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ABSTRACT

Post-training quantization (PTQ) has emerged as a widely adopted technique for
compressing and accelerating Large Language Models (LLMs). The major chal-
lenge in LLM quantization is that uneven and heavy-tailed data distributions can
expand the quantization range, thereby reducing bit precision for most values.
Recent methods attempt to eliminate outliers and balance inter-channel differences
by employing linear transformations; however, they remain heuristic and are often
overlook optimizing the data distribution across the entire quantization space. In
this paper, we introduce Quantization Space Utilization Rate (QSUR), a novel met-
ric that effectively assesses the quantizability of transformed data by measuring the
space utilization of the data in the quantization space. We complement QSUR with
mathematical derivations that examine the effects and limitations of various transfor-
mations, guiding our development of Orthogonal and Scaling Transformation-based
Quantization (OSTQuant). OSTQuant employs a learnable equivalent transforma-
tion, consisting of an orthogonal transformation and a scaling transformation, to
optimize the distributions of weights and activations across the entire quantization
space. Futhermore, we propose the KL-Top loss function, designed to mitigate
noise during optimization while retaining richer semantic information within the
limited calibration data imposed by PTQ. OSTQuant outperforms existing work
on various LLMs and benchmarks. In the W4-only setting, it retains 99.5% of the
floating-point accuracy. In the more challenging W4A4KV4 configuration, OS-
TQuant reduces the performance gap by 32% on the LLaMA-3-8B model compared
to state-of-the-art methods. https://github.com/BrotherHappy/OSTQuant.

1 INTRODUCTION

Large language models (LLMs) (Dettmers et al., 2022; Touvron et al., 2023a;b) have demonstrated
exceptional performance across a variety of tasks, increasingly integrating into daily life and playing
critical roles in various areas (Achiam et al., 2023; Chen et al., 2024). Nevertheless, the substantial
memory and computational demands pose significant deployment challenges, limiting their practical
applicability not only on edge devices with constrained resources but also on cloud servers equipped
with powerful GPU devices.

Post-training quantization (PTQ) has emerged as a widely adopted technique for compressing and
accelerating LLMs. During quantization, uneven and heteroscedastic data, as shown in 1(a), pose
significant challenges, as they expand the quantization range and reduce available bit precision for
the majority of values. Recently researches (Xiao et al., 2022; Shao et al., 2023; Ma et al., 2024;
Ashkboos et al., 2024) have employed linear transformations to tackle these challenges, showing
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(a) Original (b) Smooth Transform (c) Rotation Transform (d) Ours

Figure 1: Transformation of a batch of two-dimensional data X ∼ N (µ,Σ) using different methods.
Eigenvalues λ1 and λ2 represent the spread of the distribution along principal axes after eigenvalue
decomposition of Σ . (a) shows the original distribution, while (b), (c), and (d) illustrate the effects of
the Smooth-based, Rotate-base, and ours OST-based methods, respectively, on QSUR. The ellipse
represents the space occupied by the data, and the square indicates the quantization space required
to quantize this distribution, determined by the maximum and minimum values of it. The gray dots
within the square denote the specific quantization points within the quantization space. The higher
the number of quantization points within the ellipse, the greater the quantization space utilization rate
of the distribution.

effectiveness in improving data distribution in specific regions of the quantization space. For instance,
smooth-based transformations like SmoothQuant (Xiao et al., 2022) alleviate activation quantization
difficulty by redistributing it to weights, reducing inter-channel variance. Similarly, rotation-based
methods such as Quarot use rotation techniques to suppress outliers. However, these approaches
remain heuristic and do not optimize the distribution across the entire quantization space.

In this paper, we introduce the concept of Quantization Space Utilization Rate (QSUR) as a more
effective metric for evaluating the quantizability of transformed data. We define QSUR as the ratio of
the volume occupied by a set of data X to the volume of the quantization space corresponding to X .
Given that weights and activations typically exist in multiple dimensions, this quantization space is
modeled as a hypercube where the edge lengths are determined by the maximum quantization range
across all dimensions of the data. Experiments demonstrate a positive correlation between QSUR
and quantization accuracy (as shown in Fig 3), suggesting that higher QSUR values contribute to
improved quantization precision. In addition, we complement QSUR with mathematical derivations
(refer to Sec 3 for more details), which examine the effects and limitations of linear transformations
and establishes a theoretical foundation for developing more effective transformation. As shown in
Fig 1, as QSUR increases, the data distribution becomes flatter, allowing more quantization levels
to be utilized. Smooth-based and rotation-based transformations improve QSUR from different
perspectives: smooth-based transformations excel at reducing variations among eigenvalues, whereas
rotation-based transformations adeptly balance feature orientations and harmonize mean values across
dimensions. However, these approaches encounter a critical limitation: their effectiveness is restricted
to specific regions within the quantization space, leading to low utilization rates.

To this end, we propose Orthogonal and Scaling Transformation-based Quantization (OSTQuant).
OSTQuant assigns a learnable equivalent transformation pair—comprising an orthogonal transforma-
tion and a scaling transformation—to each fully connected (FC) layer in LLMs. During optimization,
these transformation pairs aim to optimize the distributions of weights and activations across the entire
quantization space. The transformation pairs and their inverses are then fused into their respective
FC layers, preserving the original computational graph. Besides, unlike block-wise reconstruction
methods (Shao et al., 2023; Ma et al., 2024), our equivalent transformation pairs do not alter network’s
final output, ensuring generalization and avoiding overfitting to the calibration set.

Another challenge is that, unlike the original floating-point models trained on large datasets, PTQ
is typically conducted on a small calibration set (e.g., 1000 or fewer). In this context, persisting
with the original cross-entropy loss may result in a decline in model performance. To mitigate this
problem, we introduce KL-Top loss function, which leverages the top k highest-probability logits
from the full-precision model, rather than concentrating solely on the logit probability corresponding
to the correct label. Our KL-Top loss improves the capture of more nuanced semantic information
while mitigating noise from the long-tail distribution in the full KL divergence. As for optimizer, we
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employ RiemannAdam (James, 1976), a proficient technique tailored for learning Stiefel Manifolds
using first-order information.

Figure 2: Activation distribution in the LLaMA-
3-8B before and after applying OSTQuant
shows significant differences. Prior to transfor-
mation, the distribution across different chan-
nels exhibits substantial variation and contains
numerous outliers. After OSTQuant, the distri-
butions become more uniform across channels.

Figure 3: Zero-Shot9 precision retention (under
W4A4 quantization) and normalized QSUR are eval-
uated for LLaMA variants across different quantiza-
tion methods. The normalized QSUR is derived as
the d-th root of QSUR, where d denotes the number
of channels. QSUR exhibits a positive correlation
with accuracy.

OSTQuant is an effective and efficient PTQ method for LLMs, outperforming existing approaches
across various models and benchmarks. In the W4-only setting, it retains above 99.5% of the
floating-point accuracy. In the more challenging W4A4KV4 configuration, OSTQuant reduces the
performance gap by 32% on LLaMA-3-8B compared to state-of-the-art (SOTA) methods. In terms of
speed, it can complete the quantization of LLaMA-3-8B on an A800 GPU in just 20 minutes. Our
contributions are summarized as follows:

• We introduce the concept of Quantization Space Utilization Rate (QSUR) as an effective
metric to evaluate quantizability. We also complement QSUR with mathematical derivations
that examine the effects and limitations of various transformations, guiding the next steps in
optimization and method design.

• We propose OSTQuant, a fast and effective PTQ method. It improves QSUR and quantiza-
tion performance by globally optimizing multiple equivalent transformation pairs in LLMs,
each consisting of a scaling transformation and an orthogonal transformation. To address
the challenge of limited datasets imposed by PTQ during optimization, we introduce the
KL-Top loss, which captures richer semantic information from the model while mitigating
the impact of label noise.

• Building on these advancements, our method demonstrates robust performance in both
weight-only, weight-activation and weight-activation-kvcache quantization modes. In the
W4A16 configuration, it retains over 99.5% of the full precision accuracy, while in the more
aggressive W4A4KV4 setting, it maintains at least 96% of the model’s original performance.

2 RELATED WORK

Post Training Quantization(PTQ) for LLMs. Post-training quantization (PTQ) has become a
mainstream technique for LLMs due to its efficiency. Existing PTQ methods can be broadly divided
into weight-only and weight-activation quantization. To reduce memory usage, some approaches focus
on weight-only quantization. GPTQ (Frantar et al., 2022) uses Hessian-based error compensation
to achieve high compression rates by minimizing quantization errors. AWQ (Lin et al., 2023) and
OWQ (Lee et al., 2023) improve performance by addressing the impact of activation outliers on weight
quantization. QuIP (Chee et al., 2023) and QuIP# (Tseng et al., 2024) use random Hadamard matrices
for incoherent processing and apply vector quantization to weights, achieving better performance
with reduced precision quantization. Unlike weight-only methods, weight-activation quantization
aims to speed up LLM inference by quantizing both weights and activations, including the key-value
(KV) cache. The main challenge in activation quantization is that outliers dominate the range, leaving
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few significant bits for most values, leading to substantial errors. ZeroQuant (Yao et al., 2022)
proposes a fine-grained hardware-friendly quantization scheme for both weights and activations.
SmoothQuant (Xiao et al., 2022) shifts quantization difficulty from activations to weights through
mathematical transformation. OmniQuant (Shao et al., 2023) further enhances performance by
training quantization parameters and transformation coefficients. Moreover, I-LLM (Hu et al., 2024)
achieves integer-only quantization and inference through fully-smooth block reconstruction and fully
integer operators. Recently, QuaRot (Ashkboos et al., 2024) uses random rotation matrices to enable
4-bit quantization of weights and activations, while SpinQuant (Liu et al., 2024) learns these matrices
to refine 4-bit quantization.

Riemannian Optimization. The optimization of rotation matrices necessitates adherence to or-
thonormality constraints, which corresponds to performing Riemannian optimization on the Stiefel
manifold (James, 1976), encompassing all orthogonal matrices. Cayley SGD (Li et al., 2020) relies on
iterative approximations of the Cayley Transform, achieved solely by matrix multiplication, enabling
effective optimization of rotation matrices for arbitrary loss functions. RAOM (Bécigneul & Ganea,
2018) extends optimization methods such as ADAM (Kingma, 2014), ADAGRAD, and AMSGRAD
into the realm of Riemannian optimization. Meanwhile, Geoopt (Kochurov et al., 2020) supports
fundamental Riemannian stochastic gradient descent (SGD) and adaptive optimization algorithms,
facilitating seamless integration into models for comprehensive optimization.

