,
which is known as temporal knowledge graph (TKG). Representa-
tive TKG methods [15, 20, 29] extend the static knowledge graph
completion techniques, aiming to learn and aggregate the tempo-
ral and relational patterns among entities for forecasting. Recent
works[27] also introduce the context into the temporal event fore-
casting, elaborating the event’s occurrence situation or condition.
Some other works, such as RESIN-11 [10] and IED [18], represent
temporal event with pre-defined complex event schema. In addi-
tion, several studies have explored the use of unstructured textual
representations of temporal events, where each atomic event is gen-
erated from multi-document summaries [11] or event chains [13].
However, all of them still conduct the forecast reasoning on single
modality data only. Some works [19, 36] explore the image function
in event extraction task, while none of them investigate images’
utility in temporal event forecasting.

2.2 LLM:s for Event Analysis

The tremendous success of large language models (LLMs) in re-
cent years, exemplified by GPT-3 [4] and its numerous succes-
sors [6, 7,37, 40], has inspired researchers to explore the application
of these powerful models to various event-related tasks. While a
significant portion of existing work has focused on temporal event
understanding rather than forecasting, a few studies have leveraged
LLMs for the task of temporal event forecasting. Specifically, the
GPT-NeoX-ICL [16] method and GENTKG [22] method have ex-
plored the use of LLMs for event forecasting. The former leverages
in-context learning of LLMs and constructs prompts as a list of
historical events each in quadruplet format, while the latter im-
proves the selection of historical event inputs by a temporal logical
rule-based retrieval strategy. However, these existing LLM-based
methods still rely solely on single-modality data, potentially missing
valuable information from other modalities, such as images. With
the success of LLMs, MLLMs, such as Flamingo [1], LLaVA [23],
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and Gemini [35], have emerged as promising means for integrating
visual and textual modalities. These MLLMs have demonstrated
impressive performance across various visual-language tasks, sug-
gesting their potential for enhancing temporal event forecasting
by leveraging visual information. Therefore, our work focuses on
multimodal temporal event forecasting with LLMs.

3 OUR APPROACH: MM-FORECAST

The overall framework of our proposed approach is depicted in
Figure 2. We first formally define the multimodal temporal event
forecasting task in Section 3.1. Second, we specifically introduce the
key module of Image Function Identification in Section 3.2. Finally,
we elaborate on how to integrate the recognized image functions
into LLM-based forecasting models in Section 3.3.

3.1 Problem Formulation

To give formal definition of the problems, we separate it into two

sub-tasks given the different data representation of historical in-
formation. Detailed definitions and qualitative examples, such as

complex events (CE), are presented by the supplementary material.
Structured Event Forecasting (Graph'). Structured data-based

methods typically define each event as a quadruple (s, r, o, t), which

is also called an atomic event, where s,7,0,t corresponds to the

subject, relation, object, and timestamp. At each timestamp ¢, all

the quadruples form an event graph, denoted as G; = {(s,r, 0, ) W,

where N is the number of events in timestamp ¢. Recent works[27]

have further introduce the complex event (CE) into the structured

event representation by document clustering techniques, elaborat-
ing the event’s occurrence situation or context. Specifically, each

historical event is extended from a quadruple to a quintuple, i.e.,

(s,r,0,t,c),wheres € &, r € R,0 € E,and ¢ € C represent the sub-
ject, relation, object, and CE, respectively; &, R and C are the entity

set, relation set and context set. Correspondingly, the event graph

at each timestamp will be extended as G; = {(s,r, 0,1, )}V, The

overall structured event forecasting task can then be formulated as

follows: Given the historical event graphs G<; = {Gy, Gy, ...,Gr—1}

before timestamp ¢, and a query (s,r,t) or (s,0,t), the goal is to

predict the missing object or relation.

