
A Dataset Details1

Our study utilizes 15 molecule datasets of varying sizes obtained from MoleculeNet [14, 7] and2

ChemBL [12], which can be categorized into three groups based on their applications or source3

domains: medication (HIV, SIDER, Lipo, ClinTox), quantum mechanics (qm8, qm9), and chemical4

analysis (ESOL, FreeSolv, ChemBL, MUV, BACE, BBBP, ToxCast, Tox21, PCBA). As for qm8 and5

qm9, we randomly sample 3,000 graphs to construct the datasets. We use the original split setting,6

where qm8 and qm9 are randomly split, and scaffold splitting is used for the others. The small7

molecule datasets with less than 10,000 instances in the training sets are selected as target molecule8

datasets, i.e., Tox21, BACE, BBBP, ClinTox, SIDER, ToxCast, ESOL, FreeSolv, Lipo, qm8 and qm9.9

All the involved datasets can be accessed and downloaded from OGB1 or MoleculeNet repository2.10

The overall statistics are summarized as follows:11

HIV PCBA Tox21 BACE BBBP ClinTox MUV

#graphs 41,127 437,929 7,831 1,513 2,039 1,477 93,087
#tasks 1 128 12 1 1 2 17

split scaffold scaffold scaffold scaffold scaffold scaffold scaffold
metric ROAUC AP ROAUC ROAUC ROAUC ROAUC AP

Table 1: Dataset statistics(1).

SIDER ToxCast ChemBL ESOL FreeSolv Lipo qm8 qm9

#graphs 1,427 8,576 456,309 1,128 642 4,200 3,000 3,000
#tasks 27 617 1,310 1 1 1 12 12

split scaffold scaffold scaffold scaffold scaffold scaffold random random
metric ROAUC ROAUC ROAUC RMSE RMSE RMSE MAE MAE

Table 2: Dataset statistics(2).

B Implementation Details12

The core code is provided in the supplementary material.13

Backbone model settings. As for GIN [15], we fix the batch size as 128 and train the model for 5014

epochs. We use Adam [9] with a learning rate of 0.001 for optimization. The hidden size and number15

of layers are set as 300 and 5 respectively. We set the dropout rate as 0.5 and apply batchnorm [8] in16

each layer. All the results are reported after 5 different random seeds.17

As for Graphormer [16], we fix the batch size as 128 and train the model for 30 epochs. AdamW [11]18

with a learning rate of 0.0001 is used as the optimizer. The hidden size, number of layers, and number19

of attention heads are set as 512, 5, and 8 respectively. We set the dropout rate and attention dropout20

rate as 0.1 and 0.3. Layernorm [2] is applied across layers. The maximum number of nodes and the21

distance between nodes in the sampled graph is set as 128 and 5 respectively. The size of position22

embedding, in-degree embedding, and out-degree embedding are fixed as 512. All the results are23

reported after 5 different random seeds.24

Grouping method settings. As for MolGroup, we apply GIN as the encoder. During the training,25

we randomly select datasets with equal probability and sample data from them to ensure that each26

dataset contributes an equal number of samples to the constructed mini-batch. We use MACC [4]27

fingerprint to calculate the structure affinity score. We fix the number of the filtering iterations as28

3 and the balance coefficient λ is set as 0.9. During each round, the auxiliary datasets with affinity29

scores below 0.6 will be filtered out. If none of the datasets fall below this threshold, we filter out30

the dataset with the lowest affinity score. The orthogonal initialization [13] is applied to initialize31

the learnable task embedding etask to make sure that the dot product between the target dataset’32

1https://ogb.stanford.edu/
2https://moleculenet.org/
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Algorithm 1: Iterative filtering process with MolGroup
Input: Target dataset DT with N training instances; Candidate auxiliary datasets {DA}M ; GNN

model with specific parameters θT , {θm}M for each dataset and routing mechanism g(·);
Number of iterations R; Number of epochs E; Learning rate lr; Batch size B.

// Filtering round
for r ← 1, · · · , R do

Random initialize θT , θ1, · · · , θM and g(·).
ϕ1, · · · , ϕM ← 0. // Affinity scores
I ← NM//B. // Number of iteration in each epoch
// Training epoch
for e← 1, · · · , E do

// Training step
for iter ← 1, · · · , I do

Sample mini-batch {BT ,B1, · · · ,BM} from current datasets.
Obtain losses lT , {lm}M and affinity scores {αm}M by feeding mini-batch to GNN.
// Bi-level optimization framework
1) θT ({αm}M )← θT − lr · ∇θT

∑M
m lm.