3 QUANTIZATION SPACE UTILIZATION RATE

Although significant progress has been made PTQ using linear transformations to mitigate quanti-
zation loss (Xiao et al., 2022; Ma et al., 2024; Ashkboos et al., 2024), these methods are primarily
heuristic and result-driven, lacking a quantitative metric to assess quantization difficulty or the
effectiveness of different transformations. To address this gap, we introduce a novel metric, the
Quantization Space Utilization Rate (QSUR), which quantifies how effectively weight or activa-
tion distributions utilize the available quantization space. QSUR provides critical insights into the
strengths and limitations of existing methods and lays the groundwork for developing more efficient
approaches, including our OSTQuant method described in Sec 4.1.

(a) (b)
Figure 4: The distribution of activation and weight in LLaMA-2 7B. (a) The weight and activation
distributions exhibit a Gaussian pattern. The red dots indicate the mean value of the distributions.
Both the weights and activations are projected onto a two-dimensional space. (b) The inter-channel
variance disparities between weights and activations. In comparison with weights, the inter-channel
disparities of activations are more pronounced.
Quantization Notations. In this section, we define the key notations used in quantization. Matrices
are denoted by bold uppercase letters (e.g., X), while vectors are denoted by bold lowercase letters
(e.g., x). The operator Q refers to the quantization function. For a comprehensive list of mathematical
symbols and definitions, please refer to Appendix A.1, where additional details on quantization and
dequantization are also provided.
Lemma 1. By the central limit theorem, the distribution after Hadamard transformation follows an
approximately ball-shaped Gaussian distribution, as demonstrated in QuIP# (Tseng et al., 2024).

Definition 1. Given a set of d-dimensional data X ∈ Rn×d, let VX denote the hypervolume
occupied by X , and VSX

denote the hypervolume of the quantization space S corresponding to
X . The quantization space SX is a hypercube whose edge lengths are defined by the maximum
quantization range across all dimensions of X . The Quantization Space Utilization Rate of X is
then defined as:

QSURX =
VX

VSX

(1)
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Given X ∼ N (µ,Σ). VX is calculated based on the ellipsoid formed by the covariance matrix
Σ and mean vector µ. The covariance matrix can be diagonalized via eigenvalue decomposition:
Σ = QΛQ⊤, where Q is a unit orthogonal matrix of eigenvectors, and Λ = diag(λ1, λ2, . . . , λd)
contains the eigenvalues in descending order. The hypervolume of this ellipsoid at confidence level α
(e.g., α = 0.99) is given by:

VX =
πd/2

Γ(d/2 + 1)
×

(
χ2
d(α)

)d/2 ×√
det(Σ) (2)

where Γ is the Gamma function and χ2
d(α) is the chi-squared quantile. Since Q is orthogonal, the

determinant simplifies to det(Σ) = det(Λ). The volume of the quantization hypercube, VSX
, is

determined by the range of the distribution along each principal axis. The extremal points of the
ellipsoid are closely correspond to the maximum and minimum along these axes. We denote the
eigenvalues of the principal axes corresponding to the points with the maximum and minimum
coordinate values as λmax and λmin, respectively. After transforming these points back to the original
space, the maximum and minimum coordinate values can be represented as:

vorg
max =

√
χ2
d(α) · λmax · qmax + µ (3)

vorg
min = −

√
χ2
d(α) · λmin · qmin + µ (4)

VSX
= (max(vorg

max)−min(vorg
min))

d (5)

where qmax and qmin denote the eigenvectors corresponding to λmax and λmin, respectively. Thus,
the QSUR becomes:

QSURX =
VX

VSX

=

πd/2

Γ(d/2+1) ·
(
χ2
d(α)

)d/2 ·√det(Λ)(
max(

√
χ2
d(α) · λmax · |qmax|+ µ)−min(

√
χ2
d(α) · λmin · |qmin|+ µ)

)d

(6)

Since the magnitude of the mean vector is often smaller than the largest eigenvalue. we neglect the
mean vector µ, so λmax = λmin = λ1, resulting in:

QSURX =

πd/2

Γ(d/2+1) ·
(
χ2
d(α)

)d/2 ·√det(Λ)

2d
(
max(

√
χ2
d(α) · λ1 · q1)

)d
=

πd/2

Γ(d/2+1) ·
√∏d

i=1 λi

2d
(
max(

√
λ1 · q1)

)d (7)

From Eq 7, we observe the following: 1) QSUR is proportional to the product of the ratios of each
eigenvalue λi to the largest eigenvalue λ1; 2) The maximum component of the eigenvector q1 is
inversely proportional to QSUR. As demonstrated in Appendix A.2.1, when the components of q1
take values of ±d−1/2, the denominator in Eq 7 is minimized.
Influence of linear transformation on QSUR. Applying a linear transformation T to X ∼
N (µ,Σ) results in a transformed distribution D̂ ∼ N (µ̂, Σ̂), where µ̂ = Tµ and Σ̂ =
TQΛQ⊤T⊤. Smoothing-based approaches (Xiao et al., 2022; Shao et al., 2023) treat T as a
diagonal matrix that scales variances across different channel axes, indirectly reducing the dispar-
ities among the eigenvalues λi. However, these methods are particularly sensitive to outliers and
uneven mean values, especially when the mean vector µ contains significant variations like Fig 1(b).
Moreover, when quantizing both weights and activations simultaneously, these methods often fail
to strike a balance. Rotation-based methods, such as those proposed in (Ashkboos et al., 2024; Liu
et al., 2024), reduce outliers in both weights and activations through rotation, thereby decreasing the
hypercube volume to increase QSUR. As proven in Appendix A.2.2, this ability to reduce outliers
stems from the capacity to modify the matrix Q, which improves with increasing dimensionality.
When the orthogonal matrix is T = d−

1
2HQ⊤, where d is the dimensionality, and H is a matrix

composed of ±1 entries, the best outlier reduction capability can be achieved.

In combination with Eq7, the maximum QSUR is achieved when:

T = c ·Λ− 1
2Q⊤ (8)

where c is an arbitrary scalar. At this point, the maximum utilization rate is given by QSUR′′ =
πd/2

Γ(d/2+1)

2d
. Further details can be found in Appendix A.2.3.
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Figure 5: The overall flow diagram of OSTQuant. The top section illustrates how the global orthogonal
transformation, Rres, along with the two scaling transformations, Sattn and Sffn, collaborate within
each block to adjust the distributions across the entire network while maintaining computational
invariance. The bottom section highlights four equivalent transformation pairs applied to the FFN
and Self-Attention layers. Each fully-connected layer’s activation and weight are influenced by one
or more of these transformation pairs. During runtime, these transformation pairs are fused with the
weights, ensuring minimal runtime overhead.

4 METHODOLOGY
4.1 ORTHOGONAL AND SCALING TRANSFORMATION-BASED QUANTIZATION

We propose Orthogonal and Scaling Transformation-based Quantization (OSTQuant), a novel frame-
work designed to optimize the distributions of weights and activations in LLMs through learnable
equivalent transformation pairs, with the goal of improving quantization performance. The core
motivation of OSTQuant is that the combination of orthogonal and scaling transformations enhances
the QSUR, as illustrated in Fig 1 and explained in Sec 3.

As illustrated in Fig. 5, OSTQuant applies multiple transformation pairs globally within and across
blocks of LLMs. Specifically, four equivalent transformation pairs are learned within each block,
with each pair consisting of a learnable diagonal scaling matrix and a learnable orthogonal matrix.
These transformations work together to reshape the distributions of weights and activations, making
them more quantization-friendly. OSTQuant preserves equivalent transformations at a global network
level. As a result, the final output of the network remains unchanged when quantization is not applied,
effectively preventing overfitting.

Equivalent Transformation Pair We define a transformation pair as T = ΛO, where T consists
of a diagonal scaling matrix Λ and a unit orthogonal matrix O. As a result, the forward inference
process is reformulated as follows:

y = Q(xW1OΛ)Q(Λ−1OTW2) (9)

where Q(·) represents the quantization operation. Since Λ is a diagonal matrix, its inverse is simply
the reciprocal of its diagonal elements. We directly optimize O because any orthogonal matrix O can
be decomposed into a Hadamard transform and another orthogonal matrix.

Equivalent Transformation Pair has three advantages: 1. Earnability and Computational Efficiency:
Both O and Λ are learnable parameters. The inversion of the diagonal matrix Λ is computationally
simple, enabling efficient forward passes. The orthogonal matrix O can be optimized using gradient-
based optimizers, such as RiemannAdam (Bécigneul & Ganea, 2018), which supports optimization
on Stiefel Manifolds. This allows the entire process to fully leverage first-order gradient information
for end-to-end learning. 2. Equivalence Preservation: Ignoring the effects of quantization, the forward
process remains mathematically equivalent to the original model. This ensures that activations and
weights retain their consistency while making their distributions more quantization-friendly, thus
reducing the risk of overfitting. 3. After optimization, O and Λ can be directly merged into the
existing weights, meaning no additional computational overhead or parameters are introduced during
deployment, ensuring efficient inference.

The optimization objective for the entire network can be formalized as:

arg min
Ai,Oi

L(ŷ, y;Ai,Oi, θ) (10)

where θ represents the frozen network parameters, and L(ŷ, y) represents the loss between the
quantized network output ŷ and the full-precision output y.
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Weight Outlier Minimization Initialization (WOMI) As shown in (Cholakov et al., 2023), Weight
typically follow a Gaussian distribution with zero mean. Therefore, we initialize the orthogonal matrix
O using the Eq 27 provided in appendix. For the global orthogonal matrix Rres, we concatenate the
weights of all linear layers receiving residual inputs along the input channels, denoted as W n·oc×ic,
and perform eigenvalue decomposition on its covariance to obtain the eigenmatrix QW . Then, we
initialize Rres = (QW )HT , H is normalized Hadamard matrix. For the orthogonal matrices of
the Out-projection and Value-projection layers, we split the O matrix along the head dimension and
apply the same initialization method as Rres. For all scaling matrices, we initialize them as identity
matrices.

