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LDCNet: Long-Distance Context Modeling for Large-Scale 3D
Point Cloud Scene Semantic Segmentation

Anonymous Authors
ABSTRACT
Large-scale point cloud semantic segmentation is a challenging task
in 3D computer vision. A key challenge is how to resolve ambigu-
ities arising from locally high inter-class similarity. In this study,
we introduce a solution by modeling long-distance contextual in-
formation to understand the scene’s overall layout. The context
sensitivity of previous methods is typically constrained to small
blocks(e.g. 2𝑚 × 2𝑚) and cannot be directly extended to the entire
scene. For this reason, we propose Long-Distance Context Model-
ing Network(LDCNet). Our key insight is that keypoints are enough
for inferring the layout of a scene. Therefore, we represent the en-
tire scene using keypoints along with local descriptors and model
long-distance context on these keypoints. Finally, we propagate
the long-distance context information from keypoints back to non-
keypoints. This allows our method to model long-distance context
effectively. We conducted experiments on six datasets, demonstrat-
ing that our approach can effectively mitigate ambiguities. Our
method performs well on large, irregular objects and exhibits good
generalization for typical scenarios.

CCS CONCEPTS
• Computing methodologies→ Scene understanding.

KEYWORDS
Long Distance Context, Key Points, Large-Scale Scene

1 INTRODUCTION
Point cloud semantic segmentation aims at predicting point-wise
categories, which has an important role in the fields of autonomous
driving, augmented reality, digital preservation, and robotics. In
recent years, many deep networks for point cloud semantic seg-
mentation have been proposed[4, 8, 9, 14, 15, 18, 20, 24, 26, 29, 30,
35, 41, 42, 45, 51, 52, 54]. These methods achieve appealing results.
However, they mostly focus on object-level point clouds, and few
designs and experiments have been conducted on scene-level point
clouds. Based on the fact that point clouds are disordered and un-
structured, scene-level point cloud semantic segmentation is still a
challenging task.

A key challenge is addressing the issue of ambiguity resulting
from local inter-class similarity. For instance, in certain indoor
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Inputs GT Previous Methods

(a)

(b)

chair

clutter

buildings
rocks

Figure 1: Example large-scale scenes with irregular large-
sized objects. (a) auditorium room from the S3DIS dataset. (b)
rockery garden from the CHNRockery3D dataset. Previous
methods such as SPG[19], RandLANet[14] and PointTr[52]
give similar results as shown in the 3rd column.

scenes, the network can effectively segment individual chairs al-
most without ambiguity. However, when multiple chairs are placed
together, the network tends to classify them as clutter(Figure 1(a)).
Similarly, In outdoor scenes, such as Chinese classical gardens fea-
turing rockeries and ponds made of stones, the overall look of a
pond may resemble a local region of a rockery. This similarity
poses a challenge for the network in distinguishing between the
two (Figure 1(b)). Additionally, some parts of buildings exhibit high
geometric similarity with local areas of rockeries, leading to con-
fusion. This ambiguity hinders the network’s ability to effectively
handle such scenarios.

Our observation is that modeling long-distance contexts to cap-
ture the spatial layout of the entire scene and the relation between
objects can effectively mitigate the issue of ambiguity. For instance,
within a classroom setting, chairs are typically positioned at the cen-
ter of the scene. Additionally, in garden scenarios, ponds are usually
positioned at lower elevations, while buildings generally surround
the entire scene. Furthermore, rockeries are typically situated near
the buildings.

Tomodel long-distance context, earlymethods[11, 19] segmented
the scene into blocks and employed Recurrent Neural Networks
(RNNs) to capture contextual information between these blocks.
However, due to the limited long-term modeling capacity of RNNs,
extending the context to cover the entire scene was challenging.
Inspired by the impressive long-distance modeling capabilities of
Transformers in 2D image and NLP domains[6, 10, 25, 27, 37, 48],
many methods explored using Transformers for capturing long-
distance context in point clouds. However, as the memory footprint
of Transformers grows quadratically with the number of points,
existing methods typically fall into two categories. One confines
the input point cloud to a small block (e.g., 2m x 2m) and captures
global context on a sparse subset of points (usually 1024 or 2048
points) within these small blocks[23, 50]. The other attempts to

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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use a larger number of points (e.g., 100,000) [17, 18, 52]. To address
the cost issue, these methods attempt to use Transformers locally
(e.g., 16 points in k-neighbor or 3d window), with the long-distance
context being implicitly acquired during the network’s forward
propagation. These methods either restrict the context range to
small blocks or require very deep networks to extend the context
to cover the entire scene.

