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Abstract Alchemy is a newmeta-learning environment rich enough to contain interesting abstractions,
yet simple enough to make fine-grained analysis tractable. Further, Alchemy provides an
optional symbolic interface that enables meta-RL research without a large compute budget.
In this work, we take the first steps toward using Symbolic Alchemy to identify design
choices that enable deep-RL agents to learn various types of abstraction. Then, using a
variety of behavioral and introspective analyses we investigate how our trained agents use
and represent abstract task variables, and find intriguing connections to the neuroscience of
abstraction. We conclude by discussing the next steps for using meta-RL and Alchemy to
better understand the representation of abstract variables in the brain.

1 Introduction

Humans display the remarkable ability to use abstractions to guide their behavior. They are able to
abstract over the sensorimotor details of a situation to derive the general principles involved, and
to use those principles to behave effectively. A classic example is the use of abstract knowledge
to guide behavior in a restaurant; for example, people know that they must pay at the end, even
though they have never seen that exact restaurant or paid for that specific meal (Wallis et al.,
2001). Neuroscientific studies have made progress in understanding how the brain might represent
abstract rules (Mansouri et al., 2020), establishing that prefrontal cortex plays a significant role
(Milner, 1963), with more recent work implicating the hippocampus as well (Samborska et al., 2021).
One limitation of these studies is that they use extremely simple tasks, where optimal behavior can
be derived as a nearly trivial function of the inputs. As a result, there is a large gap between the
abstractions studied in the experiments and the richness at play in human life.

A recent development presents an opportunity to begin to bridge this gap. The Alchemy
benchmark was proposed by Wang et al. (2021) to make fine-grained analysis and interpretation of
meta-RL agents possible while maintaining the complexity needed for more interesting conceptual
abstractions to be learnt. In the present work, we use a biologically inspired model on the symbolic
version of the Alchemy benchmark (Wang et al., 2021) to investigate the learning and representation
of more complex abstractions than those studied previously in neuroscience. Our model builds on
the meta-RL framework of Wang et al. (2018) who showed that by considering the prefrontal cortex
(PFC) as its own meta-RL system, that is driven by dopamine-based synaptic learning, one can
account for a wide range of behavioral and neurophysiological findings. Our model builds on that
by extending their core recurrent network with an episodic memory via a modified transformer
block to represent the hippocampus, similarly to (Ritter et al., 2018).

The main contributions of the paper can be summarized as follows: (1) we show a way in
which researchers can achieve high performance in Symbolic Alchemy – albeit with some tricks –
without having access to vast computational resources as is usually required for deep-RL research.
To be specific, all experiments done for this paper were run on a single-GPU (Tesla T4) machine.
(2) We propose a hypothesis based on empirical results into why previous agents failed to solve
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Figure 1: In the center of the architecture is an LSTM that takes as input the action and reward of the
previous timestep, an encoded version of the current state, and a distilled representation of
the relevant memory entries. The encoder is just a two-layered MLP. The episodic memory
stores the features of the stone being transformed 𝑠̃𝑡 , a one-hot encoding of the applied
potion color 𝑝𝑡 , the reward 𝑟𝑡 , and the resultant features of the stone after transformation
𝑠̃𝑡+1. The transformer block architecture is fully described in Section 2.1. The output of the
LSTM is finally given to the policy and value networks, each of which is a linear layer, to
generate an action and the value estimate respectively.

Symbolic Alchemy despite being much more powerful than the one used in this work. (3) We
release a tool for visualizing the chemistry and latent space of any given episode in Symbolic
Alchemy to better help researchers debug the behavior of their agents. (4) We present a new kind
of behavioral analysis that can be done on Alchemy to test whether the agent succeeded or failed in
acquiring specific pieces of abstract knowledge. (5) Finally, we demonstrate that, just as in animals
(Wallis et al., 2001; Wallis and Miller, 2003; Muhammad et al., 2006), single-units of the LSTM and
transformer encode abstract task variables. Moreover, single-unit analyses revealed evidence for
distinct functional roles for LSTM and transformers units. We draw a connection between this
observation and the differential roles of PFC and hippocampus observed in recent neuroscience
experiments (Samborska et al., 2021).

2 Methods

The Symbolic Alchemy environment is fully described in A.1.

