
Sageflow: Robust Federated Learning against
Both Stragglers and Adversaries

(Supplementary Material)

Jungwuk Park∗
KAIST

savertm@kaist.ac.kr

Dong-Jun Han∗
KAIST

djhan93@kaist.ac.kr

Minseok Choi
Jeju National University
ejaqmf@jejunu.ac.kr

Jaekyun Moon
KAIST

jmoon@kaist.edu

A Hyperparameter setting

All experiements were performed in PyTorch on an Intel Xeon CPU E5-2620 v4 @ 2.10GHz and a
Geforce GTX 1080 Ti.

A.1 Scenario with only stragglers

The hyperparameter settings for Sageflow are shown in Table 1. For the schemes ignore stragglers
and wait for stragglers combined with FedAvg, we decayed the learning rate during training. For the
FedAsync scheme of [7], we take a polynomial strategy with hyperparameters a = 0.5, α = 0.8, and
decayed γ during training.

Table 1: Hyperparameters for Sageflow with only stragglers

Dataset γ staleness exponent λ loss exponent δ entropy thresholdEth Learning rate γ decay

MNIST 0.5 0.5 1 1 0.01 Every 15 global epochs
FMNIST 0.5 0.5 1 1 0.01 Every 20 global epochs
CIFAR10 0.5 1.5 1 1 0.01 Every 300 global epochs

A.2 Scenario with only adversaries

Data poisoning and model poisoning attacks: Table 2 describes the hyperparameters for Sageflow
with only adversaries, under data poisoning and model poisoning attacks. For RFA of [5], the
maximum iteration is set to 10. In this setup, the learning rate is decayed for all three schemes
(Sageflow, RFA, FedAvg).

Backdoor attack: In this backdoor attack scenario, we utilized the Dirichlet distribution with
parameter 0.5 for distributing training samples to N = 100 devices. The local batch size is set to
64 and the number of poisoned images is 20. The hyperparameter details for Sageflow are shown in
Talbe 3.

∗Equal contribution.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Table 2: Hyperparameters for Sageflow with only adversaries, under data and model poisoning

Dataset γ λ δ Eth Learning rate γ decay

MNIST 1 - 1 1 0.01 No decay
FMNIST 1 - 1 1 0.01 No decay
CIFAR10 1 - 1 1 0.01 No decay

Table 3: Hyperparameters for Sageflow with only adversaries, under backdoor attack

Dataset γ λ δ Eth Learning rate γ decay

MNIST 1 - 5 2 0.01 No decay
FMNIST 1 - 5 2 0.01 No decay
CIFAR10 1 - 5 2 0.01 No decay

A.3 Scenario with both stragglers and adversaries

Data poisoning and model poisoning attacks: The hyperparameters for Sageflow are shown in
Table 2.

Backdoor attack: The hyperparameter details are shown in Table 4.

Table 4: Hyperparameters for Sageflow with both stragglers and adversaries, under backdoor attack

Dataset γ λ δ Eth Learning rate γ decay

MNIST 0.5 0.5 5 2 0.01 No decay
FMNIST 0.5 0.5 5 2 0.01 No decay
CIFAR10 0.5 1.5 5 2 0.01 Every 1000 global epochs

A.4 Setup for Tables 1 and 2 in the main manuscript

In Tables 1 and 2 of the main manuscript, we evaluated test accuracies at specific global rounds or
time. We specify these values in Table 5.

B Additional experiments under backdoor attack

B.1 Experimental setup with backdoor attack

We embedded 12 white pixels in the top-left corner of the image and the labels of these poisoned
images are set to 2. We utilize the Dirichlet distribution with parameter 0.5 for distributing training
samples to N = 100 devices. We set C, the fraction of N = 100 devices participating in each global
round, to 0.1 and r, the portion of adversarial devices, also to 0.1 at each global round. The local
batch size is set to 64. The number of poisoned images in a batch is 20, and we do not decay the
learning rate here.

B.2 Experiments under no-scaled backdoor attack

In addition to the model replacement backdoor attack (or scaled backdoor attack) we considered so
far, we perform additional experiments under the no-scaled backdoor attack [1] where the adversarial
devices do not scale the weights and only transmit corrupted models to the server. Fig. 1 shows
the performance under the no-scaled backdoor attack with only adversaries (no stragglers). Fig. 2
shows the case with both stragglers and adversaries. We set C = 0.1 and r = 0.1 for both figures.
Since the models corrupted by no-scaled backdoor attack do not significantly degrade the overall test
accuracy, it seems that Sageflow and other schemes are not able to completely defend against the
attack. However, Sageflow noticeably slows down the poisoning of the global model compared to
other methods.

2



Table 5: Global round or time for evaluating accuracy in Tables 1 and 2 of the main manuscript.
Model poisoning Data poisoning Scaled backdoor attack

Setup \Datasets MNIST FMNIST CIFAR10 MNIST FMNIST CIFAR10 MNIST FMNIST CIFAR10

Only adversaries (global round) 40 70 800 40 70 800 180 100 1600
Both stragglers/adversaries (time) 40 70 828 70 70 800 50 50 1200

0 100 200 300

Global round

0

20

40

60

80

100

A
tt
a
c
k
 s

u
c
c
e
s
s
 r

a
te

Sageflow (Ours)

RFA

FedAvg

Zeno+

(a) MNIST

0 100 200 300

Global round

0

20

40

60

80

100

A
tt
a
c
k
 s

u
c
c
e
s
s
 r

a
te

Sageflow (Ours)

RFA

FedAvg

Zeno+

(b) FMNIST

800 1000 1200 1400 1600 1800 2000

Global round

0

20

40

60

80

100

A
tt
a
c
k
 s

u
c
c
e
s
s
 r

a
te

Sageflow (Ours)

RFA

FedAvg

Zeno+

(c) CIFAR-10

Figure 1: Performance comparison with only adversaries under no-scaled backdoor attack. Sageflow
can slow down the poisoning of the global model compared to other methods.