To this end, we proposeLong-DistanceContext Network(LDCNet).
Our idea is simple and intuitive, the key points are sufficient to
reason about the layout of the scene. Hence, we transform large-
scale scenes into a representation based on key points and model
long-distance context on these key points. We then aggregate con-
textual information from key points into non-key points for dense
prediction. With the number of key points significantly fewer than
the original point cloud, it’s feasible to model long-distance context
across the entire scene. Experiments demonstrate that our method
extends the context length beyond 10 meters without adding too
many network parameters and memory footprint. Our network
accurately perceives the full view of irregular large-sized objects
and provides correct predictions.

Our main contributions are as follows

• We address the problem of high inter-class similarity in se-
mantic segmentation of large-scale scene point clouds. We
introduce a new Transformer-based method that efficiently
models the context of the entire scene and reasons about the
overall scene layout relationships.

• We model the long-distance context by first extracting key
points from a point cloud and carefully initiating a descriptor
for each key point. Then we apply Transformer globally on
all key points to extract long-distance contextual informa-
tion. Finally, we aggregate this information into non-key
points for dense prediction.

• Experiments show our approach can effectively mitigate am-
biguities by expanding the contextual range to the entire
scene (over 10m). Our method performs well on large, irreg-
ular objects in large-scale scenes, and it also exhibits good
generalization for typical scenarios.

2 RELATEDWORK
Point cloud semantic segmentation. Unlike grid-like 2D image
data, the disordered and unstructured nature of point clouds poses
challenges and difficulties in the design of point cloud deep net-
works. PointNet[29] was the first to explore the design paradigm
of point cloud deep networks and to address the problem of permu-
tation invariance. Many subsequent approaches have followed this
idea[9, 12, 18, 20, 30, 35, 41, 42, 51, 52]. Though these methods have
achieved appealing results on object-level point cloud semantic
segmentation, the large-scale scene semantic segmentation is still
under-explored.
Context modeling for point clouds. The methods can be broadly
categorized into three groups. One group restricts the input point
cloud to small blocks, allowing the standard self-attention mech-
anism to directly extract global context due to the small spatial
extent and point count within each block[23, 50]. However, this
approach is limited to small chunks, rendering it ineffective for
large blocks (i.e. the entire scene) with a high number of points.

In response, another group of methods attempts to enhance the
local receptive field at each layer, implicitly extending the range of
contexts modeled as the network deepens[17, 18, 24, 39, 52]. Our
experiments reveal that achieving an effective context for the entire
scene requires considerable network depth using this approach. The
final group of methods aims to convert a 3D representation into
a 2D representation; for instance, RangeFormer[16] transforms a
point cloud into a range image, extracting long-distance context in
2D. However, this method is best suited for sparse point clouds, as
dense point clouds risk losing significant information. Compared to
these methods, in terms of context sensitivity, our method can cover
long-distance ranges or even the entire scene. For representation,
we utilize key points and local descriptors, effectively preserving
3D information.
Large-scale point cloud scene semantic segmentation. Few
methods have been specifically tailored for large-scale scenes. SP-
Graph [19] preprocesses extensive point clouds into super-point
graphs to learn per-super-point semantics. They employ an RNN
to capture contextual information between superpoints. However,
the limited long-term modeling capability of RNNs hinders the
coverage of context over great distances. RandLA-Net[14] proposes
using random sampling instead of farthest sampling to expedite
network inference. They employ the concept of ’dilation’[47] to
locally expand the receptive field, aiming to continuously broaden
the context during network feedforward. Nonetheless, achieving
context extension to the entire scene requires a very deep network.
Vision Transformer. In recent years, the Transformer model has
achieved remarkable success in modeling powerful long-distance
context in NLP and 2D image domains[10, 25, 27, 37, 38, 48]. While
Transformers are widely popular in 2D and NLP, their application to
point clouds has been relatively unexplored until recently. Several
transformer-based point cloud networks have emerged[18, 28, 52].
For instance, PointTr[52] applies the Transformer in a local k-
neighborhood, while StratifiedTr[18] applies the transformer in
a window neighborhood. FastPointTr[28] first voxelizes the point
cloud and then applies the transformer in a local region. Given the
substantial number of points in a scene’s point cloud, applying the
Transformer globally may seem impractical. Our key insight is that
it’s unnecessary to apply the Transformer to all points to capture
long-distance context; applying the Transformer to key points is
sufficient.