2.1 Agent Architecture

We use a biologically inspired architecture that maps to functions and neural structures in the brain.
Specifically, we build on the work of Wang et al. (2018) in which the prefrontal cortex (PFC) is
conceptualized as forming a gated recurrent neural network (characterized as an LSTM (Hochreiter
and Schmidhuber, 1997)) and augment it with an episodic memory which is connected to the LSTM
via a single modified transformer block from Ritter et al. (2020) (see Figure 1).

The LSTM, which has been shown to have analogies with prefrontal gating theories (Chatham
and Badre, 2015), takes as input on each time-step an encoded version of the current state, the
reward and action it had taken at the preceding time-step and a compressed representation of
the previous memories experienced in the current episode. Since the LSTM learns to distill that
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information over the course of an episode in its hidden state, it can be considered as a form of
working-memory (Lara and Wallis, 2015).

On the other hand, the transformer architecture takes as input the current state 𝑠𝑡 and the entries
of the episodic memory {𝑚𝑖}𝑡𝑖=0 on each time-step. The state 𝑠𝑡 is then concatenated to each𝑚𝑖 . This
matrix is then transformed feature-wise by a shared linear layer, before being passed to the planner
module of Ritter et al. (2020) described using the following equations: 𝑠∗𝑡 = ReLU(𝑥 + 𝜙 (𝑥)) where
𝑥 = {[𝑚𝑖 , 𝑠𝑡 ]}𝑡𝑖=0 and 𝜙 (𝑥) = MHA(LayerNorm(𝑥)) where MHA is the multi-head dot-product
self-attention mechanism described by Vaswani et al. (2017) with layer-normalization (Ba et al.,
2016) applied to the input. The output is an attended view of the agent’s past relevant experience
in the episode given the current state. This is then passed to a two-layer shared MLP, the output of
which is pooled using a feature-wise max operation. Since the transformer we use is referred to as
an Episodic Planner Network (EPN) in (Ritter et al., 2020) we refer to our agent as A2C EPN.

3 Results

The results and analyses presented in this section have all been done on the 1000 held-out evaluation
episodes provided by the benchmark using the agent described in Section 2.1.

3.1 Performance

The A2C EPN agent achieves an average episode score of 272.85 with the modified representations,
which is significantly higher than the much more powerful VMPO agent with a gated transformer
XL network (Song et al., 2020; Parisotto et al., 2019) used by Wang et al. (2021). In an attempt
to identify which aspects contributed to this leap in performance, we re-trained our agent but
using the canonical representation in each of the input, output and memory separately as shown
in Table 1 (more details about each in the Appendix A.7). The results show a significant drop to
almost the same performance reported by Wang et al. (2021) when using the canonical action
space. Interestingly, evaluating the same agent but without committing anything into the episodic
memory led to the same performance (see Score w/o Memory column in Table 1), indicating that
the model was not making use of its long-term history to appraise the value of future actions.

This inability to exploit the memory can be largely attributed to the notion of positional output,
where the agent is required to choose an instance of the potion and not the abstract color that causes
the transformative effect. Since each potion slot can have more than one color across different
trials, the same action will have different effects within the same episode. For instance, action 𝑎2 in
trial 𝑘 can be a pink potion while in another trail can correspond to an orange potion. In order to
have an appropriate mapping between each instance and its abstract color one will need a more
suitable architecture that would be able to recapitulate the information we gave to the system via
the custom encoding. The series of experiments we presented show where such an architecture
search could begin. Specifically, an architecture design that gets the right information into the
memory and provides sufficiently flexible neural networks to process the memories in order to
reproduce the information contained in our modified representation. In this work we used the
custom encoding since it enabled us to pinpoint where the architectural problem lies and perform
interesting analyses that we present in the following sections with a small compute budget.

To measure the effect of reward shaping on the final performance, we evaluated the A2C EPN
agent without giving it any additional rewards or penalties. This achieved a score of 236.06 ± 2.18,
which suggests that exploration is a bottleneck. In other words, the problem does not really have
to do much with learning from examples to represent abstract variables, but instead is just about
having a data distribution that’s sufficiently broad.