Unstructured Event Forecasting (Text?). In addition to the struc-
tured event representation, we also consider the unstructured rep-
resentation of historical events, where the historical information is

provided in the form of textual sub-events, i.e., A; = [a1, ag, ..., ak]Ik(:1
and A; € A, where a; denotes the k-th textual sub-events and A

denotes the corpus of textual sub-events. The textual sub-events

are obtained by summarizing the content of news articles. The

unstructured event forecasting task can be formulated as: Given

the historical textual sub-events A<; = {Ag, A1, ...,A;—1} before

timestamp ¢, and a query (s,r,t) or (s,o,t), the goal is to predict

the missing object or relation.

3.2 Image Function Identification

In news articles, images play a vital role not only in attracting read-
ers but also in completing and enriching the textual content. We

1"Graph" is interchangeably used to represent this setting.
2Text" is interchangeably used to represent this setting.
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will identify the image functions into three categories, i.e., highlight-
ing, complementary, and irrelevant, by MLLMs during the dataset
construction stage.

Excluding the irrelevant images, the others serve distinct roles
in the temporal event forecasting task. We propose an Image Func-
tion Identification module to recognize these functions as verbal
descriptions using MLLMs, and subsequently incorporates these
function descriptions into LLM-based forecasting models. Specif-
ically, when the function of associated image is highlighting, the
visual elements directly support and highlight the key sub-events
described in the text. These "highlighting" sub-events, substantiated
by corroborating information across modalities, can be identified
as key events. To determine which sub-event is a key event, we
leverage the multimodal large language models (MLLMs) to analyze
the images and sub-events along multiple dimensions, including
main objects, celebrities, activities, environment, and labeled items.
In cases where the function of associated image is complementary,
the visual content contains information that supplements and ex-
tends beyond what is covered in the news text. To more effectively
extract the relevant supplementary information, we consider the
following aspects: 1) Identify the main subject of the image as the
central point. 2) Directly relate the extracted information to the
news event in the article. 3) Prioritize the most newsworthy visual
elements. 4) Ensure all information comes directly from the pro-
vided news article without fabrication, and 5) Aim for a concise
summary using clear language. By analyzing the interplay between
visual images and textual content within news articles, we can gain
a more comprehensive understanding of the underlying events and
better contextualize the temporal progression of historical events.
This multimodal approach, which leverages both linguistic and
visual modalities, holds the promise of enhancing the accuracy
of temporal event forecasting. Ultimately, the prompts utilized in
making predictions are shown below:

SYSTEM:

You are an assistant to perform event forecasting

with the following rules:

1. The atomic event is the basic unit describing a spec-
ific event, typically presented in the form of a quadru-
ple (S, R, 0, T), where S represents the subject, R repre-
sent the relation, O represents the object, and T repres-
ents the relative time.

2. When formulating the ultimate prediction, the preemi-
nent factor to be meticulously weighed and scrutinized
is the [Key Events]. Complementing this paramount consi-
deration is the [Related events], which, though ancilla-
ry in nature, serves as a valuable adjunct, furnishing
pertinent contextual details and auxiliary insights to
fortify the predictive analysis.

3. Given a query of (S, R, T) in the future and the list
of historical events until t, event forecasting aims to
predict the missing object.

USER:

[Queryl: (S, O/R, T)

[Key Events]: xxx.

[Related Events]: xxx.

[Options]: A.xxx B.xxx C.xxx D.xxx E.xxx
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Figure 2: The schematic overview of MM-Forecast. By consuming historical events in either format of unstructured or structured
input (left), our image function identification module (middle) recognizes the image functions as verbal descriptions, which are
then feed into LLM-based forecasting model (right). Our framework is versatile to handle both structured and unstructured
events, meanwhile, it is compatible to popular LLM components for event forecasting, i.e., ICL and RAG.

The key events are explicitly highlighted within the prompt, while

complementary information is provided as additional relevant events.

3.3 Forecasting Framework

We follow the emerging solution [16] and leverage LLMs as the
forecasting backbone. Given there are few established studies of
using LLMs for event forecasting, we implement two forecasting
methods by considering two representative approaches, i.e., In-
context Learning (ICL) [16] and Retrieval Augmented Generation
(RAG) [17]. Each of these two methods can accept both structured
and unstructured historical input, and answer the structured fore-
casting questions.