3 METHOD
Our goal is to explicitly model long-distance context across the
entire scene with Transformer, rather than within local blocks. Our
approach comprises two main parts, as illustrated in Figure 2(b):
a point cloud backbone network for generating dense semantic
predictions and a separate new branch that models long-distance
contextual information and aggregates this information into the
point cloud backbone. We will first review existing point cloud
networks and then delve into the details of our design.

For the convenience of the discussion that follows, we will only
use 𝑥 to denote the feature of a point without using a variable
to denote 𝑥𝑦𝑧 unless otherwise stated in the text. But the 𝑥𝑦𝑧 of
a point will be used in a 𝑘NN query process(including distance
calculation) by default.
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𝑀 × 𝐶
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𝑀 × 𝐶 𝑁𝑖 × 𝐶

𝑁𝑖 × 𝐶

𝑁𝑖 × 𝐶

𝑁𝑖 × 𝐶

(e) MSSCA (f) LDCRA

Figure 2: Previous point-based semantic segmentation networks can be summarized in (a) and our method extends these
methods by adding long-distance context modeling and aggregation Module in (b). (c) demonstrates the local information
aggregation module, green points and orange points represent the points before downsampling and after downsampling
respectively. (d) demonstrates the feature propagation module green points and orange points represent the points after
upsampling and before upsampling respectively. (e) demonstrates the multi-scale spatial context aggregation(MSSCA) module
and (f) demonstrates the long-distance context reasoning and aggregation(LDCRA) module.

3.1 Review of Existing Point Cloud Networks
The existing point cloud networks are summarized in Figure 2(a).
Generally, a network includes an encoder and decoder. The en-
coder has multiple downsampling and local information aggrega-
tion (DLIA) modules, while the decoder has upsampling and feature
propagation (UFP) modules. Note that Figure 2(a) is a simplified
case. Typically, there are 4-5 DLIAs and UFPs in the network, with
a skip connection from DLIA to UFP, similar to UNet[32].

The DLIA module includes a downsampling module and a lo-
cal information aggregation module. The downsampling module
reduces point cloud resolution, similar to pooling layers in image
processing. For example, RandLANet [22] uses random downsam-
pling; KPConv [35] applies voxel downsampling; while PointNet
[29], PointTr [52], and StratifiedTr [18] use farthest downsampling.
The local information aggregation module aggregates point cloud
features before and after downsampling. For each point after down-
sampling, it identifies the nearest 𝑘 points before downsampling
and aggregates their features. For example, PointNet++ [30] uses
max-pooling; KPConv [35] employs point convolution; and PointTr
[52] utilizes a local self-attention mechanism for aggregation.

The UFP module includes an upsampling module and a feature
propagation module. The upsampling module increases the point
cloud resolution, usually achieved by preserving points after down-
sampling from different layers. For example, in a network with
4 DLIAs and 4 UFPs, the input point of the 1st UFP upsampling
module is the output point of the 4th DLIA downsampling module,
and the output is the output point of the downsampling module in
the 3rd DLIA, and so forth. The feature propagation module prop-
agates point cloud features before upsampling to the point cloud

after upsampling. Specifically, for each point 𝑥𝑎𝑢 after upsampling,
finding the nearest 𝐾 points {𝑥𝑘,𝑏𝑢 } before upsampling, and then
propagate the features of those 𝐾 points by

𝑥𝑎𝑢 = Θ(𝑥𝑎𝑢 +
𝐾∑︁
𝑘=1

𝑤𝑘 · 𝑥𝑘,𝑏𝑢 ) (1)

If the network has no skip connections, the initial value of 𝑥𝑎𝑢 is an
all-0 vector. Θ is usually implemented with MLPs.𝑤𝑘 =

1/𝑑𝑘∑𝐾
𝑘=1 1/𝑑𝑘

,
where 𝑑𝑘 is the distance between 𝑥𝑎𝑢 and its 𝑘-th nearest neighbor
𝑥𝑘,𝑏𝑢 .

3.2 Long-Distance Context Modeling
In this section, we will delve into the details of our design. First, a
module named Multi-Scale Spatial Context Aggregation (MSSCA)
is designed to extract key points and initiate descriptors. Then, to
effectively model long-distance contextual information, a module
named Long-Distance Context Reasoning and Aggregation (LD-
CRA) is designed to capture global context and propagate informa-
tion back to the original point cloud backbone.