We found it useful as well to compare the results with respect to the number of missing edges
in the graph (see Figure 7), since the A2C EPN agent’s performance approached that of the Ideal
Observer in the case where there are no bottlenecks. In an effort to bridge this gap, we found that
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Figure 2: Top: LSTM units. (a) The activation of unit 192 as a function of the latent state. This unit is
only responsive when stone 3 is in latent state 8 (the state with the highest reward). (b) The
same unit as in (a) but as a function of the stone’s perceptual state. It implies that the unit is
responsive regardless of the stone’s perceptual features. (c) The activations of unit 84 has a
magnitude proportional to the reward of its corresponding state regardless of which stone
is used. Note that states {4, 6, 7} have a reward of +1 while the rewards of states {2, 3, 5}
is −1. (d) The activations of unit 26 are more positive in the states with negative reward.
Bottom: Transformer units. (a) Unit 34 has a high activation when the agent choose the
turquoise potion while a negative activation when it chooses its opposite color. (b) Unit 56 is
the opposite of (a). (c) Unit 60 is similarly responsive when the agent chooses potion with a
specific color (here yellow) and has a negative response for its opposite color. (d) Unit 9 is
selective when the agent chooses an action that uses stone 1 regardless of the potion color.

this difference is more pronounced in earlier trials. It is especially visible in the first trial in the
case where there are no missing edges as shown in Figure 7, where the A2C EPN agent performs
similar to or better than the Ideal Observer in far more number of episodes after the first trial. This
can be mitigated in future work by incorporating more advanced exploration methods.

3.2 Behavioral Tests

In the following behavioral tests we report the number of times the agent took a null transition
(i.e. applying a potion that has no effect on a stone) that wasn’t the result of a missing edge or
choosing a potion color or stone that was not available, but due to a lack of understanding of a
specific abstract principle. We compare our agent’s behavior to that of the Ideal Observer and the
Random Heuristic.

To put it formally, let 𝑡 : ⟨𝑥,𝑦, 𝑧⟩
𝑝
−→ ⟨𝑢, 𝑣,𝑤⟩ be a transition that the agent has observed earlier

in the episode, where 𝑥 , 𝑦 and 𝑧 are the color, size and shape of the stone in question respectively, 𝑝
is the color of the potion being applied to the stone, and 𝑢, 𝑣 and𝑤 are the stone perceptual features
after applying the potion on it. Note that ⟨𝑥,𝑦, 𝑧⟩ can be equal to ⟨𝑢, 𝑣,𝑤⟩, and we call that a ‘null
transition’. Since there are no rotated graphs in the evaluation episodes, each feature dimension
can only take one of two values. This implies that each stone can only be in one of 23 = 8 possible
perceptual states. Figure 7 shows the results of each tested abstract principle. Refer to A.6 for a
detailed description of each abstract principle.

3.3 Single-Unit Activations

Inspired by single-cell recordings in neuroscience, where single neurons are usually shown to be
selective for a specific abstract concept (Wallis et al., 2001), we probed our model to see if it will
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give rise to similar selectivity by analysing the activations of single units in the LSTM and that of
the transformer (specifically, the output of the feature-wise max). Figure 2 shows the activations of
a few units averaged across all steps in the 1000 evaluation episodes. The latent and perceptual
state of the stone that the agent chose is recorded along with the activation of each unit in each
timestep. Note that there are 8 latent states that correspond to the 8 vertices of the cube, and 8
possible perceptual states as previously mentioned in all of the held-out episodes. In the plots,
we denote each state using a single number by binarizing its features. The top row shows the
activations of some LSTM units while the bottom row shows activations recorded from the output
the transformer.

Interestingly, we found distinct functional specialization between the transformer and the
LSTM units. Specifically, 15.6% of transformer units showed some understanding of the potion
pairs abstract concept. Specifically, each of those units had a positive activation for one potion
color and a negative activation for its opposite color (some samples shown in Figure 2), whereas
no LSTM units did. The LSTM units, on the other hand, were mostly selective to stone-reward
combinations. For instance, several units were only responsive when a specific set of stones had
either a positive or negative reward and an opposite activation otherwise irrespective of the actual
value or the stones’ visual features. This also shows some notion of abstraction since the agent
understands which stones it needs to deposit to the cauldron regardless of its exact representation.

However, there were no single units that were responsive to a particular perceptual state or any
single visual feature, nor were there units responsive to specific latent states except to the reward
associated with that state. This led us to conjecture that the model reduces the cubic structure of
the latent space to a two-dimensional form (i.e. a square), where each vertex correspond to one of
the four possible rewards. This is inline with the observation that the agent is unable to handle
bottlenecks in the underlying causal graph.

