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Reversing Structural Pattern Learning with Biologically Inspired
Knowledge Distillation for Spiking Neural Networks
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ABSTRACT
Spiking neural networks (SNNs) have superb characteristics in
sensory information recognition tasks due to their biological plau-
sibility. However, the performance of some current spiking-based
models is limited by their structures which means either fully con-
nected or too-deep structures bring too much redundancy. This
redundancy from both connection and neurons is one of the key
factors hindering the practical application of SNNs. Although Some
pruning methods were proposed to tackle this problem, they nor-
mally ignored the fact the neural topology in the human brain could
be adjusted dynamically. Inspired by this, this paper proposed an
evolutionary-based structure construction method for constructing
more reasonable SNNs. By integrating the knowledge distillation
and connection pruning method, the synaptic connections in SNNs
can be optimized dynamically to reach an optimal state. As a re-
sult, the structure of SNNs could not only absorb knowledge from
the teacher model but also search for deep but sparse network
topology. Experimental results on CIFAR100, Tiny-imagenet and
DVS-Gesture show that the proposed structure learning method
can get pretty well performance while reducing the connection
redundancy. The proposed method explores a novel dynamical way
for structure learning from scratch in SNNs which could build a
bridge to close the gap between deep learning and bio-inspired
neural dynamics.

KEYWORDS
Spiking Neural Networks, Knowledge Distillation, Brain-Inspired
Models

1 INTRODUCTION
Spiking Neural Networks (SNNs) are supposed to be one of the
efficient computational models because of their biological plausi-
bility, especially since the structures are dynamically malleable.
Cognitive activities can be realized with the help of the complex
structures of the human brain which is composed of billions of
neurons and more neural connections between them. Similar to
biological neural networks, SNNs transfer and process information
via binary spikes. During the flow of the information, those fired
spikes are transmitted on the synaptic connection between neurons
with the structural plasticity rules.

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Compared to conventional artificial neural network models in-
cluding convolutional neural networks (CNNs), definitely, SNNs
are more biologically inspired and energy efficient. However, there
is one fact that cannot be ignored the SNNs cannot achieve nearly
as good performance as ANNs did. One of the key factors that
we think some of the structures of current spiking based models
are limited by training methods, that is SNNs cannot leverage the
global backpropagation (BP) rules directly as CNNs did. This defect
directly leads to unreasonable structures in SNNs. Besides, whether
structures of CNNs or SNNs are both fixed, unlike biological neural
systems, the structures and topologies should have been dynamical
which means the connections could be discarded as needed.

Aiming at tackling this problem, some studies focus on construct-
ing more efficient structures to improve the efficiency of SNNs.
Researchers proposed an approximate BP method named STBP
(Spatio-temporal backpropagation) for training high-performance
SNNs [25]. To avoid training SNNs directly, some studies [6, 11] pro-
posed ANN-to-SNN get parameters from trained ANNs, then map
them to SNNs. Although these methods could construct pretty deep
structures, they bring additional computational power. Moreover,
these BP based learning rules can only match the fixed structure, if
changing the network topology, it would be retrained from scratch.

Aiming at constructing more biologically flexible SNNs, this pa-
per proposed biologically inspired structure learning methods with
reverse knowledge distillation (KD). Based on the proposed training
method, the wanted student SNN models could learn rich infor-
mation from teacher ANN models [26]. Compared to traditional
KD methods, one of the key differences of the proposed re-KD
method for SNN training is that we think the structures play an
important role in the training process, they are not only the final
results, they could instruct themselves to train. Not limited to label
smoothing regularization [29], this paper proved that the proposed
re-KD method could build more robust structures of SNNs. We eval-
uated the proposed methods on several pattern recognition datasets
(CIFAR100, Tiny-imagenet and DVS-Gesture) experimental results
show that the proposed methods can not only get good recognition
performance but also show robust generation ability in time-series
dynamic environments. The main contributions in this paper are
summarized as follows:

• This paper proposed reverse KD methods for constructing
efficient structures of spiking neural networks. The proposed
methods are emphasized to circumvent the no-differentiable
of the spikes when using BP rules directly.