3.3.1 In-context Learning (ICL). In-context learning leverages both
intrinsic and extrinsic factors to construct historical events. Specif-
ically, the intrinsic factors of an event are related to its inherent
elements, particularly the subject. In contrast, the extrinsic factors
are driven by the contextual environment surrounding the event.
Therefore, whether the data is structured or unstructured, we con-
struct the historical events based on the subject and the complex
event, separately. The details are as follows:

e Structured Data. For structured data, the method takes the dis-
crete event graph as the input. To capture the intrinsic factors,

we use the subject of the current event as a guiding clue to con-
struct the historical event graph G2, = {G}, Gj, ..., Glfil }, where
Gj represents historical events graph at timestamp t with the
same subject as the current event. To account for the extrinsic
factors, we construct the historical event graph from the complex
event, i.e. GS, = {Gf, Gf, G‘t’_l}, where Gf represents histor-
ical events graph at timestamp ¢ with the same complex event
as the current event. Finally, with the highlighting and comple-
mentary functions of the images, the input historical event graph
is Ginput = [Gg. Gr, Gel, where Ginpyr € G%, UGS, and Gy
denotes the key events, G, represents the remaining events, and
G, corresponds to the complementary events, respectively.

Unstructured Data. For unstructured data, the method takes
the textual sub-events as input. Firstly, we identify the events
by the historical events graph from the subject and complex
event and find the corresponding textual sub-events set A% , =
{AS,Ai, -~-sA?,1} and A“<t = {AC,Af, -~-sA§,1} through the re-
lationships between textual sub-events and graph sub-events.
Then, with the highlighting and complementary functions of
the images, the input historical textual sub-events are similarly
Ainput = [Ag, Ar, Acl, where Ajnpur € AL, UAS, and Ay de-
notes the key events, A, represents the remaining events, and
A, corresponds to the complementary events, respectively.
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3.3.2  Retrieval Augmented Generation (RAG). Despite the rich in-
formation provided by in-context learning methods, the inherent
nature of the temporal event means that the existing historical event
still contains substantial noise. Inspired by the recent research of
RAG [17], we also adopt the retrieve-then-generate paradigm to find
the most relevant historical events to mitigate the problem of noise.
Similar to ICL methods, we utilize two forms of data representation,
structured data and unstructured data:

e Structured Data. Due to the structured nature of the data repre-
sentation, the event graphs adhered to a unified quintuple format.
Therefore, we first retrieve the entities that have interacted with
the subject of the query event. Once we have obtained the related
entity set, we can construct the history with the historical events
where the subject or object is within this set. Similarly, through
the function of images, the retrieval process also contains key
events and complementary events.

e Unstructured Data. Unlike structured data, we can use the em-
bedding techniques to directly retrieve relevant news events from
a set of historical news articles for the unstructured data. Follow-
ing this, we filter historical news events based on timestamps,
eliminating outdated and irrelevant events. We also select the
key events and complement information based on the images,
which will be input according to the prompt described in Section
3.2, and finally obtain the prediction results.

4 EXPERIMENTS

We conduct experiments on our constructed MidEast-TE-mm dataset
to evaluate the proposed approach and answer the following re-
search questions:

e RQ1: What is the overall performance of temporal event fore-
casting methods with visual information?

e RQ2: How do the highlighting and complementary function of
images affect the performance?

o RQ3: Is the highlighting and complementary function of images
really useful?

e RQ4: How do different LLM backbones as well as fine-tuning
affect the performance?

4.1 Dataset

We briefly introduce the data source and construction of the dataset,
and more details of the construction, dataset statistics, and thorough
evaluation of the dataset are presented in the supplementary file.

4.1.1 Data Source. We follow a previous dataset MidEast-TE [27]
to build our dataset, named as MidEast-TE-multimodal (MidEast-
TE-mm). The original MidEast-TE dataset extracts atomic events
from news articles utilizing the Vicuna model [6], and identifies
different complex events through clustering methodology. Given
the large scale of MidEast-TE, we sample a subset of complex events
from MidEast-TE and build our dataset.

