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Supplementary Material

A SUMMARY

In this paper, we propose a new variational distribution that we use to model the actor in the context
of actor-critic MaxEntr RL algorithms. Our distribution is induced by an SVGD sampler with a
parametrized initial distribution (isotropic Gaussian). It enables fitting multi-modal distribution
(e.g., EBM) and is characterized by a closed-form entropy estimate. Hence, it addresses the major
bottleneck in classical MaxEntr RL algorithms. Our derivation is based on the unique invertibility
property of the SVGD sampler, which is not satisfied for other popular samplers (e.g., SGLD, HMC).
The key to achieving scalability was to learn the initial Gaussian distribution such that it contours
the high-density region of the target distribution, by limiting particles’ updates to be always within
few standard deviations of the mean of this Gaussian. This resulted in better and faster exploration
of the relevant regions of the target distribution. Our proposed approach S2AC is summarized in
Algorithm 1.The rest of the supplementary is organized as follows:

• Appendix B provides additional related work on the entropy estimation.
• Appendix C introduces additional preliminaries on EBM samplers, the change of variable

formula and the Jacobi formula.
• Appendix D provides the derivation of the optimal policy for the MaxEntr RL objective.
• Appendix E provides the derivation of the actor objective.
• Appendices F-H provide proofs for theorems related to (1) a generic closed-form expression

of log-likelihood of inverible samplers, (2) discussion of samplers invertibility and (3)
closed-form likelihood derivation for SVGD.

• Appendices I-K provide additional results for the (1) entropy evaluation, (2) multigoal
environment, and (3) MuJoCo environments.

Algorithm 1 Stein Soft Actor Critic (S2AC)

1: Initialize parameters �, ✓, hyperparameter ↵, and replay buffer D  ;
2: for each iteration do
3: for each environment step t do
4: Sample action particles {a} from ⇡✓(·|st)
5: Select at 2 {a} using exploration strategy
6: Sample next state st+1 ⇠ p(st+1|st, at)
7: Update replay buffer D  D [ (st, at, rt, st+1)
8: for each gradient step do
9: Critic update:

10: Sample particles {a} from an EMB sampler ⇡✓(·|st+1)
11: Compute entropy H(⇡✓(·|st+1)) using Eq.(11)
12: Update � using Eq.(8)
13: Actor update:
14: Update ✓ using Eq.(9)
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B ADDITIONAL RELATED-WORK

B.1 ENTROPY

The differential entropy Cover (1999); Shannon (2001) of a p-dimensional random variable X with a
probability density function p(x) is defined by: H(p) = �

R
p(x) ln p(x)dx. The differential entropy

plays a central role in information and communication theory, statistics Tarasenko (1968), signal
processing Vasicek (2015); Learned-Miller & III (2003), machine learning and pattern recognition
Mannor et al. (2005); Rubinstein & Kroese (2004); Hino & Murata (2010); Liu et al. (2022);
Wulfmeier et al. (2015). For example, Max-Entropy RL Wulfmeier et al. (2015); Haarnoja et al.
(2017; 2018a) methods augment the expected reward objective with an entropy maximization term
which results in learning multi-modal policies and more robustness. Recently, Liu et. al Liu et al.
(2022) propose maximizing the entropy of the discriminator distribution to combat mode collapse. In
statistical mechanics entropy appears as the negative of the rate function to quantify the fluctuations
around thermodynamic equilibrium Roldán et al. (2021). Estimating the differential entropy for
expressive distributions is a challenging problem as it requires computing a closed-form expression
of the probability density function. Several non-parametric approaches Beirlant et al. (1997); Györfi
& van der Meulen (1987); Paninski (2003); Pérez-Cruz (2008) based on approximating the entropy
using samples D = {xi}|D|

i=1 from p(x), have been proposed in the literature. These methods can be
classified into (1) plug-in estimates Ahmad & Lin (1976); Ivanov & Rozhkova (1981); Joe (1989)
which approximate p(x) via a kernel density estimate, (2) samples spacing Beirlant & van Zuijlen
(1985); Cressie (1978); Dudewicz & Van Der Meulen (1981); Hall (1986) and (3) nearest-neighbor
distances based estimates Bernhofen et al. (1996); Bickel & Breiman (1983); Kozachenko & Leonenko
(1987) which express the entropy in terms of pairwise distances between the samples (larger distances
imply higher entropy). Next, we review the work on entropy estimation of Energy-Based-Models
(EBMs).

B.2 ENTROPY OF EBMS

In this work, we are interested in computing entropy estimates for the class of EBMs LeCun et al.
(2006) represented as Gibbs densities p(x) = expE(x)

Z , where E(x) 2 R is an energy function
describing inter-variable dependencies and Z =

R
expE(x) is an intractable partition function.