2) Update g(·) through target dataset’s loss function with BT and θT ({αm})M .
Update all the parameters θT , θ1, · · · , θM through lT , l1, · · · , lM .
if e == E then

// Average affinity scores in final epoch
for m← 1, · · · ,M do

ϕm ← ϕm + αm/I .
end

end
end

end
// Remove datasets according to threshold
{DA}M ′ ← {DAm

|ϕm ≥ 0.6}.
M ←M ′.

end
Output: Auxiliary datasets with high affinity {DA}M .

embedding and auxiliary dataset’s embedding starts with 0. The task embedding size is set as 16, and33

the number of the processing steps in Set2Set is set as 2. The pseudo-code is presented in Algo.1.34

As for beam search, we apply GIN as the encoder. The beam width and search depth are both set35

to 3. During the search process, we train the model for 3 epochs using each candidate dataset and36

evaluate its performance using the validation set loss. Additionally, we consider a criterion based37

on the combination of the difference in fingerprint distribution and performance. Specifically, we38

average and normalize these two metrics to determine the criterion.39

As for Task2vec [1], we employ GIN as the probe network and follow the official implementation3.40

First, we fix the encoder and train the decoder for 10 epochs. Then we apply the Monte Carlo41

algorithm to compute the Fisher Information Matrix.42

As for TAG [5], we use GIN as the encoder and follow the official implementation4. TAG involves43

training all the datasets and computing the lookahead loss between target dataset and auxiliary44

datasets. The lookahead loss is accumulated over multiple epochs and used as the affinity scores.45

As for MTDNN [10], we train all the datasets together for each target dataset and apply an additional46

task discriminator to classify the source of the dataset for the input instances. We train 50 epochs for47

GIN and 30 epochs for Graphormer, and the instances in auxiliary datasets that have a probability48

greater than 0.6 of being classified as the target dataset will be selected.49

As for Gradnorm [3], we train all the datasets together and update the weights of the loss based on50

the gradients of the last shared GNN layer.51

3https://github.com/awslabs/aws-cv-task2vec
4https://github.com/google-research/google-research/tree/master/tag
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C Experimental Details52

For the preliminary analysis shown in Fig.1, we conduct the study using a set of 15 molecule datasets.53

Among these datasets, 11 datasets that have less than 10,000 instances in the training set are selected54

as target datasets. We pair the target datasets with every other dataset and measure the relative55

improvement the combination achieves. To mitigate the issue of varying dataset sizes, we upsample56

or downsample the training sets of all datasets to ensure an equal number of training instances,57

specifically 5,000 instances. All the reported results are based on 5 different random seeds.58

For the dataset grouping evaluation, we train the model using the combined datasets and assess its59

performance on the target datasets. We then report the model’s performance on the test set using the60

best-performing model selected based on its performance on the validation set. Cross-entropy loss61

is used for classification tasks and mean squared error loss is used for regression tasks. The overall62

training loss is calculated as the unweighted mean of the losses for all included tasks. All the reported63

results are based on 5 different random seeds.64

D Overall Experimental Results65

Running environment. The experiments are conducted on a single Linux server with The Intel66

Xeon Gold 6240 36-Core Processor, 361G RAM, and 4 NVIDIA A100-40GB. Our method is67

implemented on PyTorch 1.10.0 and Python 3.9.13.68

D.1 Dataset Grouping Evaluation69

Here we present the performance comparison over the other 5 target datasets in Table 3 and Table 4.70

It can be observed that pretrained Graphormer outperforms GIN significantly, consistent with the71

previous studies. In addition, MolGroup achieves the best performance in most cases, with an average72

relative improvement of 3.52% and 3.10% for GIN and Graphormer. However, a notable exception73

occurs with qm9 where our proposed method is unable to surpass beam search. In this instance,74

MolGroup assigns low-affinity scores to each auxiliary dataset due to the significant disparity between75

quantum chemistry and the other domains, as shown in Section D.3. Nonetheless, despite the limited76

efficiency, beam search is capable of identifying a promising candidate by directly comparing the77

performance of different groupings. It is worth noting that overall, our proposed MolGroup still78

achieves better performance compared to the other baseline methods.79

Additionally, we attribute the poor performance or even worse results of the Unweighted Average,80

Gradnorm, and Pretrain-Finetune methods to the significant distribution gap between different81

datasets. These methods struggle to learn a shared representation that can effectively capture the82

characteristics of all the datasets.83

Method SIDER(↑) ToxCast(↑) ESOL(↓) Lipo(↓) qm9(↓)

Only-target 59.350.010 60.690.010 1.5630.040 0.80630.015 0.03030.001
Beam search(P) 54.250.024 63.370.004 1.4310.058 0.80730.011 0.04560.001