4.1.2  Dataset Construction. The dataset construction pipeline con-
sists of two consecutive components: sub-event extraction and
image collection.

Sub-event Extraction. We conduct event extraction for both struc-
tured and unstructured events using LLMs. For structured data,
we adopt a hierarchical extraction pipeline based on the original

ACM MM, 2024, Melbourne, Australia

dataset [27] and the three-layer structure of the CAMEO ontol-
ogy [3]. Each layer of event extraction is based on the results of
the prior layer to reduce cost and performance degradation due
to extensive number of event types. For unstructured data, we
summarize the news articles to generate multiple sub-events, ensur-
ing accurate, comprehensive, and coherent content selection and
description.

Image Collection. The web page of each news url in MidEast-TE is
associated with one or more images, which can be used as the visual
information for the event. However, the original web page may
contain irrelevant images, such as advertisement images. Hence,
it is difficult to exactly parse the images based on the html of the
web pages. We propose an alternative solution that we use Google
Image Search 3 to search the images by using the news article title
as the query. Among the returned images, we select the top-ranked
ones as the associated images of the news article.

4.2 Experimental Settings

To evaluate the performance of various methods, we conduct ex-
periments on our proposed dataset MidEast-TE-mm, as described
in Section 4.1. Consistent with previous methods, we employ the
Accuracy (Acc) as the evaluation metric.

4.2.1 Compared Methods. In addition to the forecasting methods
with LLMs, we also implement a list of representative traditional
methods. For traditional methods, only textual modalities are in-
volved in the training process, as these methods are fixed. We train
the models on the training set, selecting the best-performing model
based on the validation set results, and obtain the final results of
the testing set. For LLM-based methods, on the other hand, testing
is generally done in a zero-shot manner, i.e., , directly test them on
the testing set. The specific methods are shown below:

e ConvTransE [32]: The method is a static knowledge graph rep-
resentation learning technique. It employs both a convolutional
neural network and a translational operation to identify patterns
within triplet data.

e RGCN [31]: RGCN is also a static knowledge graph representa-
tion learning approach. It leverages a graph convolutional neural
network architecture to capture the diverse relations between
entities.

e RE-GCN [20]: RE-GCN is a state-of-the-art method for temporal
knowledge graph (TKG). It utilizes a combination of graph neural
networks and recurrent neural networks to capture both the
relational patterns and temporal dynamics within the data.

e LoGo [27]: The LoGo method is the current state-of-the-art
approach for temporal complex event (TCE), which stands for
modelling relationships within and between complex events from
both local and global perspectives, respectively.

o GPT-3.5-Turbo: The GPT-3.5-turbo model is the latest iteration
of the GPT (Generative Pre-trained Transformer) language model
developed by OpenAl. It builds upon the capabilities of earlier
GPT models, leveraging an enhanced transformer architecture to
achieve state-of-the-art performance on a wide range of natural
language processing tasks.

3https://images.google.com/
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Table 1: Performance (accuracy) comparison between zero-shot LLM-based methods and the non-LLM methods in both
settings of object entity prediction and relation prediction. For LLM-based methods, we include multiple backbones with two
representative forecasting method, i.e., ICL and RAG. Results of our methods are highlighted with grey backgrounds, where the

key novelty lies in the design of multimodal model.