EBMs provide a unified framework for many probabilistic and non-probabilistic approaches, par-
ticularly for learning and inference in structured models and are widely used in computer science
(e.g., semantic segmentation, colorization, image generation, inverse optimal control, collaborative
filtering) Salakhutdinov et al. (2007); Messaoud et al. (2018); Zhao et al. (2021); Gao et al. (2020);
Xie et al. (2020); Zheng et al. (2021); Carleo & Troyer (2017); Messaoud et al. (2020); Xie et al.
(2021a); Pang et al. (2021); Messaoud (2021); Xie et al. (2016); Xie et al.; 2021b; 2022) and physics
Carleo & Troyer (2017); Gao & Duan (2017); Torlai et al. (2018); Melko et al. (2019) (e.g., to
model the wavefunctions of quantum systems). To estimate the entropy of EBMs, previous methods
mostly rely on heuristic approximation, lower bounds Dai et al. (2017; 2019a), or neural estimators
of mutual information to approximate the entropy Kumar et al. (2019). The idea of approximating the
entropy of EBMs via the one from an MCMC sampler by leveraging the change of variable formula
was first proposed by Dai et al. (2019b). Specifically, the authors apply the formula to HMC and
LD which, as we show in Appendix. G, violate the invertibility assumption. To go around this, the
authors propose augmenting the EBM family with the noise or velocity variable for, respectively, LD
and HMC, i.e., sampling from p(x) is replaced with sampling from p(x, v) or p(x, ⇠). The authors
assume that the sampler update rule is invertible with respect to the augmented samples (x, v) and
(x, ⇠). However, computing the determinant of the update rule with respect to the augmented variable
is always equal to 1 in this case. Hence, the resulting log-likelihood of the sampling distribution
is, counter-intuitively, independent of the sampler’s dynamics and equal to the initial distribution,
i.e., log qL(aL) = log q0(a0), which the author model using a flow model. Differently, we show that
SVGD is invertible, our entropy depends on the dynamics of SVGD, we still sample from the original
EBM p(x) and our initial distribution is a simple Gaussian. Similarly to the non-parametrized entropy
estimates described above, our formula leverages pairwise distances between the neighboring samples.
Differently, our formula is also based on the curvature of the energy function E(x) (measured by a
weighted average of neighboring particle gradientsrxE(x)). Hence maximizing our derived entropy
results in the intuitive effect of learning smoother energy landscapes.
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C ADDITIONAL PRELIMINARIES

In the following, we review (1) additional samplers for EBMs, (2) the change of variable formula and
(3) the corollary of the Jacobi’s formula.

C.1 ADDITIONAL SAMPLERS FOR EBMS

SGLD (Welling & Teh, 2011) is a popular Markov chain Monte Carlo (MCMC) method for sampling
from a distribution. It initializes a sample a0 from a random distribution, and then in each step l + 1
it adds the gradient of the current proposal distribution p(a) to the previous sample al, together with
a Brownian motion ⇠⇠N(0, I). We denote the step size as ✏. The iterative update for SGLD is:

al+1 = al + ✏ral log p(al) +
p
2✏⇠. (12)

DLD are equivalent to SGLD without the noise term, i.e.,

al+1 = al + ✏ral log p(al). (13)

HMC is another popular variant of MCMC samplers. The most commonly used discretized Hamil-
ton’s equations are the leapfrog method (Neal et al., 2011). The three (half) steps of leapfrog updates
in HMC are:

vl+1/2 = vl + (✏/2)ra log p(a
l+1)

al+1 = al + ✏vl+1/2

vl+1 = al+1 + (✏/2)ra log p(a
l+1)

(14)

Here vl is interpreted the velocity at iteration l (assuming unit mass) and al is the “location” of a
sample in a distribution.

C.2 CHANGE OF VARIABLE FORMULA

We first introduce the concept of an invertibile function.
Definition C.1 (Invertibile transformation). Transformation F : Z ! X is invertible iff F (·) is
bijective, i.e., simultaneously injective and surjective: (i) F (·) is injective iff for any z, z0 2 Z,
F (z) = F (z0) ) z = z0; (ii) F (·) is surjective iff for every x 2 X , there exists some z 2 Z such
that F (z) = x.

According to change of variable formula, the following holds when F : Z ! X is an invertible
function:

pX(x) = pZ(z)
���det

@F�1(x)

@x

��� = pZ(z)
��� det

@F (z)

@z

���
�1

C.3 A COROLLARY OF JACOBI’S FORMULA

An important corollary of Jacobi’s Formula (Magnus & Neudecker, 2019) states that, given an
invertible matrix A, the following equality holds:

log(detA) = Tr (logA) = Tr
⇣X1

k=1
(�1)k+1 (A � I)k

k

⌘
.

The second equation is obtained by taking the power series of logA. Hence, under the assumption
kA� Ik1 ⌧ 1, we obtain:

log(detA) ⇡ tr(A� I).
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D DERIVATION OF THE MAXENT RL OPTIMAL POLICY

In this section, we prove that the solution ⇡⇤ of the MaxEnt RL objective

max
⇡

J(⇡) ⌘
X

t

E(st,at)⇠⇢⇡

h
�t
⇣
r(at, st)� ↵ log ⇡(·|st)

⌘i
(15)

is ⇡⇤ =
exp( 1

↵Q(s,a))
Z . Here, Q(s, a) is the soft Q-function defined as

Q(s, a) = E(st,at)⇠⇢⇡

hX

t

�t
⇣
r(at, st)� ↵ log p(⇡(·|st))