C Experiments under model poisoning with scale 10

Some additional experiments were conducted under model poisoning with the scale factor 10. Fig. 3
shows the results with C = 0.2 and with r = 0.2. When modeling stragglers, each device can have a
delay of 0, 1 or 2, which is determined independently and uniformly random. The loss associated
with a poisoned device increases if we increase the scale factor from 0.1 to 10. Hence, not only
Sageflow but also Zeno+ can effectively defend against the attacks with only adversaries. However,
under the existence of both stragglers/adversaries, Sageflow outperforms other baselines.

D Experimental results with varying hyperparameters

To observe the impact of hyperparameter setting, we performed additional experiments with various
δ and Eth values, the key hyperparameters of Sageflow. The results are shown in Fig. 4 with only
adversaries. We performed the data poisoning attack for varying δ and the model poisoning attack
with scale 0.1 for varying Eth. We set C = 0.2 and r = 0.2.

First, the results under data poisoning show that the performance of Sageflow is not sensitive to δ if
they are chosen in the appropriate range of [1, 2]. For the model poisoning attack, if we use a very
small Eth like 0.3, the performance is poor because a large number of devices get filtered out. If we
use a large Eth, the performance is also very poor since the scheme cannot filter out the adversaries.
However, similar to the behavior of hyperparameter δ, we can confirm that our scheme performs well
regardless of dataset if Eth is chosen in an appropriate range of [1, 2].

To summarize, our scheme still performs well (better than RFA), even with coarsely chosen hyperpa-
rameter values regardless of the dataset.

E Comparison with other robust aggregation methods against adversaries

In this section, we compare our algorithm with various existing aggregation methods that are robust
against adversaries.

E.1 Performance comparison with Multi-Krum

While we compared Sageflow with RFA in our main manuscript, here we compare our scheme with
Multi-Krum [2] which is a Byzantine-resilient aggregation method targeting conventional distributed
learning setup with IID data across nodes. In Multi-Krum, among N workers in the system, the server
tolerates f Byzantine workers under the assumption of 2f + 2 < N . After filtering f worker nodes

3



0 100 200 300

Running time

0

20

40

60

80

100

A
tt
a
c
k
 s

u
c
c
e
s
s
 r

a
te

Sageflow (Ours)

Sag + RFA

FedAsync + eflow

FedAsync + Zeno+

Ignore stragglers + RFA

(a) MNIST

0 100 200 300

Running time

0

20

40

60

80

100

A
tt
a
c
k
 s

u
c
c
e
s
s
 r

a
te

Sageflow (Ours)

Sag + RFA

FedAsync + eflow

FedAsync + Zeno+

Ignore stragglers + RFA

(b) FMNIST

800 1000 1200 1400 1600 1800 2000

Running time

0

20

40

60

80

100

A
tt
a
c
k
 s

u
c
c
e
s
s
 r

a
te

Sageflow (Ours)

Sag + RFA

FedAsync + eflow

FedAsync + Zeno+

Ignore stragglers + RFA

(c) CIFAR-10

Figure 2: Performance with both stragglers and adversaries under no-scaled backdoor attack. Sageflow
can slow down the poisoning of the global model compared to other methods.

0 50 100 150

Global round

0

20

40

60

80

100

T
e
s
t 
a
c
c
u
ra

c
y

Sageflow (Ours)

RFA

FedAvg

Zeno+

(a) MNIST, only adversaries

0 50 100 150

Global round

0

20

40

60

80

100

T
e
s
t 
a
c
c
u
ra

c
y

Sageflow (Ours)

RFA

FedAvg

Zeno+

(b) FMNIST, only adversaries

0 200 400 600 800 1000 1200

Global round

10

20

30

40

50

60

70

T
e
s
t 
a
c
c
u
ra

c
y

Sageflow (Ours)

RFA

FedAvg

Zeno+

(c) CIFAR-10, only adversaries

0 50 100 150

Running time

0

20

40

60

80

100

T
e
s
t 
a
c
c
u
ra

c
y

Sageflow (Ours)

FedAsync + eflow

Sag + RFA

Ignore stragglers + RFA

Wait for stragglers + RFA

(d) MNIST, both strag-
glers/adversaries

0 50 100 150

Running time

0

20

40

60

80

100

T
e
s
t 
a
c
c
u
ra

c
y

Sageflow (Ours)

FedAsync + eflow

Sag + RFA

Ignore stragglers + RFA

Wait for stragglers + RFA

(e) FMNIST, both strag-
glers/adversaries

0 200 400 600 800 1000 1200

Running time

0

10

20

30

40

50

60

70

T
e
s
t 
a
c
c
u
ra

c
y

Sageflow (Ours)

FedAsync + eflow

Sag + RFA

Ignore stragglers + RFA

Wait for stragglers + RFA

(f) CIFAR-10, both strag-
glers/adversaries

Figure 3: Performance under model poisoning with scale 10. Both Sageflow and Zeno+ perform
well with only adversaries, while only Sageflow performs well under the existence of both strag-
glers/adversaries.

based on squared-distances, the server chooses M workers among N − f remaining workers with the
best scores and aggregates them. We set M = N − f for comparing our scheme with Multi-Krum.

Fig. 5 compares Sageflow with Multi-Krum under model poisoning with scale 10. The stragglers
are modeled with delay 0, 1, 2. We first observe Figs. 5(a) and 5(b) which show the results with
only adversaries. It can be seen that if the number of adversaries exceed f , the performance of
Multi-Krum drops dramatically. Compared to Multi-Krum, the proposed Sageflow method can filter
out the poisoned devices and then take the weighted sum of the survived results even when the portion
of adversaries is high. Figs. 5(c) and 5(d) show the results under the existence of both stragglers
and adversaries, under the model poisoning attack. We let C = 0.2 and r = 0.2, and the parameter
f of Multi-Krum is set to the maximum value satisfying 2f + 2 < N , where N depends on the
number of received results for both staleness-aware grouping (Sag) and ignore stragglers approaches.
However, even when we set f to the maximum value, the number of adversaries can still exceed f ,
which degrades the performance of Multi-Krum combined with staleness-aware grouping (Sag) or
the ignore stragglers approach. Obviously, Multi-Krum can be combined with the wait for stragglers
strategy by setting f large enough. However, this scheme still suffers from the effect of stragglers,
which significantly slows down the overall training process.