Model Type/Backbone | Forecasting Model Multimodal Model Object Entity Prediction | Relation Prediction
Text Graph Text Graph
ConvTransE [32] Uni-modal N/A 0.3737 N/A 0.7327
NomLLM RGCN [31] Uni-modal N/A 0.3777 N/A 0.7203
RE-GCN [20] Uni-modal N/A 0.3879 N/A 0.7333
LoGo [27] Uni-modal N/A 0.3969 N/A 0.7406
Gemini-1.0-Pro-Vision® | ICL [16] MLLM3 | 03023 0.3319 | 05541 0.6085
ICL [16] Uni-modal 0.3312 0.3657 0.5900 0.6257
MM-Forecast (ours) | 0.3527 0.3837 0.6087  0.6324
Gemini-1.0-Pro®
Uni-modal 0.3340 0.3669 0.6081 0.5866
RAG [17]
MM-Forecast (ours) | 0.3425 0.3692 0.6121  0.5991
ICL [16] Uni-modal 0.3063 0.3431 0.4847 0.5345
MM-Forecast (ours) | 0.3414 0.3522 0.5317  0.5521
GPT-3.5-Turbo*
RAG [17] Uni-modal 0.3272 0.3397 0.4943 0.4666
MM-Forecast (ours) | 0.3652 0.3647 0.5152  0.5113

e Gemini-1.0: Gemini-1.0 is a cutting-edge family of multimodal
models developed by the Gemini Team at Google. It is designed
to excel in understanding and generating content across various
modalities, including text, images, audio, and video.

4.2.2  Implementation Details. During the construction of the dataset,
the extraction of sub-events is accomplished by a collaborative ef-
fort involving both the Gemini-1.0-Pro and GPT-4 models. Then
the Gemini-1.0-Pro-Vision model is used to complete the image
function identification and subsequent key event selection and com-
plementary information extraction. To ensure the reproducibility,
we fixed the temperature parameter to 0 and set the seed parameter
to a constant value. When making forecasting, we limit the maxi-
mum token length to 256 to prevent invalid responses. To ensure
fairness across the experiments, the length of history that can be re-
trieved is set to 30. Notably, the retrieval models employed included:
BM25 [30], Contriever [12], and Llamalndex [24]. Additionally, con-
sidering the limitation of the context window, we further restricted
the maximum number of sub-events in the historical context to
50. The specific prompt used in the experiments can be found in
supplementary material.

4.3 Performance Comparison (RQ1)

We analyze our model’s performance, by comparing various base-
line methods with our method among various experiment settings,
including different formats of input historical events, forecasting
models, and forecasting objectives.

4.3.1 Performance w.r.t. Various Settings. The overall performance
comparison is presented in the Table 1. To comprehensively explore
and evaluate the performance of methods, we conduct experiments
across multiple dimensions, including the format of data represen-
tation (Text of Graph), the construction of historical information

3https://ai.google.dev/models/gemini
“4https://platform.openai.com/docs/models/gpt-3-5-turbo

Table 2: The study of using different retrieval models.

Retriever Gemini-1.0-Pro GPT-3.5-Turbo
BM25 [30] 0.3272 0.3318
Contriver [12] 0.3335 0.3431
Llamalndex [24] 0.3425 0.3652

(RAG-based or ICL-based), and the prediction objective (Object or
Relation). Clearly, we have the following observations.

First, enhancing LLM-based methods with visual information
significantly improves their accuracy across all experimental set-
tings. This demonstrates that our proposed MM-Forecast makes
effective use of visual information, leading to a better contextual
understanding of historical information. Hence, our method greatly
strengthens the inference ability of LLM and makes more accurate
event forecasting.

Second, although the performances of all LLM-based methods
have been improved, they still under-perform to traditional Non-
LLM based methods. The reason is that LLM-based methods are
tested in zero-shot manner, while the Non-LLM methods, which
follow supervised learning, are still competitive. Notably, by using
our MM-Forecast method, LLM-based methods can achieve similar
or even better performance than Non-LLM methods for the object
entity prediction task.

Third, the relation prediction task exhibits higher absolute perfor-
mance compared to the object entity prediction task. This suggests
that forecasting entities may be more challenging than forecasting
relations. There are a few potential reasons for this. First, the set
of entity types is much larger than the set of relation types, so pre-
dicting specific entities is inherently more difficult given the larger
candidate pool. Second, we deem that the information implied in
entities is more explicit. Thus when two entities are given for a
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Figure 3: Ablation study of each type of image functions.

relation prediction, it is easier than when the subject and relation
are given for an object prediction.