⌘
|s0 = s, a0 = a

i

= r(a, s) + ↵H(⇡(·|s)) + E⇡(a0|s)⇢⇡(s0)

h
Q(s0, a0)

i
. (16)

Consequently, we deduce that ⇡⇤ is also the solution of the expected KL divergence:

⇡⇤ = argmin⇡
X

t

Est⇠⇢⇡

h
DKL

�
⇡(·|st)k exp(Q(st, ·)/↵)/Z

�i
. (17)

Proof. We express the MaxEnt loss as a function of Q(s, a), i.e., J(⇡) = E(s,a)⇠⇢⇡

h
Q(s, a)

i
. To

find ⇡⇤ = argmax⇡ J(⇡) under the constraint
R
a ⇡(a|s)da = 1, we evaluate the Lagrangian (with

� 2 R being the Lagrange multiplier):

L(⇡,�) = E(s,a)⇠⇢⇡

h
Q(s, a)

i
+ �

⇣Z

a
⇡(a|s)da� 1

⌘
, (18)

and compute @L(⇡,�)
@⇡(a|s) :

@L(⇡,�)
@⇡(a|s) =

@

@⇡(a|s)

⇣Z

s

Z

a
⇡(a|s)⇢⇡(s)Q(s, a)da ds+ �

⇣Z

a
⇡(a|s)da� 1

⌘⌘

=
@

@⇡(a|s)

⇣
⇡(a|s)⇢⇡(s)

⇣
r(a, s)� ↵ log ⇡(a|s) + E⇡(a0|s)⇢⇡(s0)

h
Q(s0, a0)

i⌘⌘
+ �

= ⇢⇡(s)
⇣
r(a, s) + E⇡(a0|s)⇢⇡(s0)[Q(s0, a0)]

⌘
� ↵⇢⇡(s)

@

@⇡(a|s)

⇣
⇡(a|s) log ⇡(a|s)

⌘
+ �

= ⇢⇡(s)
⇣
r(a, s) + E⇡(a0|s)⇢⇡(s0)[Q(s0, a0)]

⌘
� ↵⇢⇡(s)

⇣
log ⇡(a|s) + 1

⌘
+ �.

Setting @L(⇡,�)
@⇡(a|s) to 0:

@L(⇡,�)
@⇡(a|s) = 0 ()

⇣
r(a, s) + E⇡(a0|s)⇢⇡(s0)[Q

⇡(s0, a0)]
⌘
� ↵+

�

⇢⇡(s)
= ↵ log ⇡(a|s)

() 1

↵

⇣
r(a, s) + E⇡(a0|s)⇢⇡(s0)[Q(s0, a0)]

⌘
� 1 +

�

↵⇢⇡(s)
= log ⇡(a|s)

() ⇡(a|s) =
exp

⇣
1
↵

⇣
r(a, s) + E⇡(a0|s)⇢⇡(s0)[Q(s0, a0)]

⌘⌘

exp
⇣
1� �

↵⇢⇡(s)

⌘

() ⇡(a|s) =
exp

⇣
1
↵

⇣
r(a, s) +H(⇡(·|s)) + E⇡(a0|s)⇢⇡(s0)[Q(s0, a0)]

⌘⌘

exp
⇣
1� �

↵⇢⇡(s)

⌘

() ⇡(a|s) =
exp

⇣
1
↵Q(s, a)

⌘

exp
⇣

H(⇡(·|s))
↵ + 1� �

↵⇢⇡(s)

⌘ (19)

We choose � such that
R
a ⇡(a|s)da = 1, i.e.,
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Z

a

exp
⇣

1
↵Q(s, a)

⌘

exp
⇣

H(⇡(·|s))
↵ +1� �

↵⇢⇡(s)

⌘da=1()�=�↵⇢⇡(s)
⇣
log

Z

a
exp

⇣ 1

↵
Q(s, a)

⌘
da�H(⇡(·|s))

↵
�1

⌘
.

(20)
Hence, ⇡⇤(a|s) = exp( 1

↵Q(s, a))/
R
a exp(

1
↵Q(s, a)). A similar proof follows for any state and

action pairs. Trivially, ⇡⇤ is also the global minimum of Eq.(17).

E DERIVATION OF THE ACTOR OBJECTIVE (EQ.(9))
In the following, we prove that the objective

argmin
✓

Est⇠D

h
DKL

⇣
⇡✓(·|st)

���
��� exp

⇣ 1

↵
Q�(st, ·)

⌘
/Z(�)

⌘i

is equivalent to

argmax
✓

Est⇠D,at⇠⇡✓(at|st)

h
Q�(st, at)

i
+ Est

h
↵H(⇡✓(at|st))

i
,

with D being a replay buffer.

Proof.