4



0 20 40 60 80 100

Global round

10

20

30

40

50

60

70

80

90

T
e
s
t 
a
c
c
u
ra

c
y

=0

=0.5

=1

=1.5

=3

(a) FMNIST, data poisoning

0 50 100 150

Global round

0

20

40

60

80

100

T
e
s
t 
a
c
c
u
ra

c
y

E
th

=0.3

E
th

=0.5

E
th

=1

E
th

=1.5

E
th

=2

E
th

=2.5

E
th

=10.0

(b) FMNIST, model poisoning

0 200 400 600 800 1000 1200

Global round

10

20

30

40

50

60

70

T
e
s
t 
a
c
c
u
ra

c
y

=0

=0.5

=1

=1.5

=3

(c) CIFAR-10, data poisoning

0 200 400 600 800 1000 1200

Global round

10

20

30

40

50

60

70

T
e
s
t 
a
c
c
u
ra

c
y

E
th

=0.3

E
th

=0.5

E
th

=1

E
th

=1.5

E
th

=2

E
th

=2.5

E
th

=10

(d) CIFAR-10, model poisoning

Figure 4: Impact of varying hyperparameter values under model poisoning and data poisoning attacks.
The performance of Sageflow is not highly sensitive to the exact settings of loss exponent δ and
entropy threshold Eth, as long as they are chosen in a reasonable range.

0 50 100 150

Global round

0

20

40

60

80

100

T
e

s
t 

a
c
c
u

ra
c
y

Sageflow (Ours)

Multi-Krum: f=3

Multi-Krum: f=4

(a) FMNIST, only adver-
saries

0 200 400 600 800 1000 1200

Global round

10

20

30

40

50

60

70

T
e

s
t 

a
c
c
u

ra
c
y

Sageflow (Ours)

Multi-Krum: f=3

Multi-Krum: f=4

(b) CIFAR-10, only adver-
saries

0 20 40 60 80 100

Running time

0

10

20

30

40

50

60

70

80

90

T
e

s
t 

a
c
c
u

ra
c
y

Sageflow (Ours)

Sag + Multi-Krum (f=max)

Ignore stragglers + Multi-Krum (f=max)

Wait for stragglers + Multi-Krum (f=max)

(c) FMNIST, both strag-
glers/adversaries

0 200 400 600 800 1000 1200

Running time

10

20

30

40

50

60

70

T
e

s
t 

a
c
c
u

ra
c
y

Sageflow (Ours)

Sag + Multi-Krum (f=max)

Ignore stragglers + Multi-Krum (f=max)

Wait for stragglers + Multi-Krum (f=max)

(d) CIFAR-10, both strag-
glers/adversaries

Figure 5: Performance comparison with Multi-Krum under model poisoning. With only adversaries,
Multi-Krum performs well when an appropriate f parameter value is chosen. However, the per-
formance of Multi-Krum degrades significantly when stragglers exist (even when combined with
straggler-mitigating schemes). This is because the attack ratio can become very high when combined
with staleness-aware grouping or the ignoring stragglers scheme; the number of adversaries exceeds
f , significantly degrading the performance of Multi-Krum. When Multi-Krum is combined with the
wait for stragglers scheme, the performance is not degraded by adversaries but by waiting for slow
devices.

Fig. 6 compares Sageflow with Multi-Krum under scaled backdoor attack. The portion of participating
devices and the portion of adversaries at each global round are C = 0.1 and r = 0.1, respectively.
The results are consistent with the results in Fig. 5, confirming the advantage of Sageflow over
Multi-Krum combined with straggler-mitigating schemes.

E.2 Performance comparison with FLTrust

We performed additional experiments by comparing our scheme with FLTrust proposed in [4] and
OracleSGD in [6]. FLTrust utilizes public data at the server to update the server model and compute
cosine similarities between each local model and the server model. By aggregating local models
based on the cosine similarity score, FLTrust enables to reduce the impact of adversaries. OracleSGD
can be viewed as an ideal performance as it assumes the full knowledge on which devices are the
adversaries.

The setup is exactly the same in Fig. 5 of our main manuscript. We considered model poisoning
attack with scale 0.1. To this end, we applied FLtrust and OracleSGD in each grouping stage of our

5



0 50 100 150 200 250 300

Global round

0

20

40

60

80

100

A
tt

a
c
k
 s

u
c
c
e

s
s
 r

a
te

Sageflow (Ours)

Multi-Krum: f=1

(a) FMNIST, only adver-
saries

800 1000 1200 1400 1600 1800 2000

Global round

0

10

20

30

40

50

A
tt

a
c
k
 s

u
c
c
e

s
s
 r

a
te

Sageflow (Ours)

Multi-Krum: f=1

(b) CIFAR-10, only adver-
saries

0 100 200 300
Running time

0

20

40

60

80

100

A
tt

a
c
k
 s

u
c
c
e

s
s
 r

a
te

Sageflow (Ours)

Sag + Multi-Krum (f=max)

Ignore stragglers + Multi-Krum (f=max)

Wait for stragglers + Multi-Krum (f=1)

(c) FMNIST, both strag-
glers/adversaries

1000 1200 1400 1600 1800 2000

Running time

0

20

40

60

80

100

A
tt

a
c
k
 s

u
c
c
e

s
s
 r

a
te Sageflow (Ours)

Sag + Multi-Krum (f=max)

Ignore stragglers + Multi-Krum (f=max)

Wait for stragglers + Multi-Krum (f=1)

(d) CIFAR-10, both strag-
glers/adversaries

Figure 6: Performance comparison with Multi-Krum under scaled backdoor attack. Multi-Krum
performs well with only adversaries, but the performance is degraded when combined with straggler-
mitigating schemes under the existence of both stragglers and adversaries.

staleness-aware aggregation. Since FLTrust also utilizes public data, we allocated the same public
data for FLTrust as Sageflow. For OracleSGD, we performed FedAvg using the models of the benign
devices. When public data is class-balanced (the number of samples are distributed uniformly across
the classes in the public data), our scheme achieves the accuracy of 86.54% at running time 120 on
FMNIST while 86.56%, 86.91% are achievable for FLTrust, OracleSGD, respectively. However,
under the setting of Fig. 9 in Supplementary Material (when the public data is class-imbalanced),
our scheme achieves accuracy of 85.6% at running time 120 on FMNIST while 81.5%, 86.91% are
achievable for FLTrust, OracleSGD, respectively. Now using CIFAR10 with a class-balanced public
data, our scheme and OracleSGD achieve 66.48% and 66.05% respectively, while FLTrust does
not work well (achieving accuracy of 10%) on this relatively complicated dataset under our severe
non-IIDness scenario. The overall results confirm the advantage of Sageflow in various practical
settings.