4.3.2  Performance w.r.t. Directly Using Images. To illustrate the
limitations of existing MLLMs in the task of temporal event fore-
casting, we also conduct experiments using the Gemini-1.0-Pro-
Vsion model [35] directly with images as sub-events. Specifically,
this approach leverages the visual processing capabilities of the
Gemini-1.0-Pro-Vision model, which embeds image patches as fea-
tures and seamlessly concatenates them with textual features (for
details prompts please refer to the supplementary file). Gemini-1.0-
Pro-Vision is a member of the Gemini-1.0 family, and compared
to the Gemini-1.0-Pro model, it just has more visual information
processing capabilities. From Table 1, we can observe that the ac-
curacy of using images directly is not only much lower than our
MM-Forecast, but even worse than that of the method using only
textual data. This illustrates the difficulty of existing MLLMs to
make effective event forecasting with multiple images, and also
reflects the superiority of our MM-Forecast.

4.3.3  Performance w.r.t. Various Retrieval Models. The choice of re-
trieval model can have a significant impact on performance. Since
the structured approach employs retrieval based on structured
forms, the experiments here involve only unstructured event fore-
casting. To explore this, we evaluate three different retrieval models,
i.e., BM25 [30], Contriver [12], and LLamalndex [24]. From the re-
sults in Table 2, we can observe that the performance progressively
improves by using stronger retrieval models, with LLamalndex
performing the best, followed by Contriver, and then BM25. There
results verify that stronger retrieval capabilities lead to better fore-
casting performance, suggesting that retrieval-oriented method

ACM MM, 2024, Melbourne, Australia

Table 3: The accuracy of image function identification.

GPT-4-Vision
Data-Type Text Graph
Highlighting 0.68 0.68

Complementary 0.88 0.93

Table 4: Result comparison between using our identified and
randomly-assigned image functions.

. Object Relation
Model Settings ‘ Text Graph ‘ Text Graph
Random | 0.3284 03394 | 05156  0.5249
GPT3.5-Turbo 03414 0.3522 ‘0.5317 0.5521

design, such as the RAG approach, is a promising direction for
future research.

4.4 Ablation Study of the Image Functions
(RQ2)

To investigate the functions of images at a fine-grained level, we
conduct separate ablation experiments for the highlighting and com-
plementary function of images. The results are shown in Figure 3.
First, the model that leverages both the highlighting of key events
and the complementary information performs the best across the
experimental settings. In addition, the performance of the model
with only key events highlighted is sub-optimal. This illustrates the
effectiveness of the highlighting function of images and the fact that
highlighting and complementary reinforce each other to achieve
even better prediction results. Second, we can observe that in some
settings, the performances of the model with only complementary
information are even worse than the baseline model. The possible
reason for this is that the providing of complementary information
also introduces more noise and therefore leads the degradation of
performance. With the performance improving again under the
function of highlighting, there is also reflect this reason. Third,
comparing the object entity prediction task, the performance of
the RAG-based method for the relation prediction task is obviously
worse than the ICL-based method. As mentioned in section 4.3.1,
the relation prediction is easier compared to the object entity pre-
diction. Therefore, we deem that ICL-based historical event contain
enough information to make accurate relation prediction, whereas
retrieval may not retrieve relevant information instead.

4.5 In-depth Analysis of the Image Function
Identification (RQ3)

Improvements in prediction accuracy alone are not enough to fully
validate whether images are indeed fulfilling their highlighting
and complementary functions. Therefore, we design additional
experiments at the data level and prompt level to further confirm
the role of images. To verify the correctness of our image functions
classification, we randomly sample 100 images of two categories
respectively, and then judge the correctness of the classification
by the powerful multimodal comprehension ability of the GPT-4-
Vision. As shown in Table 3, both classification show high accuracy.
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Figure 4: Case study: two examples that when considering highlighting and complementary functions of images, our method

yields better forecasting results compared with the baselines.