3.2.1 Multi-Scale Spatial Context Aggregation. To ensure that the
contextual scope encompasses the entire scenario, two key prereq-
uisites must be met: 1) the key points must span every corner of
the scene, and 2) each keypoint descriptor should be sensitive to
localized information around the keypoint.

There are many keypoint extraction methods to choose from,
including traditional methods[34, 53, 55] and deep-learning-based
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methods[2, 36, 46]. We exclude deep-learning-based methods ini-
tially because they introduce too many additional network parame-
ters and unnecessary memory footprint. Among traditional meth-
ods, random sampling loses significant information. Despite having
the lowest time complexity, in practice, we observed that the model
fails to converge. Other methods such as ISS[53], Harris3D[34],
and Sift3D[55] are locally geometry-sensitive and do not guarantee
the uniform distribution of keypoints. In contrast, farthest point
sampling not only ensures the uniformity of sampling but also
guarantees that keypoints cover the entire scene. Moreover, the
farthest sampling method makes it easier for us to set the required
number of keypoints.

Providing a robust initial descriptor for key points is essential
for high-quality long-distance context modeling. The concept re-
volves around ensuring that each initial descriptor encapsulates
neighborhood information at various spatial scales around the key
point. This has the advantage of leveraging multi-scale information,
enhancing the ability to recognize objects of different sizes within
the scene, as mentioned in PatchFormer[49]. To achieve this goal,
we introduce a simple module named the Multi-Scale Spatial Con-
text Aggregation Module (MSSCA). This module queries neighbors
of a key point at different scales and aggregates information from
these neighbors to the key point.

The detail of the module is shown in Figure 2(e). For an input
point cloud 𝑃 ∈ R𝑁×6, where the first three channels are 𝑥𝑦𝑧 coor-
dinates and the last three channels are 𝑟𝑔𝑏, We first query multiple
𝑘-nearest neighbors of each point(specifically, 𝑘 = {8, 16, 32}) and
get 𝑃8 ∈ R𝑁×8×6, 𝑃16 ∈ R𝑁×16×6, 𝑃32 ∈ R𝑁×32×6. Then we use
a single MLP to lift their feature dimensions. After that, we use
average pooling to aggregate its nearest neighbor information and
concatenate this information with the original descriptor to obtain
the initial descriptor of each point. Finally, we use the farthest sam-
pling to sample 𝑀 key points. The key points 𝑋𝑘𝑒𝑦 ∈ R𝑀×32 are
fed into LRDRA and the non-key points 𝑋𝑛𝑘𝑒𝑦 ∈ R𝑁×32 are fed
into DLIA modules.

3.2.2 Long-Distance Context Reasoning and Aggregation. In the
original point cloud backbone, the input feature of the latter layer
of encoders is derived from the outputs of the previous layer of the
network. In the previous discussion, we observed that the features
from the upper layer network encode only local information, which
is not sufficient for semantic segmentation of large-scale scenes.
Therefore, our idea is to perform an augmentation at each layer
of the encoder of the original point cloud backbone network to
adequately supplement long-distance contextual information into
the original point cloud backbone network.

Specifically, each LDCRA module contains two parts: a Long-
Distance Context Reasoning Module (LDCR) and a Long-Distance
Context Aggregation Module (LDCA). Given keypoints and their
descriptors, LDCR uses a standard self-attention mechanism to
capture the relationship between two key points and model global
contextual information. Given the global information carried by
each key point, as well as the non-keypoint information, LDCA
aggregates the global information from the key points to the non-
keypoints.

Long-DistanceContextReasoning.Details of the long-distance
context modeling are illustrated in Figure 2(f). For an input key
point 𝑋𝑘𝑒𝑦 , we use standard vector self-attention[52] as follows:

𝑥𝑖 =

𝑀∑︁
𝑚=1

𝑊𝑤 (𝑊𝑞 (𝑥𝑖 ) −𝑊𝑘 (𝑥𝑚) + 𝑃𝑟 ) ⊙ (𝑊𝑣 (𝑥𝑚) + 𝑃𝑟 ) (2)

where 𝑥𝑖 ∈ R𝐶 represent the descriptor of the i-th key point,
𝑊𝑞,𝑊𝑘 ,𝑊𝑣 represent 𝑞𝑢𝑒𝑟𝑦, 𝑘𝑒𝑦 and 𝑣𝑎𝑙𝑢𝑒 matrices respectively
as defined in [38].𝑊𝑤 represents a weight layer that generates an
attention vector. Following PointTr[52], we add a position encoding
𝑃𝑟 = 𝜃 (𝑝𝑖 − 𝑝𝑚) to both the attention vector and the transformed
features𝑊𝑣 (𝑥𝑚) to keep position information intact, where 𝑝𝑖 is
the 𝑥𝑦𝑧 coordinate of the 𝑖-th key point.