E.3 Performance comparison with DiverseFL

We also performed additional experiments using DiverseFL proposed in [6]. In DiverseFL, the server
utilizes each of the received “local dataset” to compute the gradient of each client. Then, the server
computes the similarity between each of the computed gradient and the received gradient sent from
the corresponding client, to filter out adversaries. We utilized DiverseFL in each grouping stage of
our staleness-aware grouping to compare with our Sageflow. The setup is the same setup as in Fig.
5 with both stragglers and adversaries. For a fair comparison, we let each client to send 2% of its
local dataset to the server in DiverseFL. For MNIST, our scheme achieves accuracy of 97.71%, while
DiverseFL achieves 97.58%. For FMNIST, the accuracies are 86.54% and 85.55% for our scheme
and DiverseFL, respectively. Finally, 87.89% and 85.94% are achieved for our scheme and DiverseFL
using FEMNIST dataset.

Here we note that DiverseFL requires several additional constraints to be utilized in practice compared
to our Sageflow. First of all, in order for the server to compute the similarity between gradients, it is
essential for the clients participating in FL to directly send their local data to the server. Secondly,
the adversaries may upload the corrupted data to the server, which makes DiverseFL challenging to
combat adversaries. Although the authors of this paper claim that the group of experts can remove
this corrupted data at the server, this requires additional resources and efforts. Moreover, in order
for the server to compute the gradient of the clients, DiverseFL requires the server to distinguish the
local datasets of all clients. In other words, the server should remember which dataset come from
which client, which can be challenging in cross-device FL scenarios having a significant number
of clients in the system. Finally, at the server-side, DiverseFL needs to perform a large number of
forward/backward propagations for computing the gradient (after multiple updates) of all clients in
each global round, which causes additional computational burden at the server.

F Experimental results on the effect of loss-weighted averaging and
entropy-based filtering

In Fig. 7, we observe the effect of loss-weighted averaging and entropy-based filtering with only
adversaries. For the model poisoning, we performed attack with scale 0.1. We also let C = 0.2 and

6



0 50 100 150

Global round

20

40

60

80

100

T
e
s
t 
a
c
c
u
ra

c
y

Sageflow

Loss-weighted averaging

Entropy-based filtering

FedAvg

(a) Data poisoning

0 50 100 150

Global round

0

20

40

60

80

100

T
e
s
t 
a
c
c
u
ra

c
y Sageflow

Loss-weighted averaging

Entropy-based filtering

FedAvg

(b) Model poisoning
Figure 7: Effect of loss-weighted averaging and entropy-based filtering with only adversaries.
FMNIST dataset used. Both schemes work in a highly complementary fashion to tackle various
attacks. Utilizing only one of these methods significantly degrade the model performance.

0 20 40 60 80 100 120

Global round

10

20

30

40

50

60

70

80

90

T
e
s
t 
a
c
c
u
ra

c
y

Portion of Public Data: 0.03%

Portion of Public Data: 1%

Portion of Public Data: 2%

Portion of Public Data: 6%

(a) Data poisoning

0 50 100 150

Global round

20

30

40

50

60

70

80

90

T
e
s
t 
a
c
c
u
ra

c
y

Portion of Public Data: 0.03%

Portion of Public Data: 1%

Portion of Public Data: 2%

Portion of Public Data: 6%

(b) Model poisoning

0 100 200 300

Global round

0

20

40

60

80

100

A
tt
a
c
k
 s

u
c
c
e
s
s
 r

a
te

Portion of Public Data: 0.03%

Portion of Public Data: 1%

Portion of Public Data: 2%

Portion of Public Data: 6%

(c) Backdoor attack

Figure 8: Impact of varying portions of public data at the server using FMNIST. We set C = 0.1,
r = 0.1 for the backdoor attack and C = 0.2, r = 0.2 for other cases. Sageflow can defend against
various attacks with only a small portion of public data (1%).

r = 0.2. Both schemes work in a highly complementary fashion to tackle various attacks. Utilizing
only one of these methods significantly degrades the model performance.

G Impact of public data

G.1 Varying amount of public data

Fig. 8 shows the results with various portions of public data on FMNIST. We set C = 0.1, r = 0.1
for the backdoor attack and C = 0.2, r = 0.1 for others. Note that in the main manuscript, we let 2%
of the entire training set to be the public data and then the remaining data to be the training data at
the devices for fair comparison with other schemes. In the setting of Fig. 8, the whole training set
is utilized at the devices for federated learning, and each device sends a certain portion of its local
data (for example, 2%) to the server to construct public dataset. It can be seen that our Sageflow
protects the system against adversarial attacks using only a very small amount of public data. When
the portion of the public data used gets as small as 0.03% of the entire training set, the robustness of
Sageflow does seem to suffer, but at 1% and higher, the performance is very robust across the board.

G.2 Imbalanced public data

In Fig. 9, we observe the performance of Sageflow with imbalanced public data; the number of data
samples are different across the classes in the public data. We utilize the Dirichlet distribution with
parameter 0.5 and 3 for distributing training samples to N = 100 devices. We set C = 0.2 and
r = 0.2. We also let 2% of the entire training set to the public data. The overall results show that
Sageflow performs better than other schemes even with imbalanced public data at the server.