4 Discussion and Future Work

In this paper, we present an agent that is capable of meta-learning a set of abstract principles that
underpins the complexity of the Alchemy benchmark. Further, we present a battery of analytical
tools that can be used to test for specific pieces of abstract knowledge. Our design choices were
motivated by the fact that strong deep-RL agents were unable to solve this task (Wang et al., 2021),
thus we gradually simplified the problem in order to identify exactly where the bottleneck lies. To
that end, we reached some conclusions that can guide researchers in searching for better suited
architectures. Specifically, our experiments show that more efficient outer-loop exploration and an
architecture for handling positional output are required. We show as well that researchers with a
limited compute budget can use Symbolic Alchemy in order to analyze their deep-RL agents in a
principled manner.

Finally, we found evidence for single-unit representations of abstract variables such as potion
pairs, and functional dissociation between ‘cortical’ and ‘hippocampal’ units which were modeled
as an LSTM and transformer respectively. This connects with what’s been seen in recordings from
rodent and primate cortex (Wallis et al., 2001; Samborska et al., 2021; Mansouri et al., 2020). This
opens the way for future work to use meta-RL to carry out more detailed simulations of classic
neuroscience experiments to better understand the mechanisms underlying the observed results.
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A Appendix

A.1 Symbolic Alchemy

The Alchemy benchmark was proposed by Wang et al. (2021) to make fine-grained analysis and
interpretation of meta-RL agents possible while maintaining the complexity needed for interesting
conceptual abstractions to be learnt. Unlike othermeta-RL task distributions, Alchemy’s accessibility
allows us to compare our model’s performance against a Bayesian learner referred to as an ‘Ideal
Observer’. Wang et al. (2021) also develop a ‘Random Heuristic’ that we use as a reference for
evaluating our agent’s understanding of specific abstract principles. The task itself is divided into
episodes, each of which consists of 10 trials. In our experiments, the number of timesteps per trial
was set to 15 to speedup training.

Stones and Potions. The goal of the agent within each trial is to transform three stones into a
more valuable form – the value of which is tied to the stone’s perceptual features – by applying a
sequence of different potions on each of them. The agent can then collect the reward associated
with a stone by dropping it into a central cauldron. The stone’s appearance can change along
only one of three dimensions at a time: size, color and shape. Each potion on the other hand is
characterized by one of 6 hues that dictates the transformative effect it has on a specific stone
according to some ‘chemistry’ that is sampled from a structured generative process at the beginning
of each episode. There are 12 potions in each trial, each of which is consumed (i.e. can not be
re-used) once applied on a stone.

Chemistry. The chemistry dictates the causal structure that governs each episode as well as the
possible set of stone perceptual features that can occur. It can be visualized as a cube, where each
vertex correspond to a specific stone value in the latent space, which can be one of (-3, -1, +1, +15),
or a specific appearance in the perceptual space. The potion effects run along the edges of the cube
as shown in Figure 3. Edges can be missing, creating a bottleneck that the agent must pass through
to reach a high rewarding state. This may require passing through intermediate lower value states
first.

Abstract Principles. There are certain rules and constraints that span across episodes which makes
Alchemy a meta-learning benchmark. The agent is expected to learn to identify and exploit those
regularities in order to achieve high performance in the task. This includes:

• Consistency: Potions of the same color will always have the same effect on stones with the same
visual features within an episode.
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• Parallelism: Each potion color has the same direction of effect regardless of the other features
(e.g. a red potion will always change the color of a stone from blue to purple irrespective of the
size and shape of that stone).

• Missing Edges: Overlaid on that parallelism, some edges can be disabled for an episode. Therefore
once discovered the agent shouldn’t attempt to traverse that missing edge.

• Potion Pairs: Potions come in pairs with opposite effects (red/green, yellow/orange,
pink/turquoise). The agent should know those pairs since they are consistent across all episodes.
For example, if the effect of the orange potion is to increase the size of a stone, then the effect of
the yellow potion will be to decrease the size of the stone.

State and Action Spaces. In the input representation, each stone is represented by its three
perceptual features, its reward in the current latent state and whether it has been deposited into the
cauldron or not. For the potions, we use a modified representation from the one proposed by Wang
et al. (2021); instead of representing the state of each of the 12 potions as elements of a single vector,
we represent the remaining number of potions per hue. Therefore the state space is comprised of
a 21-dimensional vector. The action space is also modified in a similar manner, where the agent
chooses which color to apply to which stone, or whether to deposit a specific stone to the cauldron.
When a specific stone-color combination is chosen, a wrapper then randomly selects one of the
available potions with that color and apply it to the selected stone. Alternatively a no-op action
can be chosen, which makes the number of possible actions 22.