Inter-Block Learning. As illustrated in the upper half of Fig 5, the global Rres is applied at the
embedding layer and propagates through each residual path within the LLM via the projection layers.
This transformation rotates activations throughout the entire residual path. Due to the norm-preserving
property of unitary orthogonal matrices (Tseng et al., 2024), we can bypass the RMSNorm layers and
apply an inverse transformation to the inputs of each residual connection’s projection layer and the
final output head, ensuring equivalence is maintained.

Additionally, for the two normalization layers in each block and their respective projection layers,
we introduce two diagonal scaling matrices, Si

attn and Si
ffn, to smooth channel-wise differences.

The matrix Rres simultaneously rotates activations along the residual paths and adjusts the weights
of multiple projection layers. The scaling matrices Si

attn and Si
ffn apply scaling to the outputs

of the RMSNorm layers and their corresponding projection layers. These transformations can be
absorbed into the corresponding weight matrices: the orthogonal transformation Rres merges with
the projection weights along the residual paths, and the scaling matrices are incorporated into the
weight vectors of the RMSNorm layers. As shown in Fig 5, by fusing Rres with all projection
weights during optimization, we effectively learn how distribution shifts in weights and activations
impact model accuracy. This approach helps mitigate the effects of quantization errors by adjusting
for these shifts, thus improving model performance.

Intra-Block Learning. As illustrated in the lower half of Fig 5, we introduce two equivalent transfor-
mation pairs within the Multi-Head Self-Attention layer of each transformer block. Specifically, the
value (V ) and output (O) projection layers are transformed across layers. For each attention head,
the data flow is expressed as:

Y = P h ·Xh · (W h
v R

h
ovS

h
ov) · (Sh−1

ov RhT

ov W
h
o ) (11)

Here, h denotes the head index, P h is the attention matrix, and Xh is the input to head h. We
learn a rotation transformation Rh

ov and a scaling transformation Sh
ov for each attention head. These

transformations aim to improve QSUR for both the value cache and the output projection layer.

After the Rotary Positional Encoding (ROPE) operation, the output query and key can naturally
undergo an equivalent scaling transformation Sqk, similar to the approach in (Hu et al., 2024). Due to
the multiplicative nature of positional encoding, this scaling transformation can be incorporated into
the weight matrices Wq and Wk. To further enhance the quantization efficiency of the key cache, we
apply an additional Hadamard transformation like Quarot (Ashkboos et al., 2024) to the outputs of
the query and key. Similar to Sqk, we can optimize the diagonal matrices in the up-projection and
down-projection of the FFN layer. However, the inverse of the Hadamard transformation is fused into
Wdown from the very beginning.

4.2 KL-TOP LOSS.

Figure 6: The distribution of the number of tokens required to
accumulate 90% of the total prediction probability in the LLaMA-
2-7B model.

While LLMs are typically
trained on vast datasets, OS-
TQuant optimization is often
performed using a much smaller
sample set, typically around
1,000 examples. In this limited-
data setting, directly applying
original cross-entropy (CE) loss
can result in accuracy drop. As
shown in Tab 1, despite the
quantized model exhibiting
lower perplexity compared to its
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full-precision counterpart after training with CE loss, its performance on zero-shot tasks declines.
One likely explanation is that small and simple datasets, such as WikiText-2 (Merity et al., 2016),
may not fully utilize the capacity of LLMs. Consequently, relying solely on CE loss, which focuses
on a single label, might cause the model to overfit to a narrow set of features, thereby compromising
its emergent capabilities.

Table 1: Impact of different loss on Wiki PPL and Arc (Boratko et al., 2018) accuracy for LLaMA
models: While Origin loss reduces PPL, zero-shot scores better reflect the model’s performance.

Model Loss Type Wiki PPL Arc-Easy Score Arc-Challenge Score

LLaMA-2-7B Origin 5.38 69.87 42.41
KL-Top 5.94 72.69 44.62

LLaMA-2 13B Origin 5.12 75.09 46.08
KL-Top 5.25 75.29 47.10

LLaMA-3 8B Origin 6.80 76.68 49.26
KL-Top 7.29 76.73 49.32

A natural idea is to align the prediction distributions before and after quantization to reduce overfitting
risks, such as using the Kullback-Leibler (KL) divergence for optimization. However, this approach
also faces challenges. LLMs typically have vocabularies of tens of thousands or more(e.g., LLaMA-
3-8B has over 100,000 tokens). As illustrated in Fig 6, the prediction results of the full-precision
model follow a severe long-tail distribution, with only a small number of tokens having significant
probabilities. If we directly apply KL divergence over all classes, the loss may be dominated by
uninformative classes with negligible probabilities, adding noise to the training process.

To address this, we propose the KL-Top loss function, which computes KL divergence over only
the top-k classes with the highest probabilities. By focusing optimization on the model’s primary
predictions, this approach enhances gradient quality. In the global KL loss, low-probability values
can introduce noise, leading to inaccurate gradient updates. By restricting the computation to the
top-k classes, the model receives clearer and more informative gradients. Moreover, when dealing
with a large number of classes (e.g., over 100,000), both computation and memory costs become
substantial. Limiting the calculation to the top-k classes (e.g., k = 1000) not only reduces complexity
but also accelerates the training process. The KL-Top loss is calculated as follows:

idxs = topk(z) (12)

L =
∑

i∈idxs

z[i] log

(
z[i]

ẑ[i]

)
(13)

where z and ẑ are the prediction distributions before and after quantization, respectively.

5 EXPERIMENTS

Models and Datasets. We apply our method to the entire LLaMA family, including LLaMA-1
(7B–30B) (Touvron et al., 2023a), LLaMA-2 (7B–13B) (Touvron et al., 2023b), and LLaMA-3-8B.
We report perplexity (PPL) scores on the WikiText2 (Merity et al., 2016) test set. However, as
mentioned in Tab 1, perplexity may not fully reflect the model’s true performance after quantization,
zero-Shot tasks better reflect the model’s actual performance. Therefore, we also evaluate the
models on up to nine zero-shot tasks using the lm-evaluation-harness (version 0.4.4) (Gao
et al., 2024), including BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), LAMBADA
(OpenAI) (Radford et al., 2019), OpenBookQA (OBQA) (Mihaylov et al., 2018), PIQA (Bisk
et al., 2020), SIQA (Sap et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-Easy, and ARC-
Challenge (Boratko et al., 2018).

Baselines and Implementation Details. In addition to the basic RTN approach, we benchmark
our approach against SmoothQuant (Xiao et al., 2022), GPTQ (Frantar et al., 2022), and current
state-of-the-art methods such as Quarot (Ashkboos et al., 2024) and SpinQuant (Liu et al., 2024)
for both weight-only and weight-activation quantization. All activations are quantized using per-
token asymmetric quantization without any pruning operations, while weights are quantized using
symmetric per-channel quantization. We use RiemannAdam (Bécigneul & Ganea, 2018) to optimize
all unit orthogonal matrices and scaling matrices. During the distribution optimization phase, we
use 1,000 samples from WikiText2, each with a token length of 2,048, and iterate 150 times with a
batch size of 8. We apply cosine learning rate decay, setting the initial learning rate for all orthogonal
matrix parameters to 2× 10−2 and for scaling parameters to 3× 10−2.
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5.1 OVERALL RESULTS
Table 2: Comparison of perplexity on WikiText2 and averaged accuracy on nine Zero-Shot tasks.
Results for SmoothQuant, GPTQ, OmniQuant, AWQ, and QuaRot are based on official code and
SpinQuant’s results for LLaMA-2/3 using official weights, with LLaMA-1 from the official code.

LLaMA-3 8B LLaMA-3 70B LLaMA-2 7B LLaMA-2 13B LLaMA-2 70B LLaMA 7B LLaMA 13B LLaMA 30B
#Bits Method 0-shot9 Wiki 0-shot9 Wiki 0-shot9 Wiki 0-shot9 Wiki 0-shot9 Wiki 0-shot9 Wiki 0-shot9 Wiki 0-shot9 Wiki

W-A-KV Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓) Avg.(↑) (↓)
16-16-16 FloatingPoint 68.09 6.14 73.81 2.86 65.21 5.47 67.61 4.88 71.59 3.32 64.48 5.68 66.67 5.09 70.00 4.10

4-16-16

RTN 63.70 8.13 31.15 1e5 61.27 7.02 60.24 6.39 69.62 3.87 62.67 7.94 63.45 8.60 65.69 6.13
SmoothQuant 62.79 8.12 67.94 6.70 58.88 8.03 62.03 5.86 65.93 5.50 62.24 7.46 62.69 18.75 65.69 5.80
GPTQ 61.03 7.43 31.45 9e3 60.86 9.84 64.71 5.79 70.96 3.94 60.15 7.93 64.36 6.58 66.95 5.26
Omniquant 65.66 7.19 - - 63.19 5.74 66.38 5.02 71.04 3.47 63.42 5.86 66.22 5.21 69.07 4.25
AWQ 67.03 7.36 68.92 5.92 63.89 5.83 66.25 5.07 70.88 4.03 63.30 5.97 65.58 5.28 69.44 4.28
QuaRot 67.27 6.53 72.93 3.53 64.30 5.62 66.95 5.00 71.21 3.41 63.40 5.83 65.91 5.20 69.73 4.27
SpinQuant 66.54 6.49 72.90 3.49 63.59 5.58 67.14 5.00 71.12 3.43 63.94 5.76 66.32 5.16 69.62 4.21
OSTQuant 67.80 6.53 73.69 3.19 64.37 5.64 67.31 4.94 71.48 3.41 64.13 5.81 66.62 5.21 69.84 4.19

4-4-16

RTN 33.42 6e2 31.21 8e3 32.44 nan 30.86 8e3 30.90 7e4 32.51 7e3 31.63 3e4 31.57 2e3
SmoothQuant 33.04 1e3 34.67 2e2 32.13 nan 34.26 1e3 35.86 3e2 34.42 3e2 33.29 6e2 34.64 1e3
GPTQ 32.98 5e2 31.47 4e4 32.72 nan 30.11 4e3 30.86 nan 32.12 1e3 31.51 3e3 30.88 2e3
QuaRot 61.69 8.02 65.56 6.35 61.87 6.05 65.13 5.35 69.96 3.78 61.76 6.22 64.46 5.50 68.14 4.57
SpinQuant 64.11 7.28 66.99 6.10 57.37 6.78 63.23 5.24 70.58 3.68 61.82 6.08 64.59 5.36 68.08 4.53
OSTQuant 65.14 7.24 72.21 3.97 63.90 5.60 66.24 5.14 70.92 3.57 62.72 6.04 65.80 5.40 68.52 4.43