H Experiments on other datasets

H.1 Experiments on FEMNIST

We performed additional experiments using FEMNIST dataset [3] and obtained consistent results:
under the same setting of Fig. 5 in the main manuscript with both stragglers and adversaries (model

7



0 50 100 150

Global round

10

20

30

40

50

60

70

80

90

T
e
s
t 
a
c
c
u
ra

c
y

Sageflow with Balanced Public Data

RFA

FedAvg

Zeno+

Sageflow: Imbalanced (parameter=0.5)

Sageflow: Imbalanced (parameter=3)

(a) Data poisoning

0 50 100 150

Global round

10

20

30

40

50

60

70

80

90

T
e
s
t 
a
c
c
u
ra

c
y

Sageflow: Balanced

RFA

FedAvg

Zeno+

Sageflow: Imbalanced (parameter=0.5)

Sageflow: Imbalanced (parameter=3)

(b) Model poisoning

Figure 9: Impact of imbalanced public data at the server using FMNIST. We set C = 0.2, r = 0.2.
We let 2% of the entire dataset to be the public data. Sageflow performs better than other schemes
even with an imbalanced public data.

0 100 200 300

Global round

30

40

50

60

70

80

90

T
e
s
t 
a
c
c
u
ra

c
y

Sageflow (Ours)

FedAsync+eflow

Sag+RFA

Ignore stragglers + RFA

(a) Data poisoning

0 100 200 300

Global round

30

40

50

60

70

80

90

T
e
s
t 
a
c
c
u
ra

c
y

Sageflow (Ours)

FedAsync+eflow

Sag+RFA

Ignore stragglers + RFA

(b) Model poisoning

Figure 10: Performance of different schemes on a medical dataset (Covid-19 image dataset) under
data and model poisoning attacks. Only Sageflow can handle both types of attacks in the presence of
stragglers as well.

poisoning), our scheme achieves accuracy of 86.78% at running time 100 while 80.19%, 76.17%,
10%, 10% are achievable for FedAsync + eflow, Sag + RFA, ignore stragglers + RFA, wait for
stragglers + RFA, respectively. These results further confirm the advantage of our scheme compared
to various baselines.

H.2 Experiments on Covid-19 dataset open to public

We performed additional experiments on Kaggle’s Covid-19 dataset2, which is open to public. Image
classification is performed to detect Covid-19 using Chest X-ray images. The dataset consists of
317 color images of 3480 × 4248 pixels in 3 classes (Normal, Covid and Viral-Pneumonia). There
are a total of 251 training images and 66 test images. We took 15 image samples to construct the
server data, 5 samples for each class. Given only 251 training samples, this corresponds to a 6%
of the entire training set. We wanted to go to a lower portion, but 5 samples per class was as low
as one could reasonably go for estimating model entropies and losses at the server. We divided the
remaining training samples into 10 distributed devices, so each device got 23 or 24 image samples
over 3 classes. This setup simulates a realistic scenario, where a number of individual patients or
private clinics, each having some example X-ray images, wish to collaborate in developing a learner
that would classify new images. In the process, the server (e.g., at a central hospital or a service
provider) utilizes anonymous public X-ray image samples of the same disease categories to provide
protection against adversary attacks.

We set the participating device portion to C = 1 and the adversary portion to r = 0.1. We assumed
both model poisoning and data poisoning attacks. For the model poisoning, we used scale 0.1. We
also allowed stragglers in the system: each device could have a delay of 0 or 1, as determined
independently and uniformly random. We resized the images into 224 × 224 pixels and employed
convolutional neural networks with 6 convolutional layers and 1 fully connected layer.

Fig. 10 shows the results. It is clear that only Sageflow can combat both types of attacks effectively
under the existence of stragglers as well.

2https://www.kaggle.com/pranavraikokte/covid19-image-dataset

8



0 50 100 150

Running time

20

40

60

80

T
e
s
t 
a
c
c
u
ra

c
y

Sageflow (Ours)

FedAsync + eflow

Sag + RFA

Ignore stragglers + RFA

Wait for partial stragglers + RFA

Wait for stragglers + RFA

Zeno+

(a) FMNIST, data poisoning

0 50 100 150

Running time

20

40

60

80

T
e
s
t 
a
c
c
u
ra

c
y

Sageflow (Ours)

FedAsync + eflow

Sag + RFA

Ignore stragglers + RFA

Wait for partial stragglers + RFA

Wait for stragglers + RFA

Zeno+

(b) FMNIST, model poisoning

0 200 400 600 800 1000 1200

Running time

10

20

30

40

50

60

70

T
e
s
t 
a
c
c
u
ra

c
y

Sageflow (Ours)

FedAsync + eflow

Sag + RFA

Ignore stragglers + RFA

Wait for partial stragglers + RFA

Wait for stragglers + RFA

Zeno+

(c) CIFAR10, Model poisoning

Figure 11: Performance in a more severe straggler scenario where each device can have delay of 0 to
8. We set C = 0.4, r = 0.2. Sageflow still performs better than other schemes in a severe straggler
scenario.

0 50 100 150

Global round

0

20

40

60

80

100

T
e
s
t 
a
c
c
u
ra

c
y

Attack ratio(r):0.2
Attack ratio(r):0.3
Attack ratio(r):0.4
Attack ratio(r):0.5
Attack ratio(r):0.6

(a) Data poisoning

0 50 100 150

Global round

20

40

60

80

90

T
e
s
t 
a
c
c
u
ra

c
y

Attack ratio(r):0.2
Attack ratio(r):0.3
Attack ratio(r):0.4
Attack ratio(r):0.5
Attack ratio(r):0.6

(b) Model poisoning

Figure 12: Performance with varying portions of adversaries. Data and model poisoning attacks are
considered with FMNIST. We set C = 0.2.

I Experiments in a more severe straggler scenario

When modeling stragglers, we gave a delay of 0, 1, 2 to each device in the experiments of the main
manuscript. In this section, each device can have delay of 0 to 8, again determined independently
and uniformly random. In Fig. 11, we show the results with both stragglers and adversaries under
data and model poisoning. We set C to 0.4 and r to 0.2. It can be seen that our Sageflow still shows
the best performance under both data poisoning and model poisoning compared to other baseline
schemes.