Long-Distance Context Aggregation. The entire process is
illustrated in Figure 2(f). A simple intuition is that adjacent points
are more relevant. For each non-key point, we identify the nearest
key point and incorporate the information carried by that key
point to the non-key point. To further reduce noise and eliminate
redundant information, we compute the difference between the
two using a channel-wise subtraction operation. We then employ
MLP and Softmax to generate a channel-wise soft weight. This
soft weight is multiplied with the keypoint features and added to
the non-keypoint features, resulting in the final augmented non-
keypoint features. Specifically, given a key point 𝑋 𝑖

𝑘𝑒𝑦
∈ R𝑀×𝐶

updated by self-attention at the 𝑖-th layer and a non-key point
𝑋 𝑖
𝑛𝑘𝑒𝑦

∈ R𝑁𝑖×𝐶 from the 𝑖-th DLIA, the entire process can be
formulated as:

𝑥𝑖,𝑛𝑒 = 𝑥𝑖,𝑛𝑒 + Θ(𝑥𝑖,𝑛𝑒 − 𝑥 𝑗,𝑒 ) ⊙ 𝑥 𝑗,𝑒 (3)

where 𝑥𝑖,𝑛𝑒 represents the 𝑖-th non-key point feature, 𝑥 𝑗,𝑒 repre-
sents the 𝑗-th key point feature. Also, 𝑥 𝑗,𝑒 is the of the point closest
to 𝑖-th non-key point. Θ is implemented with MLPs but not the
same as in Equation1.

3.3 Discussion
In this subsection, we discuss in detail the impact of each parameter
on our approach and the design choices.
Memory Footprint. Here we focus on analyzing the additional
memory footprint we introduced. Compared to applying the stan-
dard self-attention module globally to all points, since our self-
attention mechanism is executed at key points and uses a vector
attention mechanism, the total space complexity is reduced from
O(𝑁 2𝐶) to O(𝑀2𝐶) (𝑀 << 𝑁 ), where 𝑁 and 𝑀 are the numbers
of origin point clouds and key points.
Number of𝑀 . Increasing𝑀 theoretically allows for better capture
of long-range context; however, the algorithm’s space complex-
ity scales with𝑀2𝐶 , leading to a tradeoff. Our experiments show
some performance gains (Table 4), but considering the additional
memories, we find this improvement less satisfying. Given that
256 keypoints already achieve a 3% mIoU boost compared to the
original backbone network, we opt for the more memory-effective
256 keypoints.
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Figure 3: Visualization on the CHNRockery3D dataset.

Figure 4: Results on 2 scenes in Area2 from S3DIS datasets. These two scenes contain large regions composed of a lot of small
objects. Our method yields consistent segmentation results.
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Figure 5: Visualization of ERF on ponds. Our method associates the pond to a larger region of the scene for inference.

4 EXPERIMENTS
We conducted experiments on six datasets including one unpub-
lished dataset CHNRockery3D, as well as five public datasets: S3DIS
[1], ScanNet[7], ScanNet200[33], Semantic3D[13], and SemanticKitti
[3].
CHNRockery3D Dataset. Chinese rockery gardens, as material
manifestations of gardening art, are an important tangible cultural
heritage, while their design concepts and horticultural techniques
also contribute to the intangible cultural heritage of China. On
the one hand, systematic research and analysis of their digital as-
sets is of great significance for the conservation and inheritance
of heritage. On the other hand, Chinese rockery garden scenes are
a very special kind of scene that has both the characteristics of

outdoor natural scenes (such as Semantic3d and SemanticKitti) and
indoor artificial scenes (such as S3DIS and ScanNet). The objects in
Chinese rockery gardens exhibit the characteristics of natural ele-
ments, such as vegetation and landscapes, but they are intentionally
crafted and arranged by humans. The study of its features is infor-
mative and referential to the study of other scenarios. To explore
the distinctive features of this special scene, we initially constructed
the CHNRockery3D dataset and validated the effectiveness of our
method on this dataset.
EvaluationProtocol.TheCHNRockery3D dataset comprises seven
classical Chinese rockery garden scenes. Each scene contains bil-
lions of points, covering an area exceeding 2000 square meters.
Each point in the scan is assigned a semantic label from one of four
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Table 1: Comparison with baselines on the S3DIS dataset.