4-4-4

RTN 33.18 7e2 30.82 8e3 32.67 nan 30.93 7e3 31.73 7e4 32.87 1e4 31.33 3e4 31.64 2e3
SmoothQuant 32.96 1e3 33.76 3e2 32.12 nan 33.36 1e3 35.54 3e2 33.32 3e2 33.28 5e2 34.65 1e3
GPTQ 33.71 6e2 31.20 4e4 33.52 nan 27.85 5e3 31.09 nan 31.80 2e3 30.63 3e3 31.07 2e3
Omniquant 32.33 4e2 - - 48.40 14.26 50.35 12.30 - - 48.46 11.26 45.63 10.87 45.04 12.35
QuaRot 61.38 8.18 65.33 6.6 61.48 6.11 65.16 5.39 70.30 3.80 61.22 6.26 64.59 5.53 68.08 4.60
SpinQuant 64.10 7.35 66.31 6.24 62.01 5.96 64.13 5.74 70.57 3.61 61.32 6.12 64.95 5.39 68.14 4.55
OSTQuant 65.37 7.29 71.69 4.01 63.18 5.91 65.41 5.25 70.84 3.59 62.55 6.07 65.43 5.40 68.20 4.42

Quantization performance. As shown in Tab 2, our method consistently outperforms previous
SOTA approaches across almost all configurations and models. Under the 4-16-16 setup, OSTQuant
surpasses all prior methods, maintaining at least 99.5% floating-point (FP) accuracy in zero-shot tasks.
Compared to other weight-only methods like GPTQ and AWQ, OSTQuant further narrows the gap
with FP models. In the most challenging LLaMA-3-8B model, OSTQuant achieves only a 0.29-point
performance drop in zero-shot evaluations, whereas other methods incur losses exceeding 1.55 points.
Even in the highly challenging 4-4-4 setting, our approach retains a significant performance gain, out-
performing the SOTA method, SpinQuant, by around 1 point across multiple models. Notably, when
the KV cache is not quantized (in the 4-4-16 setup), OSTQuant achieves a significant performance
boost over SpinQuant, with gains up to 6.53 points (LLaMA-2 7B). These substantial performance
improvements demonstrate the effectiveness of our approach. More detailed results can be seen
in Appendix A.6. Once activation is quantized, rotation-based methods significantly outperform
smooth-based methods, confirming that latter struggle with outliers and uneven distributions. In Fig
3, the QSUR across different methods show a clear positive correlation with model performance. Our
approach achieves the highest QSUR, effectively mitigating the challenges of outliers and uneven
distributions that hinder prior methods, leading to improved model accuracy.

Table 3: The speedup and memory saving factor of LLaMA models with different parameter sizes and
sequence lengths, compared between our 4-bit implementation and FP16. All tests were conducted
on a Transformer block with batch size 4 on a 3090 GPU.

Model Size Prefill Speedup (Seqlen) Memory Saving Factor (Seqlen)
256 512 1024 2048 4096 8192 256 512 1024 2048 4096 8192

7B 2.24x 2.27x 2.23x 2.14x 2.11x 2.02x 3.48x 3.34x 3.12x 2.86x 2.57x 2.34x
8B 2.42x 2.52x 2.52x 2.43x 2.36x 2.23x 3.48x 3.36x 3.12x 2.77x 2.38x 2.00x
13B 2.62x 2.68x 2.63x 2.52x 2.83x 2.32x 3.64x 3.51x 3.30x 3.02x 2.70x 2.43x
30B 3.18x 3.01x 2.98x 3.40x 2.84x 2.68x 3.70x 3.59x 3.42x 3.15x 2.83x 2.53x

Speedup and memory savings. OSTQuant incurs only negligible loss in 4-bit quantization, making
4-bit inference feasible. As shown in Tab 3, OSTQuant delivers an average inference speedup of over
2× and memory savings exceeding 3.5×, demonstrating the significant improvements in inference
efficiency. Detailed speedup and memory saving results can refer to Tab 9. Moreover, OSTQuant
provides substantial advantages in training speed compared to block reconstruction-based methods.
With only 150 iterations and a minimal number of learnable parameters, we optimize the 7B and 13B
models in around 20 minutes, and the 30B model in 120 minutes, achieving up to 5.3× speedups
compared to OmniQuant, refer to Tab 11 for more details.

5.2 ABLATION STUDY

Effect of different transformation. We ablate the effects of various transformation matrices on
LLaMA-2 7B, identifying four groups where orthogonal and scaling equivalent transformations can
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Table 4: Ablation study on the impact of different transformation matrices on Wiki PPL and zero-
shot9 score for LLaMA-2 7B under W4A4KV4 quantization.

Metric Baseline +Rres +Sres +Rdn +Su|d +Rqk +Sqk +Rov +Sov

Wiki PPL nan 9.70 9.46 6.16 6.00 5.92 5.92 5.94 5.91
Zero-shot9 33.51 54.33 53.74 61.75 61.79 62.35 62.56 63.11 63.18

be applied. Tab 4 presents the contribution of each parameter group under W4A4KV4 setup. Our
results show that the global orthogonal transformation Rres brings the largest improvement, followed
closely by Rdown. Notably, scaling transformations S further build on the orthogonal transformations
R by effectively balancing variance across channels, thereby minimizing quantization losses and
enhancing model performance.

Table 5: Effect of different optimizers on zero-shot9 performance of LLaMA models under the
W4A4KV4 configuration. LR1 and LR2 represent the learning rates for the scaling matrices and
unitary orthogonal matrices.

Model Optimizer Type Best Steps Best LR1 Best LR2 Zero-Shot9 Score

LLaMA-2-7B
Cayley SGD 150 1.50 0.20 63.11

Riemann SGD 500 0.10 0.02 63.09
Riemann Adam 150 0.02 1e-3 63.18

LLaMA-2-13B
Cayley SGD 200 1.50 0.2 64.77

Riemann SGD 500 0.1 0.02 65.19
Riemann Adam 150 0.02 0.002 65.41

Different Manifold Optimizers. Since the unit orthogonal matrix resides on a Stiefel manifold,
we explore various manifold optimizers to optimize it, including CayleySGD (Li et al., 2020),
RiemannSGD, and RiemannAdam (Bécigneul & Ganea, 2018). Tab 5 compares these methods
and shows that CayleySGD typically requires a higher learning rate to perform well, RiemannSGD
needs more iterations, while RiemannAdam delivers the best results with the fewest iterations. We
also discover that using a learning rate for the Stiefel manifold 10 times larger than that for scaling
transformation parameters leads to better results.

Table 6: Ablation study of k values on Zero-Shot9 score and Wiki PPL for W3-only and W4A4KV4
configurations of LLaMA-2 7B.

Setting Metric k=5 k=50 k=100 k=500 k=1000 k=5000 k=10000

W3 Only Zero-Shot9 Score 61.87 61.88 61.75 62.18 62.30 61.25 61.21
Wiki PPL 6.06 6.116 6.13 6.07 6.06 6.06 6.12

W4A4KV4 Zero-Shot9 Score 62.4 62.13 62.38 62.34 63.18 62.44 62.11
Wiki PPL 5.99 5.96 5.95 5.96 5.96 5.93 5.94

Influence of k in KL-Top loss. The parameter k in Eq. 12 defines the number of classes considered
when calculating the KL-Top loss, balancing optimization difficulty with semantic richness. Both
excessively large or small k values negatively impact optimization. Tab 6 shows a comparison of
different k values. Furthermore, we analyze whether to apply softmax before or after the top-k
selection. Our experiments indicate that setting k to 1,000 processing produces the best outcomes.

6 CONCLUSION

In this paper, we introduce OSTQuant, a novel post-training quantization method designed to en-
hance the efficiency of large language models (LLMs). Central to OSTQuant is the Quantization
Space Utilization Rate (QSUR), a new metric we proposed to effectively assess the quantizability of
transformed data by measuring its space utilization within the quantization space. Complemented by
mathematical derivations, QSUR provides theoretical guidance for optimizing single data distribu-
tions across the entire quantization space. Leveraging this insight, OSTQuant employs a learnable
equivalent transformation pair composed of orthogonal and scaling transformations to optimize the
distributions of weights and activations. Additionally, we introduce the KL-Top loss function to
mitigate noise during optimization while retaining richer semantic information, even with the limited
calibration data typically available in PTQ. Extensive experiments on various LLMs and benchmarks
demonstrate that OSTQuant outperforms existing quantization methods. These results highlight
the effectiveness of optimizing data distributions across the quantization space and underscore OS-
TQuant’s potential to advance LLM quantization, making these models more efficient and practical
for deployment in resource-constrained environments.
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A APPENDIX

A.1 QUANTIZATION PRELIMINARIES

Quantization & Dequantization. Quantization typically refers to mapping a floating-point number
to a discrete interval with integer number. Here, we only consider uniform quantization. The
quantization process can be expressed as follows:

XI = clamp
(⌊

X

s

⌉
+ zpI , 0, 2n

I

− 1

)
(14)

s =
xmax − xmin

2nI − 1
(15)

zpI =

⌊
−xmin

s

⌉
(16)

X ′ = (XI − zpI) · s (17)

where X is the floating-point tensor, XI is its quantized counterpart and X′ is the dequantized resuls
of XI . Here, nI represents the number of bits (e.g., 8). s is the quantization step size, determined by
xmin, xmax, and nI .clamp represents truncation function. The choice of s greatly affects the accuracy
of the quantized model. We can obtain s from the activations of some samples, which is called static
quantization. Alternatively, we can derive it from runtime statistics, known as dynamic quantization.
Quantization can also be distinguished by its granularity into per-channel quantization and per-token
quantization (Yao et al., 2022).