Beam search(P+S) 56.580.038 61.010.010 1.4760.061 0.81470.014 0.02580.000

TAG 55.640.005 58.080.003 1.4170.066 0.81700.017 0.04530.000
Task2vec 55.740.008 57.450.004 1.4360.050 0.80780.010 0.04680.000
MTDNN 55.950.015 59.020.007 1.4990.027 0.81550.017 0.04760.001

UA 56.260.009 59.930.003 1.4800.060 0.91300.017 0.04940.000
Gradnorm 55.690.005 53.310.010 1.5410.091 1.07550.001 0.05740.005

Pretrain-Finetune 51.430.009 51.060.005 1.4800.099 1.07760.066 0.04980.010
MolGroup 59.210.013 63.910.005 1.4020.037 0.79960.007 0.03030.001

Table 3: Performance comparison of GIN on target molecule datasets, with ↑ indicating higher is
better and ↓ indicating lower is better.
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Method SIDER(↑) ToxCast(↑) ESOL(↓) Lipo(↓) qm9(↓)

Only-target 62.050.021 66.160.004 1.0540.053 0.74320.032 0.02730.001
Beam search(P) 60.800.005 67.360.006 0.9890.058 0.76400.031 0.03990.002

Beam search(P+S) 62.670.009 66.000.003 1.0260.024 0.75240.017 0.02620.000

TAG 63.570.004 65.400.005 1.0150.045 0.75070.014 0.04320.002
Task2vec 60.690.019 63.280.005 0.9970.028 0.75620.015 0.04290.001
MTDNN 61.430.024 65.050.022 1.0450.003 0.77160.032 0.04200.000

UW 58.240.014 62.710.020 1.1200.084 0.78870.067 0.05080.000
Gradnorm 51.650.018 52.400.007 1.4000.096 1.04820.029 0.21540.125
MolGroup 63.750.018 68.680.003 0.9780.047 0.73040.018 0.02730.001

Table 4: Performance comparison using Graphormer on target molecule datasets.

D.2 Takeaway84

Grouping more high-affinity datasets improves performance. Previous studies on task grouping85

have assumed that low-order relationships can be an effective indicator of high-order ones. It86

suggests that combining multiple source datasets, which can benefit the target dataset, leads to better87

performance when learned together. Our experimental results also confirm this phenomenon. We take88

eight datasets as examples and add them one by one with the top three datasets having the highest89

affinity score as measured by MolGroup. Results are presented in Table 5, where Top{a, b, · · · }90

denotes the combination of auxiliary datasets with top-performing ones. We can find that combining91

more auxiliary datasets leads to better performance in most cases. Besides, training with high-affinity92

datasets can significantly reduce the variant of FreeSolv (1.579→ 0.279), indicating a more robust93

representation learned from the auxiliary datasets.94

Combinations ClinTox Tox21 FreeSolv BBBP BACE ToxCast ESOL Lipo

Only Target 56.450.023 74.230.005 3.8421.579 66.620.028 75.020.026 60.690.010 1.5630.040 0.80630.015
+ Top{1} 57.770.028 74.810.006 3.5630.989 67.360.023 71.270.045 62.660.002 1.5020.043 0.80960.014

+ Top{1,2} 57.480.032 75.220.003 3.4620.970 68.640.012 71.130.019 63.180.006 1.5240.077 0.80780.011
+Top{1,2,3} 59.770.027 75.660.004 3.1160.279 68.360.016 77.330.015 63.910.005 1.4020.010 0.79960.005

Table 5: Performance of top-k combinations.

PCBA is an effective booster. One interesting finding is that dataset PCBA [6] can boost the95

performance of most of the small molecule datasets, as shown in Table 6. This dataset offers both96

a diverse range of chemical compounds with unique scaffold structures, comprising over 350,00097

training instances, and an extensive collection of 128 bioassay annotations that represent a broad98

range of biological activities, making it a potent booster for small molecule property prediction tasks99

that can benefit from both structure and task.100

BBBP(↑) ClinTox(↑) ToxCast(↑) Tox21(↑) ESOL(↓) FreeSolv(↓) Lipo(↓)

Only-target 66.620.028 56.450.023 60.690.010 74.230.005 1.5630.040 3.8421.579 0.80630.015
+PCBA 67.110.023 57.770.028 62.050.007 74.810.006 1.4630.020 3.5630.989 0.80210.009

Table 6: Cases whose performance is improved by PCBA.

D.3 Case Study101

To give an intuition of the learning process of MolGroup, we show the learning curves of the affinity102

scores in different filtering rounds in Fig. 1. In each round, auxiliary datasets with affinity scores103

below 0.6 are removed, and if none of the datasets fall below this threshold, the dataset with the104

lowest affinity score is filtered out. It can be observed that a significant number of auxiliary datasets105

are removed in the first or second round. Furthermore, the learning curves tend to converge after106

6 epochs in most cases. The dataset PCBA remains in the final round in most cases, indicating its107

general benefit to the other target datasets. We also notice that the majority of auxiliary datasets are108
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assigned high-affinity scores for FreeSolv, as demonstrated in the preliminary experiment in Section109

1, suggesting that all auxiliary datasets contribute positively to its performance.110

Figure 1: Learning curves of affinity scores where red dashed line represents threshold.