Rewards and Penalties. In addition to the rewards the agent receives whenever depositing a stone
into the cauldron, we found that penalizing the agent in three specific scenarios sped up the rate of
convergence considerably. Specifically, we gave a reward of −0.2 if the action taken results in a
null transition (i.e. does not have any effect on the stone) but given that it is not a no-op action. In
the second case, the agent was penalized with a reward of −1 whenever it chose to use a potion
hue that is not available (i.e. it should learn to never use a hue when its corresponding entry is
zero in the input representation) or a stone that has already been cached in the cauldron. Finally,
an additional penalty of −1 was given when the agent chose the same potion color consecutively
on the same stone.

A.2 Visualizing the Latent Space

In order to simplify the process of qualitatively debugging the agent’s behavior, we developed and
are releasing1 a tool for Symbolic Alchemy that visualizes the topology of the underlying causal
graph for a given episode. Overlaid on it are the positions of the stones in the latent space along
with arrows indicating the direction of effect of the available potions as shown in Figure 3. The
Ideal Observer’s belief about a particular potion color or edge is also indicated using the opacity of
the corresponding object. That way we can evaluate the agent’s actions with respect to the belief
state of an agent that has perfect understanding of the structure of the task.

A.3 Experimental Setup

The agent is trained using the synchronous version of the Advantage Actor-Critic (A2C) RL
algorithm (Mnih et al., 2016) with a batch-size of 8. The value coefficient was set to 𝛽𝑉 = 0.5
and the initial entropy coefficient to 𝛽𝐸 = 0.1 which was decayed in a linear fashion throughout
training. The encoder is a stack of 2 affine layers with 32 units each, and an ELU non-linearity
in-between (Clevert et al., 2016). The LSTM has 256 hidden units, while the transformer block
contains 4 attention heads with a dimensionality of 64. The MLP is similarly a stack of two affine
layers with 64 units each, with an ELU non-linearity in-between. The episodic memory operated

1https://github.com/bkhmsi/symbolic_alchemy_visualizer
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Figure 3: Visualizations of chemistries created using the Symbolic Alchemy Visualization Tool, which
we are releasing for public use. The coordinates on the cube’s vertices indicate the latent
state and thus reward of the stone in that position. Translucent arrows indicate that the
agent has not yet discovered the effect of that color. The stones are represented by a red,
blue and green spheres. The available potions are shown floating above the cube with their
corresponding color, and when a potion is consumed it will no longer be visible. In some
chemistries, edges of the graph may be missing as can be seen in the 2nd and 3rd snapshots.

with a maximum size of 150 entries, and was reset after each episode. We used the Adam optimizer
(Kingma and Ba, 2014) with an initial learning rate of 7.5𝑒 − 4. The learning rate was decayed
linearly from the start of training. The gradient was clipped at a maximum norm of 100. We found
that starting with a small discount factor of 𝛾 = 0.7 worked best. The resultant model was then
finetuned using a higher value (𝛾 = 0.95) after convergence. The number of unroll steps is 20. The
code is made open-source2.

A.4 Performance Results

Table 1 shows the performance of the different agents considered in this work as described in
section 3.1.

Table 1: Evaluation episode scores comparing the effect of the canonical representation (indicated
by an ‘o’) proposed by the Alchemy benchmark to the modified one (indicated by an ‘x’)
described in Section A.1. The VMPO result taken from (Wang et al., 2021). The no bottleneck
column indicate the average score of the evaluation episodes with no missing edges.