A.2 SOME DEDUCTIONS ABOUT QSUR

A.2.1 THE COORDINATES OF THE EXTREMUM POINT AND THE INFLUENCE OF ROTATION
MATRIX

From Eq6:

QSURX =
VX

VSX

=

πd/2

Γ(d/2+1) ·
(
χ2
d(α)

)d/2 ·√det(Λ)(
max(

√
χ2
d(α) · λmax · |qmax|+ µ)−min(

√
χ2
d(α) · λmin · |qmin|+ µ)

)d

Given that the eigenvalues and the mean vector are fixed, the volume of the hypercube is determined
by the eigenmatrix Q. For any eigenvector qi ∈ Q, we have the condition:

qi12 + q2i2 + · · ·+ q2id = 1 (18)
Let qimax = max(qi1, qi2, . . . , qid), which implies that for any i, we have qij ≤ qimax. Therefore, it
follows that:

q2i1 + q2i2 + · · ·+ q2id ≤ d · q2imax (19)
This yields the inequality:

1 ≤ d · q2imax (20)

|qimax| ≥ d
1
2 (21)

Consequently, when all elements in Q are ±d−
1
2 , the quantization range is minimized. Under these

conditions, the QSUR′ can be expressed as:

QSUR′ =

πd/2

Γ(d/2+1) ·
(
χ2
d(α)

)d/2 ·√det(Λ)(
max

(√
χ2
d(α) · λmax · d−

1
2 + µ

)
−min

(
−
√
χ2
d(α) · λmin · d− 1

2 + µ
))d

(22)

When the mean vector µ = 0, the QSUR′ can be further simplified to:

QSUR′ =

πd/2

Γ(d/2+1) ·
√∏d

i=1 λi

2d ·
(√

λ1 · d−
1
2

)d
(23)

13



Published as a conference paper at ICLR 2025

A.2.2 THE BEST ORTHOGONAL MATRIX

In the linear transformation paragraph 3 of Sec3 , we observe that applying a linear transformation T
to X ∼ N (µ,Σ) results in a transformed distribution:

X̂ ∼ N (µ̂, Σ̂) (24)
Since the transformation TQ remains an orthonormal matrix after applying the unitary transformation,
the transformed eigenvectors are given by:

TQ = [q1,q2, . . . ,qd] (25)
Movited by Eq 21, we aim for the following transformation:

TQ = d−
1
2H (26)

where d is the dimensionality, and H is a matrix composed of ±1 entries. Solving for T yields:

T = d−
1
2HQ⊤ (27)

The covariance matrix after transformation becomes:

Σ̂ = d−
1
2 ·HQ⊤QΛQ⊤QH⊤ · d− 1

2 (28)

= d−1HΛH⊤ (29)

A.2.3 THE BEST TRANSFORM MATRIX

Inspired by Sec 3, we know that applying a linear transformation T to X ∼ N (µ,Σ) results in a
transformed X̂ ∼ N (µ̂, Σ̂). Ignoring the mean vector, we present a transformation matrix, composed
of a diagonal scaling transformation and an orthonormal transformation, which minimizes the QSUR:

T = Λ− 1
2Q⊤ (30)

Under this transformation, the covariance matrix becomes:

Σ̂ = Λ− 1
2Q⊤QΛQ⊤QΛ− 1

2 (31)
= I (32)

By substituting this result into Eq 7, we achieve the maximum QSUR:

QSUR′′ =

πd/2

Γ(d/2+1)

2d
(33)

A.3 ADDITIONAL ABLATION EXPERIMENTS

A.3.1 THE EFFECT OF WEIGHT OUTLIER MINIMIZATION INITIALIZATION

Weight Outlier Minimization Initialization(WOMI) is used to initialize trainable orthogonal matrices.
This approach not only reduces outliers in the weights but also leverages the properties of Hadamard
matrices to mitigate inter-channel disparities in activations, thereby improving the initial QSUR for
both weights and activations.

We visualized the impact of WOMI on the weights. As shown in Fig 7, the original weight distribution
exhibits significant variations across input and output channels. While QuaRot reduces inter-channel
differences, noticeable spikes remain. WOMI, by leveraging the Hadamard matrix and the covariance
matrix of the weight distribution, further smooths these inter-channel differences, effectively reducing
the quantization space and relative quantization error. Additional visual results for other layers are
presented in Fig 13.

We conducted additional experiments to investigate the impact of WOMI on the performance of
quantized models. Tab 7 presents the performance of LLaMA-2-7B and LLaMA-3-8B models
initialized with WOMI and random Hadamard matrices. WOMI achieves lower perplexity and
higher few-shot accuracy under both W4A4KV4 and W4A16KV16 configurations, showcasing its
effectiveness. Interestingly, WOMI demonstrates greater performance improvements in W4-only
quantization settings compared to W4A4KV4. This is likely due to WOMI’s superior capability in
minimizing weight quantization errors, which is especially critical in W4-only configurations.
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(a) Original weight distribution (b) Hadamard. Relative L1 Error: 0.79 (c) WOMI. Relative L1 Error: 0.42

Figure 7: Impact of WOMI transform and Hadamard transform on LLaMA-2-7B weight (weight
of Query projection in Layer 0) quantization. The relative error is computed by dividing the mean
absolute error (MAE) between the original and quantized weights by the mean absolute value of the
original weights.

Table 7: Comparison of the impact of WOMI initialization and Hadamard initialization on the
performance of quantized models.

Model Quant Setting Method Zero-Shot9 Wiki PPL

LLaMA-2-7B

Full-Precision - 65.21 5.47
W4A16KV16 Hadamard 63.32 5.62
W4A16KV16 WOMI 63.45 5.59
W4A4KV4 Hadamard 61.47 6.11
W4A4KV4 WOMI 61.52 6.09

LLaMA-3-8B

Full-Precision - 68.09 6.14
W4A16KV16 Hadamard 67.27 6.53
W4A16KV16 WOMI 67.41 6.48
W4A4KV4 Hadamard 61.38 8.18
W4A4KV4 WOMI 61.40 8.17

A.3.2 THE EFFECT OF KL-TOP LOSS

As shown in Tab 8 , the results indicate that using SpinQuant(Liu et al., 2024) alone, even with the
introduction of the KL-Top loss function, does not lead to significant performance improvements
and may even cause some degradation. However, when combined with orthogonal and scaling
transformation pairs, the quantization performance improves significantly. For OSTQuant, using CE
loss results in overfitting on the calibration set, and this issue is alleviated by the introduction of the
KL-Top loss function.

A.4 INFERENCE EFFICIENCY AND QUANTIZATION OVERHEAD

Tab 9 shows the prefill time and memory usage of LLaMA models with different parameter sizes
and sequence lengths, compared between our 4-bit implementation and FP16. The inference envi-
ronment features an Intel(R) Xeon(R) Gold 5317 CPU and an Nvidia 3090 GPU. The 4-bit matrix
multiplication kernel was implemented using cutlass of nvidia, while the self-attention mechanism
was realized with PyTorch’s native SDPA (scaled dot product attention) function. All tests were
conducted 500 times, with the median value taken as the final result. Benefiting from efficient low-
precision computation units within CUDA cores and reduced access overhead, OSTQuant achieves
over 2× speedup across various model sizes, and approximately 3× acceleration on the challenging
LLaMA-30B model.

Fig 8 displays the performance and model size of various LLaMA models under different quantization
bitwidths. Each line represents a different model (LLaMA-2-7B, LLaMA-3-8B, LLaMA-2-13B,
LLaMA-30B, and LLaMA-3-70B) with quantization bitwidths ranging from 2 bits to 16 bits. As
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Table 8: Performance of SpinQuant with the introduction of the KL-Top loss function on 9 zero-shot
dataset tasks and the Perplexity changes on Wikitext2.

Model Method ARC-c ARC-e BoolQ HellaS Lam. OBQA PIQA SIQA WinoG. Avg. Wiki2 PPL

LLaMA3-8B

RTN 23.72 30.56 46.18 29.83 2.70 28.60 52.45 34.39 50.20 33.18 704.34
SpinQuant 46.33 73.57 76.15 75.43 71.40 41.40 79.16 44.68 68.75 64.10 7.35

SpinQuant + KL-Top 47.29 73.95 75.82 75.64 71.40 41.58 78.16 44.38 68.45 64.07 7.54
OSTQuant 49.26 76.68 78.25 76.18 70.48 43.19 77.85 45.18 69.13 65.13 6.80

OSTQuant + KL-Top 49.32 76.73 78.87 76.01 70.77 43.20 78.51 45.70 69.22 65.37 7.29

LLaMA2-7B

RTN 27.22 27.06 50.83 27.34 0.93 25.80 49.51 34.85 50.51 32.67 nan
SpinQuant 40.44 71.08 74.40 73.51 70.66 41.80 76.88 43.50 65.82 62.01 5.96

SpinQuant + KL-Top 40.76 71.29 74.61 73.08 70.19 40.94 76.32 43.85 67.78 62.09 6.16
OSTQuant 42.41 69.87 75.07 72.90 70.21 40.87 78.16 44.16 68.40 62.45 5.38

OSTQuant + KL-Top 44.62 72.69 75.41 73.27 70.21 41.00 78.13 44.42 68.27 63.11 5.94

Table 9: Prefill time and Memory usage of LLaMA models with different parameter sizes and
sequence lengths, compared between our 4-bit implementation and FP16. All tests were conducted
on a Transformer block with batch size 4 on a 3090 GPU.