J Experiments with varying portion of adversaries

In this section, we show the performance of Sageflow with varying portions of adversaries under data
and model poisoning attacks with scale 10. We do not consider stragglers here. We set δ to 1 and Eth
to 1 as in the experiments of the main manuscript. Fig. 12 shows the results with different attack
ratios on FMNIST. For data poisoning, our Sageflow shows robustness against attack ratios up to
0.4, but with 0.5 or higher, performance is degraded. For model poisoning, it can be seen that our
Sageflow performs well even with higher attack ratios.

K Additional comparision with waiting for partial stragglers

In Fig. 13, we provide new experimental results by considering a scheme that waits for 30%, 50%,
70% of the selected devices. Here, when the waiting percentage is small so that the time required for
one global round is less than our time threshold, we are ignoring more stragglers (which means that
the attack ratio becomes higher under the existence of adversaries) so the performance is visibly poor
when combined with RFA. As the waiting percentage becomes larger, the method naturally reduces
to the wait for stragglers scheme. Overall, new results again confirm significant advantages of our
method.

9



0 50 100 150

Running time

10

20

30

40

50

60

70

80

90

T
e

s
t 

a
c
c
u

ra
c
y

Sageflow (Ours)

Ignore stragglers + RFA

Wait for 30% + RFA

Wait for 50% + RFA

Wait for 70% + RFA

Wait for 100% + RFA

(a) Data poisoning

0 50 100 150

Running time

10

20

30

40

50

60

70

80

90

T
e
s
t 
a
c
c
u
ra

c
y

Sageflow (Ours)

Ignore stragglers + RFA

Wait for 30% + RFA

Wait for 50% + RFA

Wait for 70% + RFA

Wait for 100% + RFA

(b) Model poisoning

Figure 13: Comparison with the scheme that waits for a portion of devices. FMNIST is utilized with
C = 0.2 and r = 0.2.

L Proof of Theorem 1

L.1 Additional Notations for Proof

Let wj
t (k) be the model of the k-th benign device after j local updates starting from global round t.

At global round t, each device receives the current global model wt and round index (time stamp) t
from the server, and sets its initial model to wt, i.e., w0

t (k)← wt for all k = 1, . . . , N . Then each
k-th benign device performs E local updates of stochastic gradient descent (SGD) with learning rate
η:

wj
t (k)← wj−1

t (k)− η∇Fk(wj−1
t (k), ξj−1t (k)) for j = 1, . . . , E, (1)

where ξjt (k) is a set of data samples that are randomly selected from the k-th device during the j-th
local update at global round t. After E local updates, the k-th benign device transmits wE

t (k) to the
server. However, in each round, the adversarial devices transmit poisoned model parameters.

Using these notations, the parameters defined in Section 2 can be rewritten as follows:

v
(i)
t+1 =

∑
k∈U(i)

t (Eth)

β
(k)
i (δ)wE

i (k) where β(k)
i (δ) ∝ mk

{Fpub(wE
i (k))}δ

and
∑

k∈U(i)
t (Eth)

β
(k)
i (δ) = 1

(2)

zt+1 =

t∑
i=0

α
(i)
t (λ)v

(i)
t+1 where α

(i)
t (λ) ∝

∑
k∈U(i)

t
mk

(t− i+ 1)λ
and

t∑
i=0

α
(i)
t (λ) = 1 (3)

wt+1 = (1− γ)wt + γzt+1 (4)
We also define

Γ
(i)
t =

∑
B

(i)
t (Eth)

β
(k)
i (δ) (5)

where 0 ≤ Γ
(i)
t ≤ 1.

L.2 Key Lemma and Proof

We introduce the following key lemma for proving Theorem 1. A part of our proof is based on the
convergence proof of FedAsync in [7].

Lemma 1 Suppose Assumptions 1, 2 hold and the learning rate η is set to be less than 1
L . Consider

the k-th benign device that received the current global model wt from the server at global round t.
After E local updates, the following holds:

E[F (wE
t (k))− F (w∗)|w0

t (k)] ≤ (1− ηµ)E [F (wt)− F (w∗)] +
Eρ1η

2
. (6)

Proof of Lemma 1. First, consider one step of SGD in the k-th local device. For a given wj
t (k), for

all global round t and for all local updates j ∈ {0, 1, . . . , E − 1}, we have

10



E[F (wj+1
t (k))− F (w∗)|wj

t (k)]

≤ F (wj
t (k))− F (w∗)− ηE[∇F (wj

t (k))T∇Fk(wj
t (k), ξjt (k))|wj

t (k)]

+
Lη2

2
E[‖∇Fk(wj

t (k), ξjt )‖2|w
j
t (k)] I SGD update and L-smoothness

≤ F (wj
t (k))− F (w∗) +

η

2
E[‖∇F (wj

t (k))−∇Fk(wj
t (k), ξjt (k))‖2|wj

t (k)]

− η

2
‖∇F (wj

t (k))‖2 I η <
1

L

≤ F (wj
t (k))− F (w∗)− η

2
‖∇F (wj

t (k))‖2 +
ηρ1
2

I Assumption 2

≤ (1− ηµ)[F (wj
t (k))− F (w∗)] +

ηρ1
2

I µ-strongly convexity (7)

Applying above result to E local updates in k-th local device, we have

E
[
F (wE

t (k))− F (w∗)|w0
t (k)

]
= E[ E[F (wE

t (k))− F (w∗)|wE−1
t (k)]|w0

t (k) ] I Law of total expectation

≤ (1− ηµ)E[[F (wE−1
t (k))− F (w∗)]|w0

t (k)] +
ηρ1
2

I Inequality (7)

...