Method Area-5 6-Fold
OA mAcc mIoU OA mAcc mIoU

SPG[19] 86.4 66.5 58.0 85.5 73.0 62.1
SPT[31] - - 68.9 - - 76.0
RandLANet[14] 87.2 71.4 62.4 88.0 82.0 70.0
StratifiedTr[18] 91.5 78.1 72.0 - - -
FastPointTr[28] - 77.3 70.1 - - -
PointVector[9] 91.0 78.1 72.3 91.9 86.1 78.4
AFGCN[51] 91.1 77.9 72.3 91.7 85.1 77.7
PointTrV2[52] 91.1 77.9 71.6 - - 73.5

PointTr[52] 90.8 76.5 70.4 90.2 81.9 73.6
Ours-PointTr 91.2 78.2 71.8 91.8 83.4 75.4

categories: buildings, plants, rocks, and ponds. To assess methods
on CHNRockery3D, we employ a 7-fold cross-validation approach.
We adapted and modified several related methods from their official
codebases to suit this dataset. For the other five public datasets, we
follow a common evaluation protocol [14, 52]. Evaluation metrics
include mean classwise intersection over union (mIoU), mean of
classwise accuracy (mAcc), and overall pointwise accuracy (OA).
Implementation Detail. We mainly use PointTr[52] as our back-
bone because both methods are Transformer-based. In the original
paper, PointTr is a 5-layer setup. To evaluate the effectiveness of our
method, we use a 4-layer setup. To further show the adaptability of
our method to existing methods, we also choose a more classical
method, KPConv[35], and kept all the settings (number of layers,
etc.) from the original paper. Unless otherwise mentioned, we use
PointTr as the backbone. All experiments are conducted on a single
RTX3090Ti GPU. The number of key points is set to 256 in most
experiments.

4.1 Efficiency of Long-Distance Context
Modeling

To verify the effectiveness of our long-distance context modeling,
we discuss and illustrate the following experiments.
Results on CHNRockery3D. We compared our method with
several existing open-source methods. Table 2 illustrates that our
approach achieves a 3-4% improvement over the baseline method
when using both KPConv and PointTr as the backbone. This sug-
gests that our method exhibits some level of generalization within
existing frameworks. Notably, our method attains the best results
among these methods when utilizing PointTr as the backbone. It’s
worth highlighting that our method outperforms existing methods
in both the buildings and rocks categories. This is particularly sig-
nificant as buildings and rocks typically occupy substantial regions
within a scene, emphasizing the importance of a larger contextual
range for such cases.

The visualization results are presented in Figure 3. Notably, our
method demonstrates improvements in the building and rock cat-
egories compared to the previous network. In the second row of
Figure 3, it’s evident that both KPConv and PointTr misclassify
large areas of rocks as buildings, whereas our method accurately
segments the rock area. However, we observed a decrease in our

method’s performance on vegetation compared to other methods.
This might be attributed to the relatively small size of vegetation
compared to buildings and rocks. Consequently, a larger contextual
information might introduce some noise.

Ponds constitute a special class of objects that share geometric
similarities with rocks, but their distribution in the scene differs
from that of rocks. Consequently, recognizing this object presents a
considerable challenge. As indicated in Table 2, effectively segment-
ing this object is a daunting task for existing methods. However,
our approach shows some progress in this category. The potential
reason for this lies in the network’s ability to model long-distance
context for object analysis. This enables the network to identify the
object’s location in the scene and may even infer its function within
the entire scene, providing further validation of the effectiveness
of our method.
Visualization of Effective Receptive Field. To understand how
our method identifies ponds, we visualize the effective receptive
field (ERF), as suggested in [22], in Figure 5. It is evident that our
method associates the pond with a larger region of the scene dur-
ing inference. This implies that our method may implicitly learn
relationships between objects. The visualization underscores the
effectiveness of our approach in modeling long-distance contexts.
Memory Footprint Comparison. To demonstrate the memory
efficiency of our approach, we experimented with different settings
of PointTr, including a 4-layer setting, a 5-layer setting, and the use
of more neighboring points for DLIA. Additionally, we conducted a
comparison with StratifiedTr, considering its utilization of a larger
window to capture longer contexts.