Model Seqlen
Prefill Time

Prefill Speedup
Memory

Memory SavingFP16 INT4 FP16 INT4

LLaMA2-7B

256 8.050ms 3.597ms 2.238x 0.411GB 0.118GB 3.479x
512 14.904ms 6.579ms 2.265x 0.435GB 0.130GB 3.341x

1024 27.989ms 12.582ms 2.225x 0.483GB 0.155GB 3.116x
2048 54.276ms 25.312ms 2.144x 0.577GB 0.202GB 2.857x
4096 112.230ms 53.145ms 2.112x 0.766GB 0.299GB 2.566x
8192 244.675ms 121.339ms 2.016x 1.147GB 0.491GB 2.336x

LLaMA3-8B

256 8.035ms 3.314ms 2.424x 0.430GB 0.124GB 3.478x
512 15.545ms 6.176ms 2.517x 0.442GB 0.132GB 3.356x

1024 29.169ms 11.599ms 2.515x 0.466GB 0.149GB 3.116x
2048 57.470ms 23.631ms 2.432x 0.513GB 0.185GB 2.774x
4096 117.523ms 49.835ms 2.358x 0.608GB 0.256GB 2.378x
8192 256.394ms 114.815ms 2.233x 0.795GB 0.397GB 2.003x

LLaMA2-13B

256 11.449ms 4.370ms 2.620x 0.634GB 0.174GB 3.643x
512 21.195ms 7.924ms 2.675x 0.663GB 0.189GB 3.512x

1024 41.752ms 15.867 ms 2.631x 0.723GB 0.219GB 3.301x
2048 81.965ms 32.553ms 2.518x 0.841GB 0.279GB 3.018x
4096 199.046ms 70.442ms 2.826x 1.079GB 0.399GB 2.702x
8192 359.409ms 154.640ms 2.324x 1.551GB 0.639GB 2.426x

LLaMA-30B

256 18.682ms 5.883ms 3.175x 1.047GB 0.283GB 3.703x
512 34.393ms 11.445ms 3.005x 1.085GB 0.302GB 3.589x

1024 66.880ms 22.464ms 2.977x 1.162GB 0.340GB 3.416x
2048 157.500ms 46.317ms 3.400x 1.315GB 0.418GB 3.148x
4096 272.355ms 96.052ms 2.835x 1.625GB 0.575GB 2.828x
8192 576.555ms 215.27ms 2.678x 2.242GB 0.887GB 2.527x

we can see, quantizing the weights to below 4 bits leads to a significant drop in accuracy. Another
notable observation is that larger models, such as LLaMA-3-70B, outperform smaller floating-point
models like LLaMA-30B in both accuracy and parameter size after quantization.

As shown in Tab 10, since the decoding stage of LLMs is often memory-bound, quantizing the
weights to 4-bit significantly reduces memory access overhead, thereby accelerating the inference
process. The results demonstrate that, under the premise of achieving nearly lossless accuracy, even
a single A6000 GPU can successfully run LLaMA-3-70B at a speed of 15 tokens per second after
quantization. This validates the effectiveness of our quantization method.

Tab 11 presents a comparison of training time between our approach and block reconstruction-based
methods across models of varying parameter sizes. Thanks to the effectiveness of Weight Outlier
Minimization Initialization and KL-Top Loss, we require only about 150 iterations to complete
the quantization process. As shown in the table, OSTQuant offers a significant optimization speed
advantage for smaller models, such as achieving more than a 5x speedup on the LLaMA 7B model
compared to OmniQuant. Even for large-scale models like LLaMA 70B, it achieves nearly a 2x speed
improvement.
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Table 10: Comparison of generation speed and memory usage before and after quantization in the
decoding stage.

Model Decoder Speed (tokens/sec) Memory Use (GB) Memory Saving
FP Quantized Speed up FP Quantized

LLaMA-2-7B 47.32 89.4 1.89x 13.94 4.32 3.23x
LLaMA-3-8B 38.33 77.71 2.03x 15.83 5.88 2.69x
LLaMA-2-13B 23.7 55.35 2.34x 23.7 8.5 2.79x
LLaMA-30B OOM 30.49 - OOM 18.19 -
LLaMA-3-70B OOM 14.68 - OOM 38.41 -

Table 11: Comparison of the training time between our approach and block reconstruction-based
methods across models with varying parameter sizes.

Method 7B 8B 13B 30B 70B
Omniquant 1.6h 1.8h 3.3h 7.3h 9.5h
OSTQuant 0.3h 0.4h 0.8h 2.2h 5.5h
Speedup 5.3x 4.5x 4.1x 3.3x 1.7x

Figure 8: Performance and model size of the Llama series under different quantization settings.
Accuracy is calculated by the average score of nine zero-shot datasets. Model size is determined by
the memory usage when stored in fp16 or integer formats.

A.5 FUTURE WORK

A.5.1 OSTQUANT FOR FULLY-QUANT LARGE LANGUAGE MODELS

Fig 9 introduces OSTQuant’s novel strategy designed for full quantization. Full quantization involves
quantizing all activations within each Transformer Block to low bits (as shown by the quantization
nodes inserted for all node inputs and outputs in the figure). This reduces memory transfer overhead
for activations and fully utilizes efficient low-precision computational units.

As shown in Fig 9, OSTQuant introduces numerous equivalence transformations to alter the distribu-
tions of all node input and output activations. Unlike the methods in Fig 5 designed for traditional
quantization, the design for fully quantization adds more equivalence transformations, particularly
around ROPE and SiLU. Specifically:
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Figure 9: The extension of OSTQuant for full quantization.

1. ROPE Handling: We treat ROPE as a lightweight GEMM layer and construct a weight
matrix of shape (token, head dim, head dim) based on its principle. We then introduce
pre-ROPE and post-ROPE transformation pairs.

a. Pre-ROPE transformations are based on the fact that ROPE and the preceding linear
layer can be viewed as consecutive matrix multiplications along the head dim. The
corresponding transformation pairs are represented in figure bySi

qR
i
prend Si

kR
i
pre.

b. Post-ROPE transformations rely on the attention computation formula Attn =
Q@K⊤, where Q means the query matrix and K means the key matrix in Self-
Attention module. The corresponding transformation pairs are represented in figure by
Si
postR

i
post

2. Smoothing Activation Discrepancies of SiLU: Inspired by smoothing methods for SwiGLU
in I-LLM (Hu et al., 2024), we decompose SiLU as SiLU(X) = X · σ(X) and use
equivalences such as

X1 ·X2 · σ(X1) = (X1 · S) · (S2 ·
1

S
) · σ((X1 · S) ·

1

S
)

to alleviate inter-channel discrepancies of activations before and after SiLU. The correspond-
ing transformation is represented in figure by Su|g .

We will conduct experiments in full-quantization domain in the future to fully explore the potential
of OSTQuant.

A.6 FULL RESULTS

A.6.1 QUANTITATIVE RESULTS

In this section, we provide a comprehensive presentation of our results across various datasets to
complement the main paper. Specifically, the results include:

• Complete comparison of the perplexity score on WikiText2 and averaged accuracy on
zero-shot common sense reasoning tasks on LLaMA-1(Tab 13), 2 and 3 (Tab 12).

• Validate the effectiveness of OSTQuant on larger-scale language models such as LLaMA-2-
70B and LLaMA-3-70B(Tab 14).
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Table 12: Complete omparison of the perplexity score on WikiText2 and averaged accuracy on Zero-shot
Common Sense Reasoning tasks on LLaMA-2 & 3.

Model #Bits Method ARC-c ARC-e BoolQ HellaS. Lam. OBQA PIQA SIQA WinoG. Avg. Wiki2
W-A-KV (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↓)

2-7B

16-16-16 Full Precision 46.42 74.33 77.71 75.94 73.69 44.20 79.16 45.91 69.53 65.21 5.47

4-16-16

RTN 42.15 67.59 73.06 72.34 67.18 41.80 76.50 44.11 66.69 61.27 7.02
SmoothQuant 39.59 65.19 69.82 68.84 62.27 40.20 75.95 44.17 63.85 58.88 8.03
GPTQ 42.49 69.53 61.31 73.83 67.61 42.40 77.64 44.52 68.43 60.86 9.84
Omniquant 42.49 71.00 74.34 73.85 70.70 44.20 78.40 44.93 68.82 63.19 5.74
AWQ 44.11 70.75 78.07 74.98 70.68 43.80 78.13 45.14 69.38 63.89 5.83
QuaRot 43.94 73.15 76.97 74.87 73.06 44.00 78.24 45.09 69.38 64.30 5.62
SpinQuant 43.34 72.69 73.36 75.10 73.80 43.00 77.86 45.60 67.56 63.59 5.58
OSTQuant 44.54 73.31 75.57 75.04 73.67 44.20 78.89 45.50 68.59 64.37 5.64

4-4-16

RTN 25.34 28.03 50.52 27.71 1.01 26.20 50.82 33.93 48.38 32.44 nan
SmoothQuant 28.33 26.39 49.39 27.28 1.18 23.40 48.80 33.62 50.75 32.13 nan
GPTQ 24.40 28.70 51.62 28.66 1.36 24.60 51.14 34.49 49.49 32.72 nan
QuaRot 42.32 69.65 74.77 72.91 70.81 39.80 77.20 43.55 65.82 61.87 6.05
SpinQuant 37.54 62.58 71.16 70.48 67.16 34.80 75.46 39.76 60.62 57.37 6.78
OSTQuant 44.03 71.93 75.41 74.94 73.22 43.20 78.51 45.85 68.03 63.90 5.60

4-4-4

RTN 27.22 27.06 50.83 27.34 0.93 25.80 49.51 34.85 50.51 32.67 nan
SmoothQuant 26.37 25.63 47.71 27.05 1.11 26.40 51.90 34.49 48.38 32.12 nan
GPTQ 26.96 27.65 52.84 28.83 1.63 29.20 49.62 35.11 49.80 33.52 nan
Omniquant 31.40 53.75 63.79 55.06 35.63 34.40 66.59 40.28 54.70 48.40 14.26
QuaRot 41.43 69.32 74.19 72.50 70.66 39.80 77.42 43.35 64.64 61.48 6.11
SpinQuant 40.44 71.08 74.40 73.51 70.66 41.80 76.88 43.50 65.82 62.01 5.96
OSTQuant 42.92 72.56 74.71 73.14 71.76 44.40 77.42 44.98 66.77 63.18 5.91

2-13B

16-16-16 Full Precision 49.15 77.53 80.58 79.39 76.62 45.20 80.63 47.49 71.90 67.61 4.88

4-16-16

RTN 42.92 66.54 71.38 66.62 68.99 39.40 76.93 44.06 65.35 60.24 6.39
SmoothQuant 46.25 70.45 74.92 69.16 70.49 39.80 77.86 45.14 64.17 62.03 5.86
GPTQ 49.63 73.95 74.83 73.77 73.20 42.40 78.51 45.50 70.64 64.71 5.79
Omniquant 48.29 75.42 77.92 77.80 75.59 45.20 80.41 46.62 70.17 66.38 5.02
AWQ 48.63 78.16 78.81 78.48 75.20 45.00 79.54 46.21 72.45 66.25 5.07
QuaRot 49.15 76.26 80.46 78.17 76.50 45.40 80.03 45.50 71.11 66.95 5.00
SpinQuant 49.15 77.48 79.27 78.46 77.10 44.60 80.03 46.47 71.67 67.14 5.00
OSTQuant 48.72 76.26 80.67 78.27 76.54 45.54 80.25 47.65 71.90 67.31 4.94