✓⇤ = argmin
✓

Est⇠D

h
DKL

⇣
⇡✓(·|st)

���
��� exp

⇣ 1

↵
Q�(st, ·)

⌘
/Z(�)

⌘i

= argmin
✓

Est⇠D,at⇠⇡✓(at|st)

h
log(⇡✓(at|st))�

⇣ 1

↵
Q�(st, at)� logZ(�)

⌘i

= argmin
✓

Est⇠D,at⇠⇡✓(at|st)

h
log(⇡✓(at|st))�

1

↵
Q�(st, at)

i

= argmax
✓

Est⇠D,at⇠⇡✓(at|st)

h
� log(⇡✓(at|st)) +

1

↵
Q�(st, at)

i

= argmax
✓

Est⇠D,at⇠⇡✓(at|st)

h 1
↵
Q�(st, at) +H(⇡✓(at|st))

i

= argmax
✓

Est⇠D,at⇠⇡✓(at|st)

h
Q�(st, at)

i
+ Est⇠D

h
↵H(⇡✓(at|st))

i
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F PROOF OF THEOREM 3.1

Theorem. Let F : Rn ! Rn be an invertible transformation of the form F (a) = a + ✏h(a). We
denote by qL(aL) the distribution obtained from repeatedly (L times) applying F to a set of action
samples (called “particles”) {a0} from an initial distribution q0(a0), i.e., aL = F � F � · · · � F (a0).
Under the condition ✏||raih(ai)||1 ⌧ 1, the closed-form expression of log qL(aL) is:

log qL(aL) = log q0(a0)� ✏
L�1X

l=0

Tr(ralh(al)). (21)

Proof. Based on the change of variable formula (Appendix C.2), when for every iteration l 2 [1, L],
the transformation al = L(al�1) (of the action sampler in our paper) is invertible, we have:

ql(al) = ql�1(al�1)

����det
dal

dal�1

����
�1

, 8l 2 [1, L].

By induction, we derive the probability distribution of sample aL:

qL(aL) = q0(a0)
LY

l=1

����det
dal

dal�1

����
�1

= q0(a0)
L�1Y

l=0

��det
�
I + ✏ralh(al)

����1

By taking the log for both sides, we obtain:

log qL(aL) = log q0(a0)�
L�1X

l=0

log
��det

�
I + ✏ralh(al)

��� .

Let A = I + ✏ralh(al), under the assumption ✏||raih(ai)||1 ⌧ 1, i.e., ||A� I||1 ⌧ 1, we apply
the corollary of Jacobi’s formula (Appendix C.3) and get

log qL(aL) ⇡ log q0(a0)�
L�1X

l=0

Tr
�
(I + ✏ralh(al))� I)

�
+O(✏2dL)

⇡ log q0(a0)� ✏
L�1X

l=0

Tr
�
ralh(al)

�
+O(✏2dL).

Here, d is the action space dimension.
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G SAMPLERS INVERTIBILITY PROOFS

We start by state the implicit function theorem which we will be using in the following proofs.
Theorem G.1 (Implicit function theorem). Let f : Rn ! Rn be continuously differentiable on
some open set containing a, and suppose det (Jf(a)) = det (raf(a)) 6= 0. Then, there is some
open set V containing a and an open W containing f(a) such that f : V ! W has a continuous
inverse f�1 : W ! V which is differentiable 8y 2W .

G.1 STOCHASTIC GRADIENT LANGEVIN DYNAMICS

Proposition (SGLD). The SGLD update in Eq.(12) is not invertible.

Proof. We show that SGLD are not invertible using two different methods: (1) We show that SGLD
is not a bijective transformation, (2) Using the implicit function theorem, we show that the Jacobian
of the dynamics is not invertible.

G.1.1 METHOD1: SGLD IS NOT INVERTIBLE () SGLD IS NOT A BIJECTION

The update rule F (·) for SGLD and DGLD are given by Eq.(12) and Eq.(13), respectively. In the
following, we drop the dependency on the time step for ease of notation.

Injectivity is equivalent to checking: F (a1) = F (a2) =) a1 = a2. This, however, doesn’t hold in
case of SGLD as the noise terms ⇠1 and ⇠2 can be chosen such that the equality

a1 + ✏ra1 log p (a1) +
p
2✏⇠1 = a2 + ✏ra2 log p (a2) +

p
2✏⇠2

holds with a1 6= a2. Therefore, SGLD is not injective. The same holds for DGLD, where the
equality a1 +ra1 log p (a1) = a2 +ra2 log p (a2) can be valid for a1 6= a2. A counter-example:
a1 = a2 + ⌘ and ⌘ +ra1 log p (a1) = ra2 log p (a2), with ⌘ being an arbitrary constant.

Surjectivity is equivalent to checking: 8al+1 2 Rd, 9al 2 Rd s.t. al+1 = F (al). Assume that
al+1 = al + ✏ral log p

�
al
�
, and al 2 Rd, we can always choose an adaptive learning rate ✏ such

that ✏ral log p
�
al
�
= al+1 � a

l .

G.1.2 METHOD2: IMPLICIT FUNCTION THEOREM

We compute the derivative of the update rule in Eq 12 with respect to a: JF = I + ✏r2
a log p(a). It’s

possible for JF not to be invertible, e.g., in case I = �✏r2
a log p(a). Hence, in general F (a) is not

guaranteed to be a bijection.

G.2 HAMILTONIAN MONTE CARLO (HMC)

Proposition (HMC). The HMC update in Eq.(14) is not invertible w.r.t. a.

Neal et al. (2011) show that HMC update rule is only invertible with respect to the (a, v), i.e., when
conditioning on v. Since v is sampled from a random distribution, it has the effect of the noise
variable in SGLD. Hence, a similar proof applies.