≤ (1− ηµ)E [F (w0
t (k))− F (w∗)] +

ηρ1
2

E∑
j=1

(1− ηµ)j−1

= (1− ηµ)E [F (w0
t (k))− F (w∗)] +

ηρ1
2

1− (1− ηµ)E

ηµ
I From η <

1

L
≤ 1

µ
, ηµ < 1

≤ (1− ηµ)E [F (wt)− F (w∗)] +
Eηρ1

2
I From ηµ < 1, 1− (1− ηµ)E ≤ Eηµ

L.3 Proof of Theorem 1

Now utilizing Lemma 1, we provide the proof for Theorem 1. First, consider one round of global
aggregation at the server. For a given wt−1, the server updates the global model according to equation

11



(4). Then for all t ∈ 1, . . . , T , we have

E[F (wt)− F (w∗)|wt−1]

(a)

≤ (1− γ)[F (wt−1)− F (w∗)] + γE[F (zt)− F (w∗)|wt−1]

(b)

≤ (1− γ)[F (wt−1)− F (w∗)] + γ

t−1∑
i=0

α
(i)
t−1(λ)E[F (v

(i)
t )− F (w∗)|wt−1]

(c)

≤ (1− γ)[F (wt−1)− F (w∗)] + γ

t−1∑
i=0

α
(i)
t−1(λ)

∑
k∈U(i)

t−1(Eth)

β
(k)
i (δ)E[F (wE

i (k))− F (w∗)|wt−1]

= (1− γ)[F (wt−1)− F (w∗)] + γ

t−1∑
i=0

α
(i)
t−1(λ)

{ ∑
k∈B(i)

t−1(Eth)

β
(k)
i (δ)E[F (wE

i (k))− F (w∗)|wt−1]

+
∑

k∈M(i)
t−1(Eth)

β
(k)
i (δ)E[F (wE

i (k))− F (w∗)|wt−1]
}

(d)

≤ (1− γ)[F (wt−1)− F (w∗)] +
Eηρ1γ

2
+ γΩmax(Eth, δ)

+ γ(1− ηµ)E
t−1∑
i=0

α
(i)
t−1(λ)

∑
k∈B(i)

t−1(Eth)

β
(k)
i (δ)

 F (wi)− F (w∗)︸ ︷︷ ︸
F (wi)−F (wt−1)+F (wt−1)−F (w∗)


= (1− γ + γ

t−1∑
i=0

α
(i)
t−1(λ)Γ

(i)
t−1(1− ηµ)E)[F (wt−1)− F (w∗)] +

Eηρ1γ

2
+ γΩmax(Eth, δ)

+ γ(1− ηµ)E
t−2∑
i=0

α
(i)
t−1(λ)

∑
k∈B(i)

t−1(Eth)

β
(k)
i (δ) [F (wi)− F (wt−1)]

(e)

≤ (1− γ + γ(1− ηµ)E)[F (wt−1)− F (w∗)] +
Eηρ1γ

2
+ γΩmax(Eth, δ) + γGt−1(λ) (8)

where e(i)t := F (wi)− F (wt) and Gt(λ) :=
∑t−1
i=0 α

(i)
t (λ)e

(i)
t and G0(λ) = 0. (a), (b), (c) come

from convexity, (d) follows Lemma 1 and the definition Ωmax = max
0≤i≤t,0≤t≤T

Ω
(i)
t . (e) comes from

the fact that ηµ < 1 and 0 ≤ α(i)
t (λ) ≤ 1 and 0 ≤ Γ

(i)
t ≤ 1 for all i, t and

∑t
i=0 α

(i)
t (λ) = 1 for all t.

12



Applying the above result to T global aggregations in the server, we have

E[F (wT )− F (w∗)|w0]

(a)
= E [E[F (wT )− F (w∗)|wT−1]|w0]

(b)

≤ E
[
(1− γ + γ(1− ηµ)E)[F (wT−1)− F (w∗)]|w0

]
+
γ(Eηρ1 + 2GT−1(λ) + 2Ωmax(Eth, δ))

2
(c)

≤ (1− γ + γ(1− ηµ)E)T [F (w0)− F (w∗)] +
γ(Eηρ1 + 2GT−1(λ) + 2Ωmax(Eth, δ))

2

+

T−1∑
τ=1

γ(Eηρ1 + 2GT−1−τ (λ) + 2Ωmax(Eth, δ))

2
(1− γ + γ(1− ηµ)E)τ

(d)

≤ (1− γ + γ(1− ηµ)E)T [F (w0)− F (w∗)]

+
[
1− {1− γ + γ(1− ηµ)E}T

] Eηρ1 + 2Gmax(λ) + 2Ωmax(Eth, δ)

2(1− (1− ηµ)E)

(e)

≤ (1− γ + γ(1− ηµ)E)T [F (w0)− F (w∗)]

+
[
1− {1− γ + γ(1− ηµ)E}T

] ρ1 + 2µGmax(λ) + 2µΩmax(Eth, δ)

2ηµ2

= νT [F (w0)− F (w∗)] + (1− νT )Z(λ,Eth, δ)

which completes the proof. Here, (a) comes from the Law of total expectation, (b), (c) are due
to inequality (8). (d) is obtained from the definition of Gmax(λ) := max

1≤t≤T

∑t−1
i=0 α

(i)
t (λ)e

(i)
t . In

addition, (e) is from ηµ ≤ 1.

M Additional discussions on the impact of staleness exponent λ

From Theorem 1, we confirmed that the error term Gmax(λ) caused by stragglers can be reduced by
increasing the staleness exponent λ. But we also note that choosing a very large λ makes our Sagflow
to consider only the group with the smallest staleness in each global aggregation; Sagflow reduces to
the ignore stragglers scheme, which can lose significant data at each round and often converges to a
suboptimal point in practice. Fig. 14 below shows the result with varying λ using FMNIST dataset.
Each device can have delay of 0, 1, 2 which is determined independently and uniformly random. The
results indicate that an appropriate λ has to be chosen to provide more weights to the recent groups
with small staleness, while not totally ignoring the results with large staleness.

0 50 100 150

Running time

70

75

80

85

T
e

s
t 

a
c
c
u

ra
c
y

=0

=1.5

=5

=10

Figure 14: Performance of Sageflow with different λ values considering only stragglers. An appropri-
ate λ has to be chosen to provide more weights to the recent groups with small staleness, while not
totally ignoring the results with large staleness.