Additionally, we plot the learning curves for qm8 and qm9, which don’t have suggested auxiliary111

datasets. As shown in Fig. 2, all the auxiliary datasets are assigned affinity scores lower than the112

threshold for both qm8 and qm9, resulting in the removal of all datasets after the first round. We113

attribute this to the large discrepancy in the structure and task between quantum chemistry and114

the other domains such as medication. Molecules in quantum chemistry have diverse structures,115

including both natural and hypothetical compounds. They are studied to explore the behaviors of116

various functional groups. On the other hand, molecules in medication are more focused on structure.117

Their study revolves around predicting and optimizing molecular properties relevant to drug design.118

Figure 2: Learning curves for qm8 and qm9.

E Parameter Analysis119

E.1 Analysis on balance coefficient λ120

To analyze the impact of the balance coefficient λ, we vary λ in the range of {0.9, 0.7, 0.5, 0.3} and121

pick BBBP, Tox21, and Lipo as examples. The learning curves of the affinity scores corresponding to122

different values of λ are plotted in Fig.3. From the results, we observe that decreasing λ led to lower123

affinity scores for the auxiliary datasets. However, these scores fail to effectively discriminate the124
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affinity of individual auxiliary datasets. One reason for this is the instability introduced by parameter125

initialization and the per-step level computation of structure affinity scores. As a result, lower values126

of λ cause the MolGroup to assign lower affinity scores to stabilize the training of the target dataset.127

In light of this, we suggest setting λ to a high value, i.e., 0.9.128

Figure 3: Learning curves of affinity scores with different λ.

E.2 Analysis on number of filtering rounds R129

As shown in Fig.1, the auxiliary datasets with the highest affinity scores change as we progress130

through the different filtering rounds. To investigate the impact of the filtering rounds, we test the131

performance of the top-3 auxiliary datasets selected in each rounds. The comparison results are132

shown in Table 7 and the selected datasets are illustrated in Fig. 4. We observe that the auxiliary133

datasets selected in the 3rd round exhibit the best performance. This is attributed to the filtering134

process in the 1st and 2nd rounds, which removes negative datasets and helps alleviate interference.135

As a result, MolGroup can estimate the affinity of each auxiliary dataset more accurately, leading to136

improved performance on the target dataset.137

BBBP Tox21 ClinTox Lipo FreeSolv ToxCast

R = 1 67.940.018 75.660.004 57.660.027 0.80130.013 3.22880.543 58.820.007
R = 2 67.990.018 75.660.004 57.660.027 0.80200.031 3.22800.627 63.470.003
R = 3 68.360.016 75.660.004 59.770.027 0.79960.007 3.1160.279 63.910.005

Table 7: Performance with different number of filtering rounds R.

F Broader impact138

Impact on machine learning research. We propose a novel strategy that combines the routing139

mechanism with the meta gradient to quantify the impact of one dataset on another. Previously, the140

routing mechanism was used to increase the model capacity. Our proposed framework can inspire141

various extensive applications in machine learning, including neural architecture searching (NAS)142

and data-centric AI. Specifically, our framework enables the network to determine the optimal routing143

path through the meta gradient. This empowers the network to control and modify the layerwise144

architecture, leading to improved performance. Besides, it has the potential to enhance data-centric145

6



𝑅 = 1 𝑅 = 2

Figure 4: Auxiliary datasets with top-3 affinity scores with different R where we highlight the
different edges in these two rounds.

AI approaches by providing a tool to analyze and understand the relationship between different146

datasets or sub-datasets.147

Impact on biological research. We investigate the relationship between molecule datasets, and,148

focusing on both the structural and task dimensions. our findings shed light on how different molecule149

datasets impact each other. The analytical approach we employ can be extended to other biological150

data, such as protein and RNA. Furthermore, our method has the potential to be utilized for data151

instance filtering in the biological domain. This is particularly important given that biological152

data often contains various types of noise. By filtering out data instances with negative effects on153

downstream tasks, we can improve the quality and reliability of biological data used in research.154

Impact on the society. Our study has significant implications for society, particularly in the field155

of biomedicine and drug discovery. By understanding the relationship between molecule datasets156

and their impact on each other, we can gain insights into how different molecules interact and157

influence biological processes. It can aid in the development of more effective drugs and therapies by158

identifying molecules that have a positive impact on specific biological targets or diseases.159
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