4-4-16

RTN 27.99 26.81 38.50 26.08 0.00 23.60 48.20 34.90 51.62 30.86 8e3
SmoothQuant 24.49 35.06 47.98 30.87 3.67 26.20 55.01 35.31 49.72 34.26 1e3
GPTQ 27.82 26.77 37.92 25.67 0.00 21.80 47.77 35.11 48.15 30.11 4e3
QuaRot 46.42 73.86 78.10 75.68 74.31 43.00 79.05 44.37 71.35 65.13 5.35
SpinQuant 43.77 69.99 76.57 74.63 72.81 41.60 77.20 44.27 68.19 63.23 5.24
OSTQuant 47.78 74.66 80.03 77.60 75.94 44.40 79.38 46.06 70.32 66.24 5.14

4-4-4

RTN 27.82 26.52 38.38 26.27 0.02 26.00 49.78 34.39 49.17 30.93 7e3
SmoothQuant 24.49 33.00 45.84 30.70 2.70 23.80 53.81 34.80 51.07 33.36 2e3
GPTQ 27.90 26.39 37.95 26.16 0.00 27.00 48.26 34.39 50.43 27.85 5e3
Omniquant 32.85 55.13 64.34 60.13 42.85 33.40 68.17 39.76 56.51 50.35 12.30
QuaRot 47.27 73.91 78.41 75.33 73.53 43.80 79.27 45.85 69.06 65.16 5.39
SpinQuant 46.67 74.49 76.76 75.22 72.19 42.40 78.29 43.45 67.72 64.13 5.74
OSTQuant 47.10 75.21 77.46 76.71 75.14 44.60 78.67 45.75 68.03 65.41 5.25

3-8B

16-16-16 Full Precision 53.50 77.74 81.10 79.18 75.74 44.80 80.63 47.08 73.01 68.09 6.14

4-16-16

RTN 48.98 73.23 72.75 75.90 63.85 43.20 78.40 43.81 73.16 63.70 8.13
SmoothQuant 47.44 72.35 72.11 74.92 62.41 43.00 77.69 43.91 71.27 62.79 8.12
GPTQ 49.74 72.52 71.28 68.34 46.69 43.60 78.78 46.47 71.82 61.03 7.43
Omniquant 50.09 74.54 79.51 76.92 70.31 43.80 79.54 44.52 71.74 65.66 7.19
AWQ 52.22 76.68 80.31 77.51 74.81 44.20 79.60 46.26 71.67 67.03 7.36
QuaRot 51.88 77.53 79.60 77.87 74.11 44.40 80.14 46.37 73.56 67.27 6.53
SpinQuant 52.13 72.28 79.20 78.40 73.76 44.80 79.98 45.50 72.77 66.54 6.49
OSTQuant 52.82 79.84 80.31 77.86 76.48 42.80 80.74 45.55 73.80 67.80 6.53

4-4-16

RTN 23.72 30.89 46.30 31.26 3.03 27.60 52.72 35.26 50.04 33.42 6e2
SmoothQuant 23.29 28.28 48.93 29.19 1.57 28.60 54.46 33.37 49.64 33.04 1e3
GPTQ 23.46 32.07 43.79 30.10 2.41 28.00 53.97 34.14 48.86 32.98 6e2
QuaRot 42.66 67.26 73.73 73.60 67.42 43.00 76.61 45.04 65.90 61.69 8.02
SpinQuant 47.35 74.12 76.36 75.98 69.88 42.46 77.37 44.47 68.98 64.11 7.28
OSTQuant 48.81 73.48 79.82 75.97 72.62 42.40 78.18 45.75 69.22 65.14 7.24

4-4-4

RTN 23.72 30.56 46.18 29.83 2.70 28.60 52.45 34.39 50.20 33.18 7e2
SmoothQuant 23.55 28.96 48.84 28.90 1.44 29.40 51.09 34.14 50.36 32.96 1e3
GPTQ 23.38 32.74 44.34 29.72 2.39 29.80 54.95 34.75 51.30 33.71 6e2
Omniquant 22.87 30.35 41.53 31.11 1.86 25.40 53.37 34.08 50.43 32.33 4e2
QuaRot 42.83 67.42 73.21 72.66 66.93 42.20 75.73 45.19 66.22 61.38 8.18
SpinQuant 46.33 73.57 76.15 75.43 71.40 41.40 79.16 44.68 68.75 64.10 7.35
OSTQuant 49.32 76.73 78.87 76.01 70.77 43.20 78.51 45.70 69.22 65.37 7.29
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Table 13: Complete omparison of the perplexity score on WikiText2 and averaged accuracy on Zero-shot
Common Sense Reasoning tasks on LLaMA.

Model #Bits Method ARC-c ARC-e BoolQ HellaS. LambA. OBQA PIQA SIQA WinoG. Avg. Wiki2
W-A-KV (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↓)

7B

16-16-16 Full Precision 44.71 72.90 74.98 76.20 73.08 43.80 79.16 45.55 69.93 64.48 5.68

4-16-16

RTN 43.17 69.82 73.30 73.75 69.67 42.00 78.13 45.34 68.82 62.67 7.94
SmoothQuant 40.96 68.60 74.04 73.16 68.74 42.00 78.07 46.11 68.51 62.24 7.46
GPTQ 41.72 67.85 67.98 69.50 63.15 40.80 76.55 44.37 69.46 60.15 7.93
Omniquant 42.49 71.38 74.62 74.71 71.98 42.00 79.05 45.96 68.59 63.42 5.86
AWQ 43.86 70.79 74.19 75.27 69.94 43.00 78.45 45.09 69.14 63.30 5.97
QuaRot 42.75 69.99 73.30 75.13 73.55 42.80 78.35 45.14 69.61 63.40 5.83
SpinQuant 43.77 71.17 74.46 75.09 72.91 44.40 78.40 44.52 70.72 63.94 5.76
OSTQuant 44.20 72.56 73.73 75.05 73.45 44.60 78.73 45.45 69.38 64.13 5.81

4-4-16

RTN 23.46 29.34 45.05 29.02 1.24 26.00 52.07 35.11 51.30 32.51 7e3
SmoothQuant 25.17 31.40 51.62 29.73 5.43 28.20 54.68 34.44 49.09 34.42 3e2
GPTQ 23.89 27.74 42.87 28.49 1.28 27.40 51.00 36.23 50.20 32.12 1e3
QuaRot 40.36 67.26 73.15 72.89 70.81 42.00 77.97 44.27 67.17 61.76 6.22
SpinQuant 40.19 68.43 72.35 72.91 70.68 41.20 77.75 44.17 68.67 61.82 6.08
OSTQuant 42.58 70.79 72.87 74.06 70.77 43.40 77.69 45.04 67.25 62.72 6.04

4-4-4

RTN 23.89 29.59 46.67 28.37 1.13 26.40 52.99 35.21 51.54 32.87 1e4
SmoothQuant 23.38 30.18 50.03 29.67 4.89 24.60 51.74 34.75 50.67 33.32 3e2
GPTQ 23.89 27.90 43.88 27.86 1.05 26.20 51.85 34.08 49.49 31.80 2e3
Omniquant 31.40 54.84 61.80 56.98 38.29 31.80 66.59 39.30 55.17 48.46 11.26
QuaRot 40.27 67.55 72.20 72.59 70.62 39.80 77.20 44.88 65.90 61.22 6.26
SpinQuant 39.08 68.18 73.06 72.87 70.46 40.60 77.42 42.68 67.56 61.32 6.12
OSTQuant 42.92 70.33 72.11 73.77 70.66 42.42 77.91 44.93 67.88 62.55 6.07

13B

16-16-16 Full Precision 47.87 74.49 77.86 79.10 76.03 44.40 80.30 46.72 73.24 66.67 5.09

4-16-16

RTN 45.56 70.66 72.45 76.06 70.58 42.00 78.84 44.93 70.01 63.45 8.60
SmoothQuant 43.86 71.21 71.62 74.19 69.34 40.00 77.80 45.45 70.72 62.69 18.75
GPTQ 45.99 72.85 73.27 75.31 70.10 44.60 79.87 46.16 71.11 64.36 6.58
Omniquant 47.01 73.86 77.22 77.95 75.59 45.00 79.87 46.88 72.61 66.22 5.21
AWQ 47.53 73.86 75.60 59.03 78.34 43.40 79.87 45.85 71.67 65.58 5.28
QuaRot 47.18 72.22 76.85 78.07 75.99 45.00 79.76 45.70 72.38 65.91 5.20
SpinQuant 47.44 74.83 77.37 78.13 75.55 45.60 79.92 46.01 72.06 66.32 5.16
OSTQuant 48.04 73.86 78.10 78.28 75.99 45.60 80.52 46.93 72.30 66.62 5.21

4-4-16

RTN 25.85 26.26 42.05 26.70 0.17 28.00 50.33 34.60 50.67 31.63 2e4
SmoothQuant 25.43 29.29 51.56 28.12 2.02 26.00 53.32 34.34 49.57 33.29 6e2
GPTQ 24.66 27.78 40.80 25.83 0.70 24.20 51.31 36.65 51.70 31.51 3e3
QuaRot 46.93 71.51 75.57 76.63 74.13 42.40 78.73 45.24 68.98 64.46 5.50
SpinQuant 45.73 72.56 75.38 76.86 73.28 43.60 78.89 44.63 70.40 64.59 5.36
OSTQuant 48.04 74.07 77.13 77.22 74.58 45.00 78.62 46.16 71.35 65.80 5.40

4-4-4

RTN 26.28 27.27 42.35 25.85 0.19 26.60 49.95 34.19 49.25 31.33 3e4
SmoothQuant 24.49 28.83 51.65 27.91 2.08 26.00 52.56 35.41 50.59 33.28 5e2
GPTQ 23.63 27.31 39.85 26.17 0.56 26.00 51.96 35,82 49.57 30.63 3e3
Omniquant 29.61 48.23 58.20 56.45 28.76 31.40 65.29 37.10 55.64 45.63 10.87
QuaRot 46.50 71.55 75.08 76.43 73.47 45.00 78.78 44.37 70.09 64.59 5.53
SpinQuant 45.99 70.71 76.51 77.16 73.63 45.60 79.00 45.65 70.32 64.95 5.39
OSTQuant 45.90 75.25 76.94 77.21 74.23 43.40 79.43 45.91 70.56 65.43 5.40