The lower accuracy of "Highlighting" should be due to its more
strict definition. This indicates that the images we used can indeed
play the highlighting and complementary functions. In addition to,
we conduct experiments where we intentionally include randomly
selected sub-events in the prompt, instead of the true key events
and complementary information. As shown in Table 4, this random
selection of sub-events leads to a decrease in prediction accuracy,
indicating that we have indeed identified the true key events and
complementary information.

Finally, to provide a visual illustration of the image-text relation,
we present two specific examples in Figure 4. The first image em-
phasizes the event of Makhdoom Shah Mahmood Qureshi’s visit to
Abdel Fattah Al-Sisi, highlighting their efforts to strengthen and
diversify bilateral relations. This highlighting function led to a suc-
cessful prediction of the event relation. The second image provide
supplementary information about the meeting between the two
individuals, enabling an accurate prediction of the query. These
examples explicitly demonstrate the effect of the image functions
on the temporal event forecasting task.

4.6 Comparison of Zero-shot and Fine-tuned
LLMs (RQ4)

To further explore the potential of our approach on LLMs, we also
conduct experiments with open-source LLMs. Specifically, we select
one of the most popular open-source LLMs, i.e., Vicuna-7b, to test
and further fine-tune it using instruction tuning with QLoRA [9].
The results are presented in Table 5, which also includes the best
results for proprietary LLMs and non-LLM methods. We observe
that the zero-shot performance of Vicuna-7B is worse than the
proprietary LLMs, owing to the inherent capacity gap. However, in
the fine-tuned setting, Vicuna-7B achieves substantial performance
gains, not only surpassing the proprietary LLMs but also outper-
forming all the non-LLM methods. These results demonstrate the
significant potential of fine-tuning LLMs for the temporal event
forecasting task. Leveraging the powerful capabilities of LLMs,
with appropriate fine-tuning, represents a promising direction for
advancing the state-of-the-art in this domain.

5 CONCLUSION AND FUTURE WORK

In this paper, we first proposed the methodological paradigm of mul-
timodal temporal event forecasting and systematically evaluated

Table 5: Performance of fine-tuned LLMs and its comparison
with proprietary LLMs and non-LLM methods.

Model Vicuna-7b LLM Non-LLM
MM-Forecast-text-h 0.2723 0.3527 N/A
zero-shot
MM-Forecast-graph-h 0.2502 0.3837 N/A

fine-tune MM-Forecast-text-h
MM-Forecast-graph-h

0.4490 N/A N/A
0.5480 N/A 0.3969

the effects of visual information on the task of temporal event fore-
casting. Specifically, we first identified two essential functions that
images play in the scenario of temporal event forecasting, i.e., high-
lighting and complementary. Then, we introduced MM-Forecast,
a novel framework that leverages visual information to enhance
temporal event forecasting. By recognizing the highlighting and
complementary functions of images and translating them into ver-
bal descriptions, we were able to seamlessly integrate this visual
information into LLM-based forecasting models. Ultimately, this
enabled the integration of visual information to enhance temporal
event forecasting task. To comprehensively evaluated our proposed
approach, we also have designed a series of event forecasting models
with different settings, including: different formats of input histori-
cal events, forecasting models, forecasting objectives, and backbone
LLMs. By implementing these model settings, we obtained a com-
prehensive understanding of the potential of multimodal event
prediction and the importance of leveraging multimodal informa-
tion for augmentation in temporal event forecasting.

Looking ahead, there are numerous avenues for future work to
address the key challenges that have been identified. In particu-
lar, we would like to highlight three distinct aspects that warrant
further exploration. First, multi-images relationship need to be con-
sidered. There are inherent relationships between images in related
historical events, and these relationships are also important for
event forecasting. Second, seeing is believing. Images have signif-
icant effects on the event forecasting task rather than accuracy
improvement, that is credibility or trustability. Predictions that are
corroborated by images are more likely to be trusted. Third, our
current solution is still a multi-step pipeline, while devising an
end-to-end approach using MLLMs is intriguing to explore in the
future.
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