As shown in Table 3, the aggregation of information using more
neighborhood points leads to a significant increase in memory. This
is because, as the number of neighborhood points grows, the net-
work must compute and store a larger attention map during the
forward propagation process. However, despite this increase, the
performance does not see significant improvement. Similarly, the
addition of layers to PointTr results in a sharp rise in the number of
parameters andmemory usage.While this brings some performance
gains, our approach achieves relatively greater improvements with-
out introducing excessive memory footprint. Although StratifiedTr
outperforms PointTr, it comes with the highest number of network
parameters, and memory usage. It’s important to note that Strati-
fiedTr is configured with 4 layers. This experiment underscores the
superiority of our method.

We also compare our method with existing approaches on vari-
ous public datasets to demonstrate the potential of our methods.
Results on S3DIS. The segmentation results depicted in Figure 4
demonstrate the notably accurate performance of our method in a
large area containing numerous chairs, underscoring the effective-
ness of our approach for such scenes. Additionally, we present the
results for Area-5 and the 6-fold cross-validation in Table 1. It is
evident from the table that our method exhibits performance gains
compared to the baseline used, and achieves comparable results to
other recent methods.
Results on Semantic3D. We present the segmentation results
on this dataset in Figure 6 and Table 5. Our method demonstrates
a performance improvement over the baseline. Additionally, we
observed an interesting phenomenon, depicted in Fig. 7. As the
input scene range becomes larger (We simulate different sizes of
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Table 2: Comparison with baselines on the CHNRockery3D dataset.

Methods OA mAcc mIoU buildings plant rock pond

PointNet[29] 66.12 49.03 31.75 36.40 21.13 63.14 6.33
PointNet++ [30] 69.86 56.28 37.18 44.27 29.62 63.41 11.43
DGCNN[41] 70.29 48.68 34.18 40.85 24.73 66.30 4.85
SPGraph[19] 75.56 56.59 37.34 46.20 32.72 69.57 0.88
RandLANet[14] 79.93 57.82 41.75 58.26 33.80 74.77 0.15
StratifiedTr[18] 74.31 65.07 42.03 58.52 44.03 65.40 0.18

KPConv[35] 73.72 59.65 41.32 58.65 41.31 65.30 0.01
Ours-KPConv 79.90 60.07 44.76 59.71 38.72 74.15 6.46

PointTr[52] 76.39 58.32 40.22 57.11 31.66 72.06 0.05
Ours-PointTr 80.93 63.13 45.25 62.90 37.30 75.85 4.95

Table 3: Memory footprint compared with baselines on CHNRockery3D dataset. 4 means a 4-layer setting, and [8,16,16,16]
means the number of neighbor points used in each DLIA. ’Window-based’ means the number of neighbor points used in each
DLIA depends on the window size and the distribution of points.

Methods Params. Mem. OA mAcc mIoU

PointTr(4,[8,16,16,16]) 2.8M 4.5G 76.39 58.32 40.22
PointTr(4,[8,32,32,32]) 2.8M 6.9G 67.85 53.27 33.74
PointTr(5,[8,16,16,16,16]) 7.8M 7.1G 78.70 58.97 41.91
StratifiedTr(4, window-based) 8.0M 7.2G 74.31 65.07 42.03

Ours-PointTr(4,[8,16,16,16]) 3.3M 4.6G 80.93 63.13 45.25

Figure 6: Visualization on reduce-8 test set of Semantic3D dataset.

input scenes by cropping the scene from small to large ranges
during the testing phase), our method achieves increasingly better
performance, while the baseline method reaches a bottleneck at
a certain level of scene range. This indicates that our method’s
capacity for modeling context can scale with the size of the scene,
i.e. when the scene gets larger, our method can naturally extend
the context-aware distance to a wider distance. This phenomenon
validates the effectiveness of our long-distance context modeling.
Results on other datasets.We also report results of ourmethod on
Scannet[7], Scannet200[33] and SemanticKitti[3] dataset in Table 5.
In all three datasets, we made improvements from the baseline.