30B

16-16-16 Full Precision 52.99 80.39 82.75 82.62 77.59 48.00 82.26 47.75 75.69 70.00 4.10

4-16-16

RTN 49.74 73.99 77.89 79.07 72.21 44.20 79.00 45.70 73.88 65.69 6.13
SmoothQuant 48.98 72.94 80.00 79.00 71.49 44.80 78.13 45.96 73.16 65.69 5.80
GPTQ 50.85 75.97 80.31 79.31 74.13 45.00 78.94 45.24 72.77 66.95 5.26
Omniquant 52.22 78.62 81.80 81.94 76.85 47.20 81.07 47.54 74.43 69.07 4.25
AWQ 53.24 77.48 81.68 82.29 76.79 48.20 81.72 48.16 75.37 69.44 4.28
QuaRot 53.58 78.62 82.11 82.10 77.62 48.00 81.72 47.75 76.09 69.73 4.27
SpinQuant 52.90 78.49 82.02 82.21 78.28 48.20 81.01 48.41 75.06 69.62 4.21
OSTQuant 53.07 79.12 83.09 82.04 78.58 48.60 81.18 48.06 74.82 69.84 4.19

4-4-16

RTN 25.00 27.95 42.02 27.22 0.21 27.00 49.13 34.65 50.91 31.57 2e3
SmoothQuant 23.63 30.68 54.86 31.91 3.80 28.20 54.13 34.49 50.04 34.64 1e3
GPTQ 27.30 27.19 38.69 26.75 0.17 25.80 49.02 35.21 47.75 30.88 2e3
QuaRot 51.79 76.39 80.76 80.90 77.08 45.80 80.58 45.60 74.35 68.14 4.57
SpinQuant 50.06 77.06 81.38 80.62 76.79 46.00 80.14 46.37 74.27 68.08 4.53
OSTQuant 51.37 78.11 82.48 79.51 75.99 45.40 81.18 47.80 74.82 68.52 4.43

4-4-4

RTN 25.00 28.87 44.07 27.29 0.39 25.60 49.67 34.54 49.33 31.64 2e3
SmoothQuant 22.61 32.87 55.05 31.28 3.40 28.00 53.75 34.65 50.28 34.65 1e3
GPTQ 27.22 27.82 39.36 27.13 0.33 24.80 50.71 34.34 47.91 31.07 2e3
Omniquant 29.10 53.79 54.95 52.44 26.45 30.60 65.56 38.54 53.91 45.04 10.33
QuaRot 51.71 76.98 80.95 80.86 77.04 46.20 80.63 45.00 73.32 68.08 4.60
SpinQuant 51.62 76.98 81.07 80.57 76.63 46.00 79.92 46.26 74.19 68.14 4.55
OSTQuant 49.74 76.52 81.16 81.13 77.57 46.40 80.90 46.11 74.27 68.20 4.42

20



Published as a conference paper at ICLR 2025

Table 14: Complete comparison of the perplexity score on WikiText2 and averaged accuracy on Zero-shot
Common Sense Reasoning tasks for LLaMA2-70B and LLaMA3-70B.

Model #Bits Method ARC-c ARC-e BoolQ HellaS. LambA. OBQA PIQA SIQA WinoG. Avg. Wiki2
W-A-KV (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↓)

2-70B

16-16-16 Full Precision 57.42 81.02 83.79 83.81 79.60 48.80 82.70 49.18 77.98 71.59 3.32

4-16-16

RTN 55.80 79.29 81.35 81.78 75.51 47.60 81.94 46.83 76.48 69.62 3.87
SmoothQuant 50.26 76.56 81.53 67.81 73.63 44.40 81.34 44.17 73.64 65.93 5.50
GPTQ 56.91 80.81 83.24 82.47 79.06 47.80 82.75 48.06 77.51 70.96 3.94
Omniquant 57.08 80.81 82.69 83.07 79.18 47.40 83.08 48.87 77.19 71.04 3.47
AWQ 56.67 80.54 82.98 82.54 78.83 47.67 82.97 48.12 77.62 70.88 4.03
QuaRot 57.34 80.85 83.24 83.27 80.38 47.60 82.21 48.62 77.35 71.21 3.41
SpinQuant 56.91 80.60 83.18 83.06 79.16 49.00 82.75 48.31 77.11 71.12 3.43
OSTQuant 57.36 81.37 83.20 83.86 79.77 48.73 82.69 48.46 77.89 71.48 3.41

4-4-16

RTN 29.35 26.05 37.74 25.97 0.02 24.80 51.31 34.14 48.70 30.90 7e4
SmoothQuant 25.00 35.98 55.23 32.52 7.49 25.00 54.62 35.21 51.70 35.86 3e2
GPTQ 27.82 25.80 37.95 25.82 0.00 27.00 49.67 33.98 49.72 30.86 nan
QuaRot 55.29 80.35 81.10 81.87 79.06 45.80 82.05 47.90 76.24 69.96 3.78
SpinQuant 55.38 78.96 83.36 82.54 79.00 47.80 82.10 48.67 77.43 70.58 3.68
OSTQuant 56.61 80.51 83.03 82.68 79.11 47.86 83.00 48.76 76.70 70.92 3.57

4-4-4

RTN 30.38 27.74 38.23 26.12 0.02 24.60 51.74 34.29 52.49 31.73 7e4
SmoothQuant 24.15 33.88 55.32 31.75 7.14 26.40 54.95 34.14 52.17 35.54 3e2
GPTQ 28.75 26.39 37.86 25.96 0.00 26.40 50.00 34.44 50.04 31.09 nan
QuaRot 56.48 80.56 81.59 81.93 79.16 46.00 82.21 48.00 76.80 70.30 3.80
SpinQuant 56.31 80.64 83.55 82.36 79.41 47.20 82.21 47.29 76.16 70.57 3.61
OSTQuant 56.58 80.17 83.64 82.49 78.72 48.00 82.76 48.67 76.49 70.84 3.59

3-70B

16-16-16 Full Precision 64.42 85.98 85.14 84.95 79.47 48.46 84.39 50.82 80.66 73.81 2.86

4-16-16

RTN 26.28 25.55 37.83 26.36 0.00 29.00 50.98 34.70 49.64 31.15 1e4
SmoothQuant 51.88 77.53 80.09 80.47 73.16 46.60 80.58 45.29 75.85 67.94 6.70
GPTQ 25.77 25.29 37.83 26.36 0.12 28.40 51.74 34.90 52.64 31.45 9e3
Omniquant 48.29 75.42 77.92 77.80 75.59 45.20 80.41 46.62 70.17 66.38 5.02
AWQ 52.26 78.95 83.24 81.52 73.05 47.67 81.25 44.43 77.98 68.93 5.92
QuaRot 62.20 83.88 85.57 84.18 79.04 48.20 83.13 50.10 80.03 72.93 3.53
SpinQuant 62.03 84.97 85.11 84.06 78.30 47.00 83.90 49.85 80.90 72.90 3.49
OSTQuant 63.76 85.82 84.99 85.16 79.53 48.45 84.26 51.01 80.22 73.69 3.19

4-4-16

RTN 27.47 25.88 37.83 26.26 0.00 27.20 51.63 35.26 49.33 31.21 9e3
SmoothQuant 25.60 34.47 50.46 32.48 1.98 30.00 54.24 33.83 48.93 34.67 2e2
GPTQ 25.77 26.09 43.64 26.42 0.00 27.40 52.01 32.55 49.33 31.47 4e4
QuaRot 50.60 73.65 77.46 77.83 71.96 43.20 78.13 45.29 71.90 65.56 6.35
SpinQuant 53.84 77.69 80.24 78.19 73.06 45.00 78.67 43.24 73.01 66.99 6.10
OSTQuant 61.84 84.56 84.14 82.47 77.08 46.07 83.38 50.23 80.13 72.21 3.97

4-4-4

RTN 27.13 25.42 37.83 26.12 0.00 26.60 50.76 35.16 48.38 30.82 9e3
SmoothQuant 23.46 31.48 48.81 29.22 4.13 28.00 52.56 34.95 51.22 33.76 3e2
GPTQ 26.11 25.17 45.17 26.07 0.00 26.40 48.86 33.88 49.17 31.20 4e4
QuaRot 49.49 74.37 79.16 77.22 71.69 42.29 78.89 43.87 71.03 65.33 6.60
SpinQuant 51.88 76.39 80.98 76.50 71.43 43.46 79.27 44.17 72.69 66.31 6.24
OSTQuant 61.29 82.39 83.43 83.25 75.90 48.93 81.73 51.24 77.01 71.69 4.01
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A.6.2 VISUALIZATION RESULTS

• Fig 10 illustrates the trends of activation QSUR and evaluation loss during the training
process of the LLaMA3-8B model.

• Fig 11 and Fig 12 shows the activation distribution of different layers in LLaMA-2-7B and
LLaMA-3-8B.

• Fig 13 shows the impact of Weight Outlier Minimization Initialization (WOMI) on weight
distribution and quantization error of different layers in LLaMA-2-7B.

• Fig 14 presents visual comparisons of the activation distributions and quantization errors for
QuaRot, SpinQuant, and OSTQuant on selected layers of LLaMA-2-7B.

Figure 10: As the number of training iterations increases, the changes in the local and average
QSURs, as well as the evaluation loss.
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Figure 11: The activation distribution of different layers in LLaMA-2-7B before and after OSTQuant.
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Figure 12: The activation distribution of different layers in LLaMA-3-8B before and after OSTQuant.

24



Published as a conference paper at ICLR 2025

Figure 13: Visualizations comparing of the weight distribution and relative L1 error of LLaMA- 2-7B
quantized with Ori (1st column), Hadamard transformed(2nd column), and WOMI transformed (3rd
column), respectively.
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Figure 14: Visualizations comparing of the activation distribution and relative L1 error of LLaMA-
2-7B quantized with QuaRot (1st column), SpinQuant (2nd column), and OSTQuant (3rd column),
respectively. The relative L1 error here represents the difference between the activations before and
after per-token quantization.
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