Comparison with FedAsync [7]: To compare our Sagflow with FedAsync, we consider a setup with
only stragglers. Let nt =

∑t
i=0 |U

(i)
t | be the number of models received at global round t. Note

that our scheme performs staleness-aware grouping with those nt models to update the global model

13



once, while FedAsync updates the global model nt times one-by-one. Hence, after T global rounds,
FedAsync performs c(T ) =

∑T
t=1 nt updates at the server. If we apply the same proof technique

of ours, we have E[F (wc(T ))− F (w∗)] ≤ νc(T )[F (w0)− F (w∗)] + (1− νc(T ))Z for FedAsync
where ν = 1− γ + γ(1− ηµ)E ,

Z =
ρ1 + 2µGmax

2ηµ2
, (9)

Gmax = max
0≤c≤c(T ),0≤i≤c−1

[F (wi)− F (wc)]

= max
0≤c≤c(T ),0≤i≤c−1

e(i)c . (10)

Note that FedAsync controls γ based on the staleness, which controls ν. However, the staleness
exponent of FedAsync does not control the Gmax term of (10) directly. Compared to FedAsync,
our Gmax term (9) can be directly controlled by staleness exponent λ, which affects α(i)

t (λ); by
choosing an appropriate λ, we can reduce the errors caused by stragglers with larger staleness in
Gmax. Regarding the global updates, it can be seen that more global updates are performed in
FedAsync than Sageflow under the same conditions. However, in order to reduce the error term
Gmax in FedAsync, γ should be reduced which makes convergence speed slower. Compared to
FedAsync, our staleness-aware grouping can keep γ high while reducing Gmax, by controlling the
staleness exponent λ.

N Additional discussions on the impact of Eth and δ

As we stated in the main manuscript, we can filter out the adversaries with high entropies by choosing
an appropriateEth. Here, we note that selecting a smallEth can degrade the performance of Sageflow
(as in Fig. 4) since not only the adversaries but also the benign devices are filtered out with a large
Eth. As can be seen from Fig. 4, Eth is a hyperparameter that can be easily tuned since there is a
huge gap between the entropy values of benign versus adversarial devices.

Regarding δ, it can be easily seen that the errer term caused by adversaries goes to 0 as δ increases:
for an adversary device k ∈M (i)

t (Eth), we can write

β
(k)
i (δ)[F (wt(k))− F (w∗)] ≤

mk
Fpub(wt(k))δ∑

j∈U(i)
t (Eth)

mj
Fpub(wt(j))δ

F (wt(k))

≤
mk

Fpub(wt(k))δ

mjB
Fpub(wt(jB))δ

F (wt(k))

=
mk

mjB

Fpub(wt(jB))δ

Fpub(wt(k))δ
F (wt(k)) (11)

where jB is an arbitrary benign device chosen from U
(i)
t (Eth). Here, since wt(jB) is the model

of a benign device, we can write Fpub(wt(k)) � Fpub(wt(jB)) for an adversarial device k un-
der data poisoning or scaled backdoor attacks. Therefore, we can conclude that Ω

(i)
t (Eth, δ) =∑

k∈M(i)
t (Eth)

β
(k)
i (δ)F (wt(k)) − F (w∗)] goes to 0 as δ increases. However, the effect of adver-

saries can be sufficiently reduced even with a fixed δ = 1, as can be seen in the experiments in the
main manuscript and Supplementary Material. We also note that selecting a very large δ degrades the
performance of Sageflow as observed in Fig. 4. This is because only the device having the smallest
loss is considered with a very large δ, ignoring the effects of other benign devices. As shown in the
results in Fig 4, δ is a hyperparameter that can be easily tuned since the models of adversaries have
relatively large losses under data poisoning or scaled backdoor attacks.

To sum up, we have to choose an appropriate Eth and δ to achieve a desired level of performance,
which is easy; the performance of Sageflow is not highly sensitive to those hyperparameters as long
as they are chosen in a reasonable range as shown in Fig 4.

14



References
[1] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How to

backdoor federated learning. arXiv preprint arXiv:1807.00459, 2018.

[2] Peva Blanchard, Rachid Guerraoui, Julien Stainer, et al. Machine learning with adversaries:
Byzantine tolerant gradient descent. In Advances in Neural Information Processing Systems,
pages 119–129, 2017.

[3] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan
McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings.
arXiv preprint arXiv:1812.01097, 2018.

[4] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. Fltrust: Byzantine-robust
federated learning via trust bootstrapping. arXiv preprint arXiv:2012.13995, 2020.

[5] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated learning.
arXiv preprint arXiv:1912.13445, 2019.

[6] Saurav Prakash and Amir Salman Avestimehr. Mitigating byzantine attacks in federated learning.
arXiv preprint arXiv:2010.07541, 2020.

[7] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated optimization. arXiv
preprint arXiv:1903.03934, 2019.

15


	Hyperparameter setting
	Scenario with only stragglers
	Scenario with only adversaries
	Scenario with both stragglers and adversaries
	Setup for Tables 1 and 2 in the main manuscript

	Additional experiments under backdoor attack
	Experimental setup with backdoor attack
	Experiments under no-scaled backdoor attack

	Experiments under model poisoning with scale 10
	Experimental results with varying hyperparameters
	Comparison with other robust aggregation methods against adversaries
	Performance comparison with Multi-Krum
	Performance comparison with FLTrust
	Performance comparison with DiverseFL

	Experimental results on the effect of loss-weighted averaging and entropy-based filtering
	Impact of public data
	Varying amount of public data
	Imbalanced public data

	Experiments on other datasets
	Experiments on FEMNIST
	Experiments on Covid-19 dataset open to public

	Experiments in a more severe straggler scenario
	Experiments with varying portion of adversaries
	Additional comparision with waiting for partial stragglers
	Proof of Theorem 1
	Additional Notations for Proof
	Key Lemma and Proof
	Proof of Theorem 1

	Additional discussions on the impact of staleness exponent 
	Additional discussions on the impact of Eth and 