G.3 STEIN VARIATIONAL GRADIENT DESCENT

Proposition (SVGD). Under the assumption that ✏⌧ �, the update rule of SVGD dynamics defined
in Eq.(1) with an RBF kernel is invertible.

G.3.1 METHOD2: SVGD IS INVERTIBLE () SVGD IS A BIJECTION

Injectivity. The equality F (a1) = F (a2):

a1+
✏

m

mX

j=1

[k (aj , a1)raj log p (aj)�rajk (aj , a1)] = a2+
✏

m

mX

l=1

[k (al, a2)ralg (al)�ralk (al, a2)]

is too complex to hold for a solution other than a1 = a2 given the sum over multiple particles on
both sides and the dependency on the kernel.

=) not obvious ( depends on the Kernel)

21



Published as a conference paper at ICLR 2024

Surjectivity. Similarly, to Langevin dynamics, surjectivity can be achieved by choosing a suitable
learning rate.

G.3.2 METHOD 2: IMPLICIT FUNCTION THEOREM

We start by proving the proposition above for the 1-Dimensional case, i.e., a 2 R. Then, we extend
the proof to the multi-dimensional case, i.e., a 2 Rd.
1-Dimensional Case. We prove that F is invertible by showing that F is bijective, which is equivalent
to showing that F is strictly monotonic, i.e., raiF (ai) > 0 or raiF (ai) < 0, 8ai.
Computing the derivative of the SVGD update (Eq. 1) rule w.r.t ai results in:

raiF (ai) = 1 +
"

m

mX

i=1

raik (ai, aj)rajg (aj) +rairajk (ai, aj) .

For k(ai, aj) = e�
kai�ajk

2

2�2 , we have:

8
><

>:

rajk(ai, aj) =
�2(ai�aj)

2�2 k(ai, aj) =
�(ai�aj)

�2 k(ai, aj)

rajk(ai, aj) =
(ai�aj)
�2 k(ai, aj)

rairaj = 1
�2 k(ai, aj)

�
1� 1

�2 kai � ajk2
�

Hence,

raiF (ai) = 1 +
✏

m

mX

i=1

k(ai, aj)

�2

✓
�(ai � aj)raj log p(aj) + 1� kai � ajk

�2

◆
.

Next, under the condition ✏ < �, we show that raiF (ai) > 0, 8ai. This is equivalent to showing
that raiF (ai) > �1.

raiF (ai) > �1 ()
✏

m�2

mX

j=1

k(ai, aj)

✓
�(ai � aj)raj log paj (aj) + 1� kai � ajk2

�2

◆
> �1

We compute a lower bound on the LHS and investigate when it’s strictly larger than �1.
We can safely assume that �3�  k(ai, aj)(ai � aj)  3� and �3�  k(ai, aj)kai �
ajk2  3�. We compute the lower bound as:

Pm
j=1

✏↵
m�2

⇣
�3�krxj log p(xj)k+ 1� (3�)2

�2

⌘
=

✏↵
m�2

⇣
�3�

Pm
j=1 krxj log p(xj)k � 8m

⌘
. This results in:

raiF (ai)>
✏↵

m�2

0

@�3�
mX

j=1

kraj log p(aj)k�8m

1

A>�1 ()
mX

j=1

kraj log p(aj)k<
m�

3✏↵
�8m
3�

(22)

Hence, maxaj kraj log p(aj)k< �
3✏↵�

8
3� . The LHS is guaranteed to be a large positive number

when ✏⌧ �.

Multi-Dimensional Case. We assume that log p(aj) is continuously differentiable. Note that in
practice, this can be easily satisfied by choosing the activation function to be Elu instead of Relu. We
can easily show that:

raiF (ai) = I +
✏

m�2

mX

i=1

k(ai, aj)

✓
�raj log p(aj)(ai � aj)

> � 1

�2
(ai � aj)(ai � aj)

> + I

◆

Next, we will show that raiF (ai) is diagonally dominated and is, hence, invertible, i.e.,
det(raih(ai)) 6= 0. For this, we show that raih(ai)|kl < 1, 8k, l 2 [1, d].

raih(ai)|kl =
1

m

mX

i=1

k(ai, aj)
⇣
�@

a(k)
j

log p(aj)(a
(l)
i � a(l)j )� (a(k)i � a(k)j )(a(l)i � a(l)j ) + 1

⌘

Following the proof in Section G.3.2 for the 1-Dimensional case, we show thatraih(ai)|kl ⌧ 1 if
� ⌧ ✏.
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H DERIVATION OF CLOSED-FORM LIKELIHOOD FOR SAMPLERS

H.1 PROOF OF THEOREM 3.3

Theorem. The closed-form estimate of the log-likelihood log qL(aL|s) for the SVGD-based sampler
with an RBF kernel k(·, ·) is

log qL(aL
|s) ⇡ log q0(a0

|s)�
✏

m�2

L�1X

l=0

mX

j=1

al 6=al
j

k(al
j , a

l)
⇣
�(al

� al
j)

>
ral

j
Q(s, al

j)�
↵
�2

kal
� al

jk
2 + d↵

⌘
,

where d is the feature space dimension.

Proof. We generate a chain of samples using SVGD starting from a0 ⇠ q0, and following the update
rule al+1

i  ali + ✏h(ali, s), where h(ali, s) = Eal
j⇠ql

h
k(ali, a

l
j)ral

j
Q(s, alj) +ral

j
k(ali, a

l
j)
i

and

k(ali, a
l
j) = exp (�kal

i�al
jk

2

2�2 ). This update rule is the optimal direction in the reproducing kernel
Hilbert space of k(·, ·) for minimizing the KL divergence objective (actor loss):

⇡⇤ = argmin⇡
X

t

Est⇠⇢⇡

h
DKL

�
⇡(·|st)k exp(Q(st, ·)/↵)/Z

�i
. (23)

According to Proposition 3.2, the iteration step (Eq.(1)) is invertible. Hence, following Theorem 3.1
and substituting h(ali, s) with the above formula for SVGD, for each action particle aLi we obtain:

log qL(aLi ) ⇡ log q0(a0i )�
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Note that we empirically approximate the expectation in h(ali, s) by an empirical mean over particles
that are different from ali, in order to avoid computing Hessians in the derivation below. Next we
compute simplifications for terms 1� and 2� respectively. In the following, we denote by (·)(k) the
k-th dimension of the vector.
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By combining Terms 1� and 2�, we obtain:

log qL(aLi )⇡ log p0(a0i )�
✏

m�2

L�1X

l=0

mX

j=1

k(alj , a
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�2
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Proof done if we take a generic action particle ai in place of a.
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I ADDITIONAL RESULTS: ENTROPY EVALUATION

The SVGD hyperparameters for this set of experiments are summarized in Table 2. We include
additional figures for (1) the effect of (2) the kernel variance (Figure 9) and (2) number of SVGD
steps and particles (Figure 10).

Table 2: Parameters

Parameter Value

Figure 4a-4b Target distribution p=N ([�0.69, 0.8], [[1.13, 0.82], [0.82, 3.39]])
Initial distribution q0 = N ([0, 0], 6I)

Figure 4c Target distribution pGMMM =
PM

i=1 N ([0, 0], 0.1I)/M
Initial distribution q0 = N ([0, 0], 6I)

Default Learning rate ✏ = 0.5
SVGD Number of steps L = 200

parameters Number of particles m = 200
Kernel variance � = 5
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Figure 9: Visualization of the particles after L steps of SVGD for the different configurations of
kernel variance � and number of particles m in Figure 4b.
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Figure 10: Sensitivity of our entropy formula to the number of SVGD steps (L) and particles (m).
Our entropy consistently increases with increasing � and increasing number of GMM components,
even when a small number of SVGD steps and particles is used e.g., L = 10,m = 10.

J ADDITIONAL RESULTS: MULTI-GOAL RESULTS

Hyperparameters are reported in Table 3. Additionally, we include results for (1) the effect of
the parametrization of the initial distribution (Figure 14), (2) the entropy heatmap (Figure 13), (3)
the effect of the entropy on the learned Q-landscapes (Figure 14 and Figure 15), (4) the robust-
ness/adaptability of the learned policies (Figure 16) and (5) Amortized S2AC results (Figure 17).

Table 3: Hyperparameters for multi-goal environment.

Hyperparameter Value

Training
Optimizer Adam

Learning rate 3 · 10�4

Batch size 100

Deepnet
Number of hidden layers (all networks) 2

Number of hidden units per layer 256
Nonlinearity ReLU

RL

Discount factor � 0.8
Replay buffer size |D| 106

Target smoothing coefficient 0.005
Target update interval 1

SVGD

initial distribution q0 N (0, 0.3I)
Learning rate ✏ 0.01

Number of steps L 10
Number of particles m 10

Particles range (num. std) t 3

Kernel variance � =
P

i,j kai�ajk
2

4(2 logm+1)

(a) Mean µ✓(s) (b) Standard deviation �✓(s)

Figure 11: Trends of x and y coordinates for the mean and standard deviation of the parameterized
initial distribution for some critical states, during training.
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Distribution of reached goals for the multi-goal environment. Figure 12 shows the distribution of
reached goals for S2AC/SAC for the agents in Figure 6. Trajectories are collected from 20 episodes
of 20 different agents trained with 20 different seeds for each algorithm. We observe that with higher
↵’s, more agent trajectories converge to the left two goals (G2 and G3), which is not the case for SAC
and SQL. This shows that S2AC learns a more optimal solution to the MaxEnt objective in Eq.(2).

S!AC(", $)
SAC
SQL

(a) ↵ = 0.2

S!AC(", $)
SAC
SQL

(b) ↵ = 1

S!AC(", $)
SAC
SQL

(c) ↵ = 10

S!AC(", $)
SAC
SQL

(d) ↵ = 20

Figure 12: Distribution of reached goals for S2AC, SAC and SQL with different ↵’s. The x-axis
denotes different goals. The y-axis represents the ratio of trajectories that reach the goal.

Entropy heatmap of S2AC in the multi-goal environment. Figure 13 shows the entropy heatmap of
S2AC with different ↵’s. A brighter color corresponds to higher entropy. For S2AC, the higher ↵, the
higher the entropy on the left quadrant compared to the right one, i.e., the more contrast between the
left and the right quadrants. For instance, In Figure 13d (S2AC, ↵ = 20), notice a clear green/yellow
patch spanning the left side, while the right side is mostly dark blue except for the edges.

(a) S2AC, ↵ = 0.2 (b) S2AC, ↵ = 1 (c) S2AC, ↵ = 10 (d) S2AC, ↵ = 20

Figure 13: The entropy heatmap of S2AC in the multi-goal environment for different ↵

Smoothness of the Q-landscapes. To assess the effect of the entropy, we visualize the Q-landscapes
corresponding to six typical states s 2 {so, sa, sb, sc, sd, se} (marked in blue on the upper left
of Figure 14) across different trajectories to the goal and report their associated entropy H(·|s)
(bottom left of Figure 14). The blue dots correspond to 10 SVGD particles at convergence. We
observe that the Q-landscape becomes smoother with increasing ↵. For instance, notice how the
modes for state sc become more connected. Quantified measurements of smoothness are in Fig-
ure 15. We use two metrics M1 and M2 to measure the smoothness of the learned Q-landscape:
(1) M1: the average over the L1-norm of the gradient of the Q-value with respect to the ac-
tions across trajectories, i.e., E⌧⇠⇡(a|s)

h
E(st,at)2⌧

⇥
||ratQ(st,at)||1

d

⇤i
. (2) M2: The average over

the L1-norm of the Hessian of the Q-value with respect to the actions across trajectories, i.e.,
E⌧⇠⇡(a|s)

h
E(st,at)2⌧

⇥
1
d2

P
i,j |r2

at
Q(st, at)|i,j

⇤i
. Figure 15 shows that increasing ↵ leads to con-

sistently smaller gradients (Figure 15a) and less curvature (Figure 15b). Hence, the entropy results in
a smoother landscape that helps the sampling convergence.
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Figure 14: Results on the multi-goal environment. Increasing ↵ yields smoother landscapes (e.g., so).
Notice how the modes become more connected (e.g., for s = sa with increasing ↵). The entropy at
the different states is reported in the lower left figure.

(a) Average gradient across trajectories (b) Average Hessian across trajectories

Figure 15: Quantitative evaluation of the smoothness the Q-landscape of S2AC for different ↵’s.

Parametrization of q0. In Figure 11, we visualizes the coordinates of the mean µ✓(s) and standard
deviation �✓(s) of q0✓ at different states s 2 {so, se, sb} in the multigoal environment. As training
goes on, µ✓(s) shifts closer to the nearest goals. For example, µ✓(sb) becomes more positive during
the training as it is shifting to G1. Additionally, the model learns a high variance �✓(s) for the
multimodal state so and becomes more deterministic for the unimodal ones (e.g., se and sb). As a
result, in Figure 7, we observe that S2AC(�, ✓) requires a smaller number of steps to convergence
than S2AC(�).

Entropy estimation. Figure 14 shows that the entropy is higher for states on the left side due to the
presence of two goals, as opposed to a single goal on the right side (e.g., H(⇡✓(·|sa))<H(⇡✓(·|so))).
Also, the entropy decreases when approaching the goals (e.g., H(⇡✓(·|sd)) < H(⇡✓(·|sb)) <
H(⇡✓(·|so))). The same is valid along the paths to goal G1.

Robustness/Adaptability. In Figure 16, we report the distribution of reached goals after hitting an
obstacle for S2AC, SAC and SQL for different ↵’s. Notice that S2AC robustness, measured by the
probability of reaching the goal for S2AC is consistently increasing with increasing ↵. Intuitively,
exploration is better with large values of ↵, leading to better learning of the Q-landscape. In other
words, from a given state, the agent is more likely to have explored more sub-optimal ways to reach
the goal. So, when the optimal path is blocked with the barrier, the agents trained with S2AC are
more likely to have learned several other ways to go around it. This is different from SAC, when the
policy is uni-modal (Gaussian) and the agents are only able to escape the barrier and get to the goal
for large ↵’s (↵ 2 10, 20). However, robustness in the case of SAC trained with large ↵’s come at the
expense of performance, i.e., increased number of steps (See row 3 in Figure 7). Besides, note that
the number of SAC agents reaching the goals for ↵ = 20 is less than the one for ↵ = 10. This is due
to the fact that higher ↵’s lead to higher stochasticity and less structured exploration (the standard
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S!AC
SAC
SQL

Figure 16: Distribution of reached goals after hitting an obstacle for S2AC, SAC and SQL.

deviation of the Gaussian becomes very large). SQL fails to reach the goals once the obstacle is
added. This shows that the implicit entropy in SQL is not as efficient as the explicit entropy in SAC
and S2AC.

Amortized S2AC. In Figure 17, we report results of the amortized version of S2AC, i.e., S2AC(�, ✓, )
on the multigoal environment. Performance and robustness are comparable with the non-amortized
version S2AC(�, ✓) while having a faster inference (feedforward pass through f (s, z)).
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A
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' = 0.2 ' = 1 ' = 10 ' = 20

(a) Performance of S2AC(�, ✓, ) on the Multigoal environment

! = 0.2 ! = 1 ! = 10 ! = 20

S!
A
C(
(,
*,
+)

(b) Performance of S2AC(�, ✓, ) on the Multigoal environment with obstacles

Figure 17: Performance of Amortized S2AC on the Multigoal environment
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K ADDITIONAL RESULTS: MUJOCO

Table 4 lists the S2AC hyper-parameters used in our experiments. Additionally, we give details on
accelerating S2AC.

Table 4: Hyperparameters

Hyperparameter Value

Training
Optimizer Adam

Learning rate 3 · 10�4

Batch size 100

Deepnet

Number of hidden layers (all networks) 2
Number of hidden units per layer 256
Number of samples per minibatch 256

Nonlinearity ReLU

RL

Target smoothing coefficient 0.005
Discount � 0.99

Target update interval 1
Entropy weight ↵ 1.0 for all environments, 0.2 Ant

Replay buffer size |D| 106

SVGD

initial distribution q0 N (0, 0.5I)
Learning rate ✏ 0.1

Number of steps L (S2AC(�)) 20
Number of steps L (S2AC(�, ✓)) 3

Number of particles m 10
Particles range (num. std) t 3

Kernel variance � =
P

i,j kai�ajk
2

4(2 logm+1)

Computational Efficiency. Compared to SAC, running SVGD for L steps requires L additional
back-propagation passes through the Q-network and a factor of m (number of particles) increase in
the memory complexity. In order to improve the efficiency of S2AC, we limit the number of particles
m to 10/20 and the number of SVGD steps L to 10/20.

Additionally, we experiment with the following amortized version of S2AC. Specifically, we train a
deepnet f (s, z) to mimic the SVGD dynamics during testing, where z is a random vector that allows
mapping the same state to different particles. Note that we cannot use this deepnet during training as
we need to estimate the closed-form entropy which depends on the SVGD dynamics. One way to
train f (s, z) is to run SVGD to convergence and train f (s, z) to fit SVGD outputs. This however
requires collecting a large training set of state action pairs by repeatedly deploying the policy. This
might be slow and result in low coverage of the states that are rarely visited by the learned policy and
hence result in poor robustness in case of test time perturbations. We instead propose an incremental
approach in which  is iteratively adjusted so that the network output a = f (s, z) changes along
the Stein variational gradient direction that decreases the KL divergence between the policy and the
EBM distribution, i.e.,

�f (z, s) =
1

m

mX

i=1

k(ai, f (s, z))raiQ(s, ai) + ↵raik(ai, f (s, z)) (24)

Note that �f is the optimal direction in the reproducing kernel Hilbert space, and is thus not strictly
the gradient of Eq.(5), but it still serves a good approximation, i.e., @J

@at
/ �f , as explained by

Wang & Liu (2016). Thus, we can use the chain rule and backpropagate the Stein variational gradient
into the policy network according to

@J(s)

@ 
/ Ez


�f (s, z)

@f (z, s)

@ 

�
. (25)
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to learn the optimal sampling network parameters  ⇤. Note that the amortized network takes
advantage of a Q-value that estimates the expected future entropy which we compute via unrolling
the SVGD steps using Eq (3.3).

The modified S2AC algorithm is described in Algorithm 2.

Algorithm 2 Stein Soft Actor Critic (S2AC) with Amortized policy (test-time)

1: Initialize parameters �, ✓,  , hyperparameter ↵, and replay buffer D  ;
2: for each iteration do
3: for each environment step t do
4: Sample action particles {a} from ⇡✓(·|st)
5: Select at 2 {a} using exploration strategy
6: Sample next state st+1 ⇠ p(st+1|st, at)
7: Update replay buffer D  D [ (st, at, rt, st+1)
8: for each gradient step do
9: Critic update:

10: Sample particles {a} from an EMB sampler ⇡✓(·|st+1)
11: Compute entropy H(⇡✓(·|st+1)) using Eq.(11)
12: Update � using Eq.(8)
13: Actor update:
14: Update ✓ using Eq.(9)
15: Update  using Eq.(25)

Evaluation with the Rliable Library. Performances curves in Figure 8 are averaged over 5 random
seeds and then smoothed using Savitzky-Golay filtering with window size 10. Additionally, we report
metrics from the Rliable Library (Agarwal et al., 2021) in Fig. 8, including

• Median: Confidence interval of the median performance of each algorithm across different
seeds, averaged over different MuJoCo environments.

• Mean: Confidence interval of the average performance of each algorithm across different
seeds and environments.

• IQM (Interquantile means): Instead of computing the average performance on all trials,
IQM shows the mean of the middle 50 percent of performance across different seeds.

• Optimality Gap: The area between results curve of baseline algorithms and the horizontal
line at the average performance of S2AC (�, ✓).

• Probability of improvement over baselines: The average probability that S2AC (�, ✓) can
make performance improvements over baseline algorithms.

The parameterized version of S2AC has the best performance among baselines in all the considered
metrics. It has a probability of ⇠65% in outperforming SAC-NF and ⇠80% in outperforming IAF.
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