Agent Input Output Mem Score ± SEM Score
(w/o Mem)

No
Bottleneck

A2C EPN

x x x 272.85 ± 1.78 168.88 309.90
o x x 243.83 ± 2.21 171.59 300.79
o o x 156.34 ± 1.57 156.70 181.41
o o o 158.91 ± 1.60 153.40 182.10

VMPO o o - 155.40 ± 1.60 - -
Random Heuristic - - - 146.07 ± 1.55 - 172.11
Ideal Observer - - - 284.42 ± 1.59 - 313.31

A.5 Action Types

Similar to the analysis done in Wang et al. (2021), Figure 4 shows the number of times, throughout
the first and last trial, the agent applied a potion that worsened, improved or had no effect on the

2https://github.com/bkhmsi/alchemist
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value of the stone and the number of times the agent deposited a stone into the central cauldron as
a function of its reward. It can be seen that the A2C EPN agent almost never deposits a negative
reward stone and more importantly, it adapts its strategy throughout the course of the episode.
Concretely, in the first trial it performs a lot of exploratory actions by trying out potions that do
not have an effect on the stone (the orange area) while in the last trial it shifts towards a more
exploitative strategy by performing more actions that improved the value of the stone as it acquired
knowledge about the episode’s chemistry. This ability to adapt is indicative of good meta-learning
performance and is similar in behavior to what we see from the Ideal Observer.
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Figure 4: Comparing different action types throughout the first and last trial in a similar manner
to Wang et al. (2021). The A2C EPN agent shows analogous behavior to that of the Ideal
Observer (see Figure 5 in Appendix), indicating an ability to adapt strategies (exploration vs
exploitation) throughout the course of the episode.

Figure 5: The type of action that the Ideal Observer take throughout the first and last trial. It can be
seen that similar to the A2C EPN agent, it adapts its strategy across the episode.

Figure 6: The type of action that the Random Heuristic take throughout the first and last trial. The
agent’s strategy is the same in both trials demonstrating an inability to adapt strategies.
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A.6 Behavioral Tests Results

Figure 7 shows the results of the behavioral tests described in 3.2.
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Figure 7: Top: Behavioral results showing the agent’s lack of understanding of several abstract princi-
ples that span across episodes. In each plot, we report the number of times the agent took a
null transition that it should have avoided if it understood the corresponding concept. The
Ideal Observer is zero in all cases demonstrating perfect understanding of each principle.
Our agent performs significantly better than the Random Heuristic but still takes a lot of
actions where it could know better in the Parallelism and Potion Pairs analyses. Bottom-left:
The average episode score as a function of the number of missing edges for each agent.
Bottom-right: The percentage of episodes where the Idea Observer scores more than the
A2C EPN agent at a given trial.

Consistency. Here we count the number of times the agent applied a potion with color 𝑝 on a stone
with features ⟨𝑥,𝑦, 𝑧⟩ after observing that 𝑡 is a null transition. In other words, we have evidence
that the agent does not understand consistency if it applied a potion on a stone after observing
that this particular potion color has no effect on a stone with the same visual features earlier in the
episode.

Parallelism. In this test, we calculate the frequency in which the agent applied a potion with color
𝑝 on a stone with features ⟨𝑎, 𝑏, 𝑧⟩ for the first time after it observed that 𝑡 is not a null transition,
where 𝑧 is the other possible shape, assuming that 𝑝 is responsible for transforming the shape of
the stone. For example, suppose the agent observed a red potion transforming a large blue round
stone to pointy. Subsequently in the episode, it should never apply a red potion to any pointy stone,
including small or purple stones.

Missing Edges. The agent will show a lack of understanding of missing edges if it re-applied potion
𝑝 on a stone with the same latent state as the stone with ⟨𝑥,𝑦, 𝑧⟩ after observing that 𝑡 is a null
transition as a result of a missing edge. In other words, we compute the frequency in which the
agent attempted to transform a stone after ‘discovering’ that this color has no effect on the current
latent state due to a missing edge in the graph. Note that the agent does not have access to this
information, but must identify it by experimentation.
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Potion Pairs. To test whether the agent demonstrate an understanding that potions come in pairs
with opposite effects, we count the number of steps in which the agent made a null transition as a
result of applying a potion color 𝑝 that it has not seen the effect of before, but has observed the
effect of its opposite color previously in the episode (i.e. 𝑡 was not a null transition). For example,
an agent should know that yellow potions decreases the size of stones after only observing that an
orange potion transformed a small stone to a large one (without having to see the effect of a yellow
potion before). Therefore, it should never apply a yellow potion to a small stone as to avoid a null
transition.

A.7 Input, Output and Memory Representations

The canonical input and output representation are described in detail in Wang et al. (2021). The
canonical memory representation on the other hand stores each entry as [𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1] where 𝑠𝑡 is
the current input state, 𝑎𝑡 is a one-hot encoding of the executed action at timestep 𝑡 and 𝑠𝑡+1 is the
state at the following timestep that contains the transformed stone.
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