• The proposed methods let sparse structures models as teach-
ers help construct robust student SNN models. Besides, this
paper provides a brandnew teacher-free KD method which
could help student SNN models absorb useful information
when the teacher is default.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: The schematic illustration of the reverse-KD framework between teacher SNN and student SNN. (a) When the structure
of teacher SNN is sparse, this kind of re-KD is named sparse-KD. (b) When teacher SNN is default as a probability distribution
manually, this kind of re-KD is named teacher default-KD.

• Experimental evaluations showed that the proposed re-KD
method could facilitate the performance of SNNs. Further-
more, this kind of KD construction for deep SNNs could
allow teacher and student models to be homogeneous or het-
erogeneous, which shows great potential on neuromorphic
hardware platforms.

2 RELATEDWORK AND MOTIVATION
There lacking suitable structures for deep SNNs, which caused diffi-
culties in training deep SNNs using BP rules directly. Based on the
KD method, this paper proposed reverse-KD method to further fa-
cilitate the brain-inspired characteristics of dynamic spiking signals.
The proposed reverse-KD methods include two ways, one is when
the structures of the teacher model are sparse named sparse-KD,
and the other is when the teacher is the default during KD training
process named teacher default-KD. For further play and to verify
the effectiveness of the proposed method, this paper embedded
surrogated gradient method into the proposed method to train the
deep SNNs.

2.1 The structures of deep SNNs
Compared to the structures in deep learning field, those of SNNs
are various because there are no unified learning rules for deep
SNNs training as BP did in deep learning. Deng et al. [5], Xu et al.
[27] proposed temporal efficient training methods to build deep
SNNs. Chen et al. [2] dug out the state transition of dendritic spines
to improve the training efficiency of sparse SNNs. Some studies
focused on the activation function in SNNs [1, 31] to build high
brain-inspired spiking neurons and neural circuits.

Considering more detailed differences between ANNs and SNNs
[3, 19], some researchers are committed to improving the network
structure so that to make SNNs could be applied to detection [13]
and dynamic time-series data processing [12]. Although they can
build efficient deep structures of SNNs, they also bring huge power
consumption and additional computing resources. Especially, when
they used ANN-to-SNN conversion [1, 21]. Besides, these structure

construction methods have overlooked the flexibility of structure
creation which means if the task changed, you must train another
brand-new SNN from scratch.

2.2 Surrogate gradient method for SNN training
Different from ANN-to-SNN conversion [7, 11], because of the
huge success that BP gets in deep CNNs, some studies also want
to utilize the BP-based rules to train deep SNNs. Neftci et al. [18]
firstly introduced surrogated gradient training method to mimic
the backpropagation process in CNNs. These types of methods
aimed at the no-differentiable problem in binary spikes, by applying
surrogated gradient to make spikes become differentiable so that
the corresponding weights can be trained globally.

Zenke and Vogels [30] analysed the robustness of surrogated
gradient training in SNNs and instilled the complex function in
SNNs. Combing the characteristic of membrane potential, some
scholars want to incorporate learnable membrane time constant
to enhance the surrogated gradient training [6]. Others made a
further improvement to make it friendly to neuromorphic on-chip
hardware systems [23].

Although these surrogated trainingmethods consume little power
consumption compared to ANN-to-SNN conversion, they still bring
additional computational resources. More importantly, they still
make the structures of SNNs fixed and cannot change with the
change of tasks. To build more flexible structures of SNNs, combing
with surrogated-gradient training, some studies proposed knowl-
edge distillation-based methods to build more efficient SNNs [15,
16, 24]. They normally set a powerful ANN as a teacher and a shal-
low SNN as a student, it will make unrealistic assumptions and
introduce more computing consumption when training a strong
ANN additionally.

2.3 Motivation
Aiming at tackling the aforementioned problems in constructing ef-
ficient deep SNN models, this paper proposed a reverse KD method
to construct deep SNNs. Through re-think the original KD in SNNs,
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this paper makes a systematic analysis of the knowledge transfer
between teacher and student.

This paper not only focused on the efficient structures of SNNs,
but also care about the power consumption brought by KD process.
Specifically, we build two re-KD methods for deep SNN construc-
tion, one is sparse-KD and the other is teacher default-KD. One
of the key innovations is that we think the teacher is not always
strong meanwhile, the student is not always weak. By building
the relationship between weak teachers and strong students, this
paper rethinks the KD process in SNN training and proved that
based on the proposed method, the performance would be improved
meanwhile the power consumption decreases.

3 METHOD
In order to construct a bio-inspired training method for combining
structural learning and knowledge distillation for SNNs, this paper
proposes the re-KD method. Our method presents two approaches
for knowledge distillation: sparse-KD and teacher default-KD. This
knowledge distillation framework explores a method of knowledge
distillation that utilizes a network with a sparse structure or a
virtual network as the teacher network, which is different from
conventional knowledge distillation methods.

3.1 The framework of reverse knowledge
distillation

Spiking neuron model. We use IF (Integrate-And-Fire Models)
spiking neuron models as the basic unit of the network. The IF
neuron model is one of the commonly used spiking neuron models.
It stimulates the process of action potential in biological neurons,
where it receives spiking stimulation from presynaptic neurons
and the state of membrane potential changes. The neural dynamics
equation of the IF neuron can be represented by Eq. (1).

d𝑉 (𝑡)
d𝑡

= 𝑉 (𝑡) + 𝑋 (𝑡) (1)

where 𝑉 (𝑡) is the membrane potential of IF neuron. 𝑋 (𝑡) de-
notes the current input at time 𝑡 . Therefore, the current membrane
potential of the IF neuron can be expressed as Eq. (2).

𝑉 (𝑡) = 𝑓 (𝑉 (𝑡 − 1), 𝑋 (𝑡)) = 𝑉 (𝑡 − 1) + 𝑋 (𝑡) (2)
When the membrane potential reaches the threshold, the neuron

will fire a spike, and then its membrane potential will be reset to
the reset voltage 𝑉reset. In addition to this, the framework trains
SNN based on gradient surrogates.

Overall framework of the reverse knowledge distillation
method. Re-KD explores a novel way of knowledge distillation,
which combines bio-inspired structure and distillation. A reverse
knowledge distillation approach is adopted to train the SNN student
network. As shown in Section 1, the pruned SNN model is used as a
teacher network to guide the training of the student network, which
can reduce the interference in the hidden information of the teacher
network to better train the student network. As shown in Section 1,
a 100% accuracy virtual teacher network is designed to avoid the
impact of wrong classification better. Then this framework adopts
a response-based knowledge distillation method to train a student
network.

3.2 Sparse knowledge distillation
Teacher sparsified. This method uses a sparse network as the
teacher network which is called sparse-KD. We use a weight-based
pruning method to obtain a sparse network structure as the teacher
model to guide the training of the student model. This sparse
method prunes a certain proportion of connections with low-weight
values from a pre-trained SNN model. There is often redundancy
in the connections within a network structure, which is similar
to that of a biological neural network. Removing these redundant
connections makes the network structure more robust. First, we
train an SNN model and fix the weights of the model. Then, we sort
the weights of all connections in the convolutional layers of the
model and prune the weights with the smallest values according
to a certain proportion. This method sets a mask that is multiplied
by the weights, with the elements in the corresponding positions
of the mask matrix set to 0 for the connections with weights that
need to be pruned. The weight and pruning mask in 𝑙 layer is𝑊 𝑙

and𝑀𝑙 and the weight after pruning can be expressed as Eq. (3):

𝑊 𝑙
pruned =𝑊 𝑙 ⊙ 𝑀𝑙 (3)

Loss function.Thismethod uses a knowledge distillationmethod
based on response, where the final layer output of the teacher net-
work is used to guide the training of the student network. In this
case, the teacher network refers to a pre-trained SNN model that
has been pruned. The learning objectives for the student network
are divided into soft labels and true labels. Soft labels refer to the
output of the final layer of the teacher network, which contains
hidden knowledge. In order to increase the entropy of the probabil-
ity distribution of the network’s output, a temperature parameter
𝑇 is introduced to smooth this probability distribution. This allows
for better learning of the hidden similarity information in the prob-
ability distribution of the teacher network’s output. The probability
distribution is represented by 𝑍𝑖 . The flatten output probability
distribution 𝑞𝑖 can be expressed as Eq. (4):

𝑞𝑖 =
exp (𝑍𝑖/𝑇 )∑
exp

(
𝑍 𝑗/𝑇

) (4)

The loss function for knowledge distillation during training of a
student network consists of two parts. One is the loss calculated
using cross-entropy between the output of the student network
and the true labels. 𝑄𝑠 and 𝑄𝑡 is the probability distribution of
the student and teacher network’s output. The other is the loss
calculated using KL divergence between the output of the student
network and the soft labels. In the 𝐿𝑠𝑜 𝑓 𝑡 function, the probability
distributions of the outputs of the student network and the teacher
network are both flattened by parameter temperature. The soft loss
is computed by the simplified KL divergence. In the 𝐿ℎ𝑎𝑟𝑑 function,
the loss is computed by the CrossEntropy. The student network
can be trained using the loss function in Eq. (5), as referenced in
paper [17].

𝐿𝑠𝑝𝑎𝑟𝑠𝑒−𝐾𝐷 = 𝛼 ∗ 𝐿𝑠𝑜 𝑓 𝑡 (𝑄𝑠 , 𝑄𝑡 ) + (1 − 𝛼) ∗ 𝐿ℎ𝑎𝑟𝑑 (𝑄𝑠 , 𝑦true ) (5)

where 𝛼 controls the importance of the two parts of the loss
function. 𝑦true denotes the true labels.
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Training algorithm. The first step is to train an SNN model
and then prune the model based on the weights and save it as the
teacher network. In the second step, we use an SNN model with the
same structure as the teacher network as the student network. Then
we use knowledge distillation based on response to train the student
network. Through this method, the clearer hidden knowledge in
the pruned teacher network is utilized to guide the training of the
student network.

3.3 Teacher default knowledge distillation
Teacher default. This method uses a probability distribution de-
signed manually as the teacher network, which allows the teacher
network to have an accuracy of 100%. In normal knowledge distil-
lation, the accuracy of the teacher network is usually not 100%, so
there may be some interference in its hidden knowledge. Using a
pruned teacher network for knowledge distillation can yield a more
robust student network. In order to better guide the learning of
the student network, a 100% accurate virtual teacher network can
be designed. Assuming there are 𝐶 classification categories, this
probability distribution sets the probability of the correct label 𝛼
(𝛼 > 0.9), and the probability distribution of this virtual teacher
network can be represented by Eq. (6).

𝑝 (𝑐) =

𝛼 if 𝑐 = 𝑡
1 − 𝛼

𝐶 − 1
if 𝑐 ≠ 𝑡

(6)

where 𝑐 represents each category and 𝑡 is the correct category.
The probability distribution 𝑝 (𝑐) can be viewed as the probability
distribution of the output of this virtual teacher network.

Loss function. This method is similar to the response-based
knowledge distillation method. The loss function of the student
network training is divided into two parts. One is the cross-entropy
loss between the output of the student network and the true label.
The other is the KL divergence loss between the output and the
virtual label. The probability distribution of this virtual teacher
network can be flattened using the parameter temperature to obtain
the soft label. The two parts are summed to obtain the loss function
of this knowledge distillation, as shown in Eq. (7).

𝐿𝑑𝑒𝑓 𝑎𝑢𝑙𝑡−𝐾𝐷 = 𝛼 ∗ 𝐿𝑣𝑖𝑟𝑡𝑢𝑎𝑙 (𝑄𝑠 , 𝑄𝑣) + (1 − 𝛼) ∗ 𝐿ℎ𝑎𝑟𝑑 (𝑄𝑠 , 𝑦true )
(7)

where𝑄𝑠 is the output of student network. 𝑄𝑣 denotes the prob-
ability distribution designed manually after flatting by parameter
temperature.

Training algorithm. The first step is to select appropriate pa-
rameters to design this probability distribution to obtain a virtual
teacher network with completely correct outputs. The second step
is to use the virtual teacher network to guide the training of the stu-
dent network through knowledge distillation. The virtual teacher
networks have a 100% accuracy and do not have interference from
incorrect classification, so they can better guide the training of
student networks.

4 EXPERIMENTAL RESULTS
We conducted experiments on the static dataset CIFAR100 and
Tiny-imagenet and on the neuromorphic dataset DVS-Gesture to

verify the effectiveness of this framework. Firstly, we analyze the
impact of different pruning ratios of the teacher network on the
performance of the student network. Then we verify the perfor-
mance of knowledge distillation with a virtual teacher network. In
addition, in order to validate the advantages of this re-KD method,
we compare the experimental results of this framework with other
SNN methods.

4.1 Experimental settings
We conduct the experiments on the server which is equipped with
16 cores Intel(R) Xeon(R) Gold 5218 CPUwith 2.30GHz and 8 NVidia
GeForce RTX 2080 Ti GPUs. The training of SNN is based on
the spikingjelly framework, which is an SNN framework devel-
oped based on pytorch. Our experiments mainly focus on residual
structures such as Resnet and WideResnet. In this experiment, the
teacher network adopts the same structure as the student network
in order to better verify the advantages of structure learning.

Dataset CIFAR100 and Tiny-imagenet. CIFAR100 is a com-
monly used static dataset, it has three channels RGB and the image
size is 32*32. The CIFAR100 dataset has 100 classes, and each class
has 500 training sets and 100 test sets. The image size of Tiny-
imagenet is 64*64 and it has 200 classes, each class has 500 training
sets and 50 test sets. Each image in both datasets has fine-labels
and coarse-labels two labels. The dataset is relatively complex and
can verify the performance of our proposed framework in a more
realistic way. During training, we need to first encode the static
images into spiking sequences and then input them into the SNN,
here the first spiking neuron layer in the network is regarded as
the encoding layer.

Dataset DVS-Gesture. DVS-Gesture is a neuromorphic dataset
that includes 11 gestures for recognition. The dataset is stored in
the form of events and needs to be integrated into frame data before
use. During training, the spiking sequences data obtained can be
directly input into SNN. The dataset has 2 channels and the image
size is 128×128.

4.2 Evaluation on sparse-KD method
We use the SNN student network itself and the SNN student net-
work with different pruning ratios as the teacher network and then
analyze the experimental results. In this experiment, we used the
spiking form of Resnet18, WRN16-4 and 5Conc-1FC ([6]) network
structures to conduct the experiments.

For the CIFAR100 dataset, as shown in Table 1, using the SNN
student network itself as its own teacher network for knowledge
distillation improves the accuracy of the student network by 1.33%
(Resnet18) and 2.46% (WRN16-4). The experiments also show that
using models with different pruning ratios of the student network
itself as the teacher network can also improve the accuracy of
the student network. However, using a pruned model as a teacher
network for knowledge distillation is more effective than using a
non-pruned model as a teacher network. As can be seen in Table 1,
for Resnet18, when using a model pruned at 0.1 as the teacher
network, the accuracy of the student network can be improved
by 1.49%, which is greater than 1.33%. For WRN16-4, when using
a model pruned at 0.1 as the teacher network, the accuracy of
the student network can be improved by 2.60%, which is greater
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Table 1: Test accuracies of sparse-KD on CIFAR100, DVS-Gesture and Tiny-imagenet.

Dataset SNN Model Teacher
prune ratio

Teacher
Acc. (%)

Student SNN
ACC. (%)

Student KD
ACC. (%) Improvement(%)

CIFAR100

Resnet18

0.1 70.69 71.30 72.79 1.49

0.3 71.10 71.30 72.83 1.53

0.5 70.18 71.30 72.61 1.31

0.7 65.73 71.30 73.01 1.71

0 71.30 71.30 72.63 1.33

WRN16-4

0.1 68.73 69.30 71.90 2.60

0.3 68.23 69.30 72.15 2.85

0.5 66.32 69.30 71.69 2.39

0.7 50.94 69.30 71.79 2.49

0 69.30 69.30 71.76 2.46

Tiny-imagenet Resnet18

0.1 54.96 54.96 56.92 1.96

0.3 54.96 54.96 56.75 1.79

0.5 55.02 54.96 56.57 1.61

0.7 54.79 54.96 56.78 1.82

0.9 35.81 54.96 56.61 1.65

0 54.96 54.96 56.67 1.71

DVS-Gesture 5Conv 1FC

0.1 94.44 94.79 96.18 1.39

0.3 93.06 94.79 95.83 1.04

0.5 90.97 94.79 95.83 1.04

0.7 76.04 94.79 95.83 1.04

0 94.79 94.79 95.83 1.04

Table 2: Test accuracies of default-KD on CIFAR100, DVS-Gesture and Tiny-imagenet.

Dataset SNN Model Student SNN ACC. (%) Student KD ACC. (%) Improvement(%)

CIFAR100

Resnet18 71.30 72.10 0.80

WRN16-4 69.30 71.52 2.22

VGG16 65.49 65.95 0.46

Tiny-imagenet Resnet18 54.96 59.31 4.35

DVS-Gesture 5Conv 1FC 94.79 95.13 0.34

than 2.56%. As the pruning ratio increases, the improvement of the
accuracy of the student network generally decreases.

For the Tiny-imagenet dataset, as shown in Table 1, using the
SNN Resnet18 student network itself as its own teacher network
for knowledge distillation improves the accuracy of the student
network by 1.71%. The teacher network pruned at 0.1 imporves the
accuracy of the student network better by 1.96%. When the teacher
model is pruned at 0.1 and the accuracy is only 35.81%, it still can
conduct knowledge distillation training on student networks. To
better compare the effectiveness of knowledge distillation using
different pruning ratios and unpruned teacher networks, we vi-
sualize a line graph of test accuracy. As shown in Figure 2, the
blue line represents the accuracy of the student network before
any pruning, while the orange line represents the accuracy of the
student network using the unpruned model as the teacher network.
The other lines above the orange line represent the accuracy of the
student network using different ratios of pruning as the teacher
network.

For the DVS-Gesture dataset, as shown in Table 1, using the SNN
student network itself as its own teacher network for knowledge
distillation improves the accuracy of the student network by 1.04%.
When pruning the teacher network at 0.1, the improvement effect
on the student network is more obvious, and it improves by 1.39%.

Using a pruned student network or the student network itself for
knowledge distillation is different from the general perception of
knowledge distillation. The accuracy of the pruned student network
may be slightly lower than that of the student network, but exper-
imental results show that it can still improve the accuracy of the
student network. This shows that the pruned model, by reducing
some of the interference from redundant connections, can better
transfer effective hidden knowledge to guide the training of the
student network.

4.3 Evaluation on teacher default-KD method
We use a virtual teacher network to perform knowledge distillation.
The experiment is based on the spiking form of Resnet18, WRN16-4,
and VGG16 network structures. The virtual teacher network is a
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Figure 2: Comparison of test accuracy of student SNNs under different pruning ratios of teacher networks.

Table 3: Summary comparison of classification accuracies with other spiking based models

Dataset Method SNN
Architecture

SNN
Acc.(%) timestep

CIFAR100

RMP-snns [9]
VGG16 70.93

2048
Resnet20 67.82

Hybrid [20] VGG11 67.87 125

TSC [8]
VGG16 70.97

1024
Resnet20 68.18

Opt. [4]
VGG16 70.55

400
Resnet20 69.82

Proposed sparse-KD ResNet18 73.01 4

Proposed default-KD ResNet18 72.10 4

Tiny-imagenet

LTL [28] Resnet20 56.28 16

BNTT [14] VGG11 57.8 30

Proposed sparse-KD Resnet18 56.92 4

Proposed default-KD Resnet18 59.31 4

DVS-Gesture

PLIF [6] c128k3s1-BN-PLIF-MPk2s2*5-DPFC512-
PLIF-DP-FC110-PLIF-APk10s10 97.57 20

STBP-TdBN [32] Resnet17 96.87 40

SLAYER [22] 8 layers 93.64 25

Com. [10] Input-MP4-64C3-128C3-
AP2-128C3-AP2-256FC-11 93.40 25

Proposed sparse-KD 5Conv 1FC 96.18 16

Proposed default-KD 5Conv 1FC 95.13 16
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Figure 3: The visualization of the output distributions of the teacher network’s last layer in different methods.

probability distribution designed by humans, with an accuracy of
100%.

The effectiveness of using virtual teacher networks for different
models varies, as shown in Table 2. On the CIFAR100 dataset, using
knowledge distillation with a virtual teacher network on a WRN16-
4 model improves the accuracy of the student network by 2.22%. For
the Resnset18 model, the student network’s accuracy is improved
by 0.80%. On the Tiny-imagenet dataset, the student network’s accu-
racy is improved by 4.35% which is greater than sparse-KD method.
On the DVS-Gesture dataset, the student network’s accuracy is also
slightly improved over 0.34%.

Using a virtual teacher network to perform knowledge distil-
lation on a student network is an effective way to improve the
accuracy of the student network. The virtual teacher network does
not have any output errors and can better guide the training of the
student network. Since the training of a greater teacher SNN is dif-
ficult, this method is also suitable for situations where it is difficult
to find a model with better performance as a teacher network for
knowledge distillation.

4.4 Visualization Analysis
We visualize the output distributions of the teacher network’s last
layer in different methods. For sparse-KD, as shown in Figure 3, we
can observe that the pruned teacher network’s output (blue line)
is relatively smoother compared to the unpruned teacher network
(orange line), and it contains inter-class information (e.g., class 24
"clouds" and class 50 "mountains"). As for default-KD, we can see
that the probability distribution designed by the virtual teacher
network (green line) is mostly consistent with that of the original
teacher network (orange line).

4.5 Performance Comparison with Other
Methods

As shown in Table 3, in order to better analyze the effectiveness of
the method, we compare it with some existing methods. For the
CIFAR100 dataset, the sparse-KD and default-KD methods using
a pruned model with a pruning rate of 0.3 as the teacher network
on the Resnet model have an accuracy of 72.83% and 72.10%, re-
spectively, which is better than the Rmp-snns [9], Hybrid [20], Opt.
[4] and TSC [8] methods. For the Tiny-imagenet, the accuracy of
our method is better than LTL [28] with less time steps. For the
DVS-Gesture dataset, the sparse-KD method using a pruned model
with a pruning rate of 0.1 as the teacher network on the 5Conv-1FC
structure has an accuracy of 96.18%, and the default-KDmethod has
an accuracy of 95.13%, both of which are better than the SLAYER
[22] and Com. [10] methods. Compared to the PLIF [6] and STBP-
TdBN [32] methods, the accuracy is slightly lower, but the time step
used is 16, which is shorter than them.

5 CONCLUSION
Inspired by the biological plausibility of neural systems in human
brain, this paper proposed efficient structure learning methods with
reverse knowledge distillation for SNNs. This kind of method could
help to build a deep but sparse structure under the guidance of the
pruningmethodwhich could not only discard the redundancy of the
complex spiking neural dynamics but also save power consumption
and memory storage in SNNs.

Considering the abnormal KD cases such as the proposed sparse-
KD and teacher-default KD methods, experimental results showed
that we can expand our work to broader conditions in SNNs es-
pecially when the teacher model is weak. It also showed that the
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proposed models not only get good performance on a relatively
large dataset (CIFAR100 and Tiny-imagenet) but are also suitable
for the dynamic scene (DVS-Gesture). Under strict timesteps, the
proposed method can help SNNs get good performance compared
to other spiking based models. That is to say, the proposed methods
could give full play to the advantages of low power consumption
of SNNs.

In our future work, we will expand the structure learning meth-
ods to utilize the advantages of spiking signals, not limited by the
proposed two teacher-weak conditions, we will consider more situ-
ations when the teacher model is ill or disabled and evaluate them
on more types of datasets.
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