4.2 Ablation Study
We perform ablation experiments on CHNRockery3D to verify the
effectiveness of each part of our method.
Effectiveness of MSSCA. Since this module is used to generate
initial key points descriptors, removing this module means that
only information from a single point is used when modeling long-
distance dependencies. As shown in Table 4, the method perfor-
mance drops a lot after removing the module, but it’s still better
than the 4-layer PointTr, which suggests that using a single-point
feature can also be effective.
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Table 4: Ablation Study: Including three important designs - MSSCA, LDCRA, and SW; The influence of the number of keypoints
𝑀 and the location for modeling long-distance context (i.e. LDC loc.).

MSSCA LDCRA SW OA mIoU 𝑀 Mem. mIoU LDC loc. OA mIoU

✓ 78.29 41.01 128 4.3G 44.75 (-, -, -, ✓) 79.56 43.48
✓ ✓ 78.77 42.50 256 4.6G 45.25 (-, -, ✓, ✓) 79.10 44.29

✓ ✓ 78.33 44.11 512 5.9G 45.60 (-, ✓, ✓, ✓) 75.55 41.05
✓ ✓ ✓ 80.93 45.25 1024 15.6G 45.56 (✓, ✓, ✓, ✓) 80.93 45.25

Table 5: Results on other datasets.

Method Scannet Scannet200 Semantic3D SemanticKitti
OA mIoU OA mIoU OA mIoU OA mIoU

MinkUNet[5] - 72.2 - 25.3 - - - 63.8
SphereFormer [17] - - - - - - - 67.8
PointTrV2 [44] - 75.4 - 30.2 - - - 70.3

PointTr[52] 89.4 70.6 81.9 29.7 90.0 64.5 91.9 61.7
Ours-PointTr 90.1 73.3 81.6 30.2 91.9 67.1 91.9 61.9

Figure 7: Experiments on the ability of the method for con-
text perception over long distances. It can be seen that our
method can better extend the context-aware distance to a
wider distance as the input scene range increases. For the
size of the scene, we simply take the maximum value of the
scene length and width.

Effectiveness of LDCRA. We remove all LDCRA modules. In
this case, the only difference between our method and PointTr is
the input; PointTr uses the original point cloud as input, whereas
removing LDCRA from our method is equivalent to using the initial
descriptors extracted by MSSCA as input to PointTr. As shown in
Table 4, we achieve a little bit of improvement compared to the
origin PointTr. This demonstrates both the effectiveness of the
MSSCA and the LDCRA.
Effectiveness of Soft Weight(SW). In our design, the soft weight
is used to eliminate the redundancy between the critical point infor-
mation and the non-critical point information, and after removing
this weight, the performance is slightly degraded as can be seen in
Table 4.
Where to model long-distance context? Our encoder has four
layers, and in our design, we perform long-distance context mod-
eling and fuse information with local contextual information at

each layer. However, is it necessary to do so? For this purpose, we
performed ablation experiments. As shown in Table 4 (i.e. LDC loc.),
doing it at every layer is required to fully utilize the capabilities of
our approach.
Impacts of the number of the keypoints. The impacts on𝑀 is
shown in Table 4. As the number of points increases, the memory
overhead increases dramatically, and the performance gain it pro-
vides is relatively modest. 256 achieves a performance-efficiency
tradeoff.

4.3 Limitation
Although our approach models contextual information over longer
distances with only a slight increase in memory overhead, the ex-
tensive use of 𝑘NN searches, as well as farthest point sampling
algorithms throughout the network’s inference, results in a signif-
icant time overhead. One avenue for future improvement is the
serialization of the point cloud. Point cloud serialization [21, 40, 43]
is a recent technique that has emerged, showing promise in greatly
enhancing overall inference speed by appropriately ordering the
point cloud so that nearest neighbor points are adjacent to each
other in memory. This approach leads to an almost𝑂 (1) complexity
compared to the 𝑂 (𝑁 2) complexity required for 𝑘NN and farthest
point sampling.

5 CONCLUSION
This paper introduces a novel approach to explicitly model long-
distance contextual information throughout the entire scene, effec-
tively addressing the ambiguity challenges inherent in large-scale
scenes. Our method achieves this with minimal memory footprint.
Experimental results demonstrate the effectiveness of our approach
across a range of scene cases, particularly excelling in challenging
scenarios involving irregular large-sized objects. In future work,
further exploration of the definition and challenges associated with
large-scale scenarios is needed.
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