
Published as a conference paper at ICLR 2023

A PROOF OF THEOREM 1

We describe the proof of Theorem 1 in two major steps as follows. We will repeat some of the steps
in the sketch of the proof for completeness.

Step-1: By an “ input configuration,” we mean a certain subset of neurons that are active at a certain
layer of the unconditional “base” network. We represent input configurations by binary vectors where
“0” represents an inactive neuron, while “1” represents an active neuron. As an example, the input
configuration [1 0 1]T refers to a scenario where only the first and the third neurons at the layer is
active. We follow the convention that all components of the input vectors are “active” nodes.

Analogous to input configurations, “output configurations” are binary vectors that represent whether
neurons provide zero or non-zero outputs. For example, an output configuration of [1 1 0]T means
that only the first and the second neurons provide a non-zero output. At Layer 0, or the input layer,
we follow the convention that the output configuration represents whether the components of the
input are zero or non-zero.

For our purposes, the significance of input and output configurations is the following observation:
Suppose that, at Layer ` of an unconditional network, a particular input y0 provides the input
and output configurations IC` and OC`, respectively. In particular, we have OC0 = 1(y0 6= 0).
According to the neural network input-output relationship in (1), and the definition of input and
output configurations, we have the identity

IC` = 1
(
1(W` 6= 0)[OCT`−1 · · · OCT0]T 6= 0

)
, (6)

where 1(·) represents the indicator function, applied component-wise. In other words, knowing
the output configurations of preceding Layers 0, . . . , ` − 1, we can uniquely determine the input
configuration of Layer `. To see why (6) holds, note that some Neuron j at Layer ` is active (and thus
IC`,j = 1) if it admits at least one non-zero input from any one of the previous layers, multiplied by
a corresponding non-zero weight in W`. The indicator functions encode this criterion.

Exploiting the above observation that output configurations imply unique input configurations, the
first step of the proof is thus to construct what we call a “configuration tree.” The configuration
tree is a directed rooted tree, where nodes at Depth ` correspond to all possible sequences of output
configurations from neural network Layers 0, . . . , `− 1, which imply a unique input configuration at
Layer `. We only need to consider the sequences induced by the training set. We represent vertices of
the tree by the sequence of output configurations and the unique input configuration that is induced by
them (The inclusion of the induced input configuration to the vertex information is thus superfluous
and mainly to make the exposition clearer.). The only exception is the root of the tree, which is
represented by an all-1 vector of dimension p. This corresponds to the unique input configuration of
Layer 0 (all components of the input are considered “active.”). Edges between vertices represent an
output configuration that maps the sequence of output configurations to an input configuration.

We construct the configuration tree by showing the inputs to the neural network one by one. We
begin with the first element x1 of the dataset. The corresponding input configuration IC0 = [1 · · · 1]T

at Layer 0 is already available on the tree as the root node. As the next step, we determine the
output configuration OC0 = 1(x1 6= 0) at Layer 0. Knowing the output configuration OC0, we can
uniquely determine the input configuration IC1 = 1(1(W1 6= 0)OC0 6= 0) at Layer 1. We add
(OC0, IC1) as a new vertex to Depth 1 of the tree. We create an edge with label OC0 to connect the
root node IC0 to (OC0, IC1). We continue by finding the output configuration at Layer 1. Knowing
the output configurations OC1 and OC0, we can uniquely determine the input configuration IC2 at
Layer 2, which we add as the vertex (OC1, OC0, IC2) to Depth 2. We create an edge with label OC1

to connect (OC0, IC1) to (OC1, OC0, IC2). We continue in the same manner for all subsequent layers,
and then for all samples in the dataset.

The formal construction of the configuration tree is provided in Algorithm 2. Edges are defined as
triplets, where the first two components are the endpoints, and the last component is the edge label.

12

Published as a conference paper at ICLR 2023

Algorithm 2 An algorithm to construct the configuration tree

1: V ← {[1 · · · 1]T }. . Initialize the tree with a root node but no edges.
2: E ← ∅.
3: for i = 1 to n do
4: y0 ← xi .A dataset input to the neural network.
5: OC−1 = ∅ .A convention specific to this algorithm.
6: IC0 ← [1 · · · 1]T . .All input components are active by convention.
7: for ` = 1 to L do
8: y`−1 ← [yT`−1 · · · yT0]T . . Outputs of all Layers < ` are inputs to Layer `.
9: OC`−1 ← 1(y`−1 6= 0). . Output configurations of all inputs to Layer `.

10: IC` ← 1(1(W` 6= 0)OC`−1 6= 0). . Same formula as (6).
11: V ← V ∪ {(OC`−1, IC`)}.
12: E ← E ∪ {(OC`−2, IC`−1), (OC`−1, IC`), OC`−1)}.
13: y` ← φ(W`y).
14: OC` ← 1(y` 6= 0).
15: end for
16: end for

xi

Figure 3: An example network for demonstrating the construction of the configuration tree.

Example 1. As an example of the construction of the configuration tree, consider the network in Fig.
3 with one dimensional inputs and two dimensional outputs. We consider a dataset with two samples
n = 2. Suppose that the first input x1 6= 0 provides the input configurations [1 1 1], [1 1 0], [1 0], and
output configurations [1 0 1], [1 0 0], [1 0], at Layers 1, 2, 3, respectively. Then, after processing x1,
the tree will consist of all blue/white nodes in Fig. 4 and the edges between them. Note that the
last components of all vertices represent the input configurations, while edges represent the output
configurations. Hence, the node 101, 1, 110 at Depth 2 of the tree represents the scenario where only
the first and the second neurons in the second layer are active (have at least one non-zero input).
Since there are 2 active neurons, there are 4 possible output configurations: 000, 010, 011, and 110.
In particular, the output configuration 010 implies an input configuration of 11 at Depth 3 (Layer 3).
This is because, Node 2 of Layer 2 is connected to both neurons at Layer 3, and a non-zero output
of this neuron implies a non-zero input to Layer 3 neurons. Now, suppose the second input x2 6= 0
provides the input configurations [1 1 1], [0 1 0], [1 1], and output configurations [0 0 1], [0 1 0], [1 1],
at Layers 1, 2, 3, respectively. Then, the construction of the tree is completed as shown in Fig. 4.

Step-2: We now construct the conditional network itself out of the configuration tree. In fact, the
conditional network will follow the same structure as the configuration tree, traversing from the root
of the tree to one of the leaves as we calculate the output for a given input to the neural network.
As in the case of the configuration tree, we calculate the layer outputs sequentially one at a time.
First, we find the output of Layer 1. Given any input y0 to the network, the input configuration IC0

at Layer 0 is the all-one vector of dimension p. The conditional network first compares against all

1 1,111
101,1,110 100,101,1,10

100
101

001,1,010 010,001,1,11
010

0011

Figure 4: One configuration tree corresponding to the network in Fig. 3.

13

Published as a conference paper at ICLR 2023

Algorithm 3 Two nested
binary conditions

1: if u1 = 0 then
2: if u2 = 0 then
3: ...
4: else
5: ...
6: end if
7: else
8: if u2 = 0 then
9: ...

10: else
11: ...
12: end if
13: end if

possible output configurations that are found at the configuration tree at
Layer 0, which correspond to edges connected to the root node. Since the
input dimension is p, this can be done through p nested binary conditions.
Moreover, p operations are sufficient to reach the “leaves” of p nested
conditions. An example of this step is provided in Algorithm 3 for a two-
dimensional input [u1u2]T . In general, at each of the 2p leaves of nested
conditions, we uniquely know the output configuration OC0 at Layer 0, as
well as the input configuration IC1 at Layer 1 via the configuration tree.
At Layer 1, we only need to calculate the outputs of the neurons indicated
by the input configuration IC1, since other neurons are guaranteed to
have all-zero inputs and thus provide zero output. This yields the output
y1 of the entire Layer 1. At this stage, we have obtained the input y1 to
the second layer (possibly in addition to y0, the skip connections from
inputs, that we already know), and the input configuration IC1 at Layer
1. We proceed recursively in the same manner described above: That is
to say, |IC1| nested binary conditions are utilized to determine the output
configuration OC1. Together with OC0, this yields the input configuration
IC2 at Layer 2 as well as the Layer 2 outputs y2. Outputs for all subsequent layers are determined in
a similar fashion.

Algorithm 4 Construction of the conditional network out of the configuration tree. In the algorithm,
x is the input to the neural network. Outputs are provided in the variable yL.

1: Replace the root node with y0 ← x .
2: Replace any edge of the form ((OC`−2, IC`−1), (OC`−1, IC`), OC`−1) with the conditioning state-

ment

If 1(y`−1JIC`−1K 6= 0) = OC`−1JIC`−1K, then (7)

3: Replace any vertex of the form (OC`−1, IC`) with

y`JIC`K = φ(W`JIC`, OC`−1Ky`−1JOC`−1K) , (8)

where y`−1 , [yT`−1 · · · yT0]T .

The construction of the conditional network is formally stated in Algorithm 4. In the description of
the algorithm, for any vector a = [a1 · · · an], and binary vector b = [b1 · · · bn] ∈ {0, 1}n, we use the
notation that aJbK to represent the ‖b‖1-dimensional vector consisting only of components ai such
that bi = 1. Here, ‖ · ‖1 is the 1-norm, counting the number of non-zero components for the case of a
binary vector. Likewise, for a matrix W , the notation W Jb1, b2K represents the ‖b1‖1 × ‖b2‖1 matrix
where we only consider those rows and columns of W as indicated by the non-zero components of b1
and b2, respectively. For example, [6, 9, 7]J1, 0, 1K = [6, 7], and [3 6 8

1 4 7]J[0, 1], [0, 1, 1]K = [4, 7]. Note
that the conditioning statements in Line 2 are actually implemented via nested binary conditions as
described in Algorithm 3. We have presented the nested conditionings in their compact form shown
in Line 2 for a clearer exposition.

Let us now show that the conditional network as constructed in Algorithm 4 satisfies the statement of
the theorem. In particular, it provides the same output as the unconditional network over the dataset.
This can be shown by induction. Suppose the network manages to correctly calculate all outputs and
input/output configurations up to and including Layer ` − 1 for a certain input with the exception
of OC`−1, which is yet to be determined. At the conditional network graph, we are then “at the end
of” vertex (OC`−2, IC`−1), having just executed (7) for `← `− 1. A combination of (7) and (8) will
now determine OC`−1, IC`, and y`. Suppose that the true values for these variables are O, I, and y,
respectively. We will thus show that OC`−1 = O, IC` = I and y` = y. We first note that in (7), we
will have an edge with OC`−1 = O. This follows as the conditional network is constructed out of the
configuration tree, which itself is constructed from the dataset. Since O exists on the configuration
tree, so it should on the conditional network tree. The conditional network then transitions to (8) with
OC`−1 = O and IC` = I. Here, the input configuration is correctly calculated as it is unique given
previous output configurations. It follows that (8) is calculated correctly so that y` = y.

14

Published as a conference paper at ICLR 2023

We now evaluate the computational complexity. Note that, Line 2 of Algorithm 4 can be implemented
via |IC`−1|1 nested binary conditions, requiring |IC`−1|1 operations. We now evaluate the cost of
Line 3, where only the outputs of active nodes of Layer ` are calculated. Let a` denote the number of
active nodes at Layer `. Line 3 performs at most a` multiplications and a` additions to calculate the
local fields of these active neurons. Calculating the active neuron outputs through ReLU activation
functions require a further |IC`|1 comparisons or operations. Hence, Line 3 requires 2a` + |IC`|1
operations at most. Traversing from the root to a leaf of the computation graph, the total number of
operations is at most p+ 2

∑L
`=1(a` + |IC`|1). Since, at each layer, there should be as many active

neurons as there are active weights, we have |IC`|1 ≤ a`. Substituting this estimate to the previous
bound, we obtain the same upper bound in the statement of the theorem. This concludes the proof of
Theorem 1.

One aspect of the conditional network, as constructed in Algorithm 4 is that certain inputs that do
not belong to the dataset may end up in conditions for which no output is defined. This occurs when
one of the bins or vertices induced by the nested binary conditions in Line 2 (and as exemplified in
Algorithm 3) remains empty. Since the main focus of this work is memorization of a dataset, we are
not concerned with the network operation for such inputs. Nevertheless, the network operation can
easily be generalized so that the output is well-defined for any input, e.g. simply by removing the
binary condition with one or two empty bins, and reconnecting any children of the removed condition
to the condition’s parent.

B PROOF OF THEOREM 2

We explicitly construct the neural network that achieves the performance as provided in the theorem
statement. Our construction relies on several steps as described in the following:

Step-1: Let u = [u1 u2 · · ·uq]T be the input to the neural network, where u1 = 1. Let ū =
[ū1 ū2 · · · ūq]T represent the output of the first layer. First, we translate the dataset vectors such that
every component of the translated vectors is positive. We also provide a skip connection for the
constant input 1 at the first component. For the former purpose, given j ∈ {1 . . . , p}, let xij denote
the jth component of dataset pattern xi. We define the constant

M = 1 + max
i∈{1,...,n}

max
j∈{1,...,p}

|xij |. (9)

The input-output relationships of the first layer is then expressed as

ū1 = u1 = 1. (10)

ūj = φ

([
u1

uj

]T [M
1

])
, j = 2, . . . , q. (11)

In particular, if u = x̄i for some i ∈ {1, . . . , n}, then

ūj = φ(uj +M) = uj +M, j = 2, . . . , q. (12)

The last equality follows as uj +M = xij +M is positive by the definition of M . Hence, for the
dataset members, the output after the first layer of neurons is an additive translation by the vector
[0M · · ·M]T . There are p = q − 1 active neurons in the first layer.

Step-2: For a clearer exposition, we first describe the step through an example. We follow a divide
and conquer strategy resembling a binary search, which is illustrated in Fig. 5. Suppose that the inputs
are two-dimensional p = 2 and the outputs are scalars q = 1. In Fig. 5a, we show the second and the
third components [ū2 ū3]T of 7 dataset patterns after the first layer, together with the indices of the
patterns. We also show a line wT11ū = 0 that separates the set of points to two subsets such that one
side of the line contains d 7

2e = 4 points, and the other side of the line contains the remaining 3 points.
We will formally show later that, given m points, a separation where one side of the hyperplane
contains exactly dm2 e of the points is always possible in general.

Once an even division or separation is achieved, the next step is to design what we call a “switching
network”. Switching networks are small two-layer neural networks that can be parametrized by any
number of points greater than 1. Let 0q denote the q-dimensional all-zero column vector. Roughly
speaking, for the scenario in Fig. 5a, the corresponding switching network maps the input ū ∈ R3 to

15

Published as a conference paper at ICLR 2023

ū2

ū3

• 1

• 7

• 5

• 2

• 3

• 4

• 6

wT11ū = 0

(a) Dividing a set of point to two equal subsets.

ū2

ū3

• 1

• 7

• 5

• 2

• 3

• 4

• 6

wT11ū = 0

wT21ū = 0 wT32ū = 0

wT22ū = 0
wT33ū = 0

wT31ū = 0

(b) Continued divisions until reaching singletons.

Figure 5: The divide and conquer strategy. This figure is a duplicate of Fig. 1 in order to make the
proof easier to follow.

[ū03
] ∈ R6 if ū remains “above” the line wT11ū = 0, and to [03

ū] if ū remains “below” the line.2 We
can now feed the first 3 components of the output of the switch to one subnetwork, and the last 3
components to another subnetwork. The two subnetworks are disconnected except that they share
different components of the same output as inputs. The first subnetwork follows the same divide and
conquer strategy with a switch, but only for the four points that remain over the line wT11ū = 0. The
second subnetwork similarly processes the three points that remain under the line wT11ū = 0. The
goal of the all-zero outputs is to deactivate one subnetwork when it is no longer relevant to process a
given input. Subnetworks have “subsubnetworks” and so on until one arrives at a singleton dataset
sample at each partition, as shown in Fig. 5b.

Before proceeding to the next step, we formalize the constructions in Step 2 via the following lemma.
Lemma 1. For m ≥ 2, let a1, . . . , am ∈ Rq be distinct input patters whose first components equal 1.

[i] There exists w ∈ Rq , such that

|{i : wTai < 0}| = dm2 e, (13)

|{i : wTai > 0}| = m− dm2 e. (14)

[ii] Suppose further that the components of ais are all non-negative. Let w ∈ Rq satisfy (13)
and (14). Let 0q represent the q-dimensional all-zero vector. There is a two-layer network
S : Rq → R2q that satisfies the input-output relationships

S(ai) =

[
ai
0q

]
, wTai < 0,[

0q
ai

]
, wTai > 0.

, i = 1, . . . ,m. (15)

The network has 2q + 2 neurons. Two of the 2q + 2 neurons have q weights, and the
remaining 2q neurons have 2 weights.

Proof. Let us first prove [i]. Let āi = [ai,2, . . . , ai,q]
T denote the (q − 1)-dimensional vector

consisting of all but the first component of ai (which equals 1). First, we show the existence of
w̄ ∈ Rq−1 such that w̄T āi 6= w̄T āj , ∀i 6= j, or equivalently

w̄T (āi − āj) 6= 0, ∀i 6= j. (16)

Since the input patterns ais are distinct, so are āis, and thus āi − āj are non-zero vectors. It follows
that any unit norm w̄ sampled uniformly at random on {x ∈ Rq : ‖x‖ = 1} satisfies (16) with
probability 1. Let us now order the resulting (w̄T āi)s in ascending order as

w̄T āi1 < · · · < w̄T āidm
2
e < w̄T āidm

2
e+1

< · · · < w̄T āim , (17)

2More precisely, there will be a small margin around the separating hyperplane where the aforementioned
input-output relationships may fail. It turns out that this technical complication poses no issues for the patterns
that we wish to memorize, as the margin can be made arbitrarily small.

16

Published as a conference paper at ICLR 2023

for some permutation i1, . . . , im of 1, . . . ,m. We can now tune the bias as

¯̄w , −1

2

(
w̄T āidm

2
e + w̄T āidm

2
e+1

)
. (18)

The effect of the bias is the ordering (note the zero in the middle)

¯̄w + w̄T āi1 < · · · < ¯̄w + w̄T āidm
2
e < 0 < ¯̄w + w̄T āidm

2
e+1

< · · · < ¯̄w + w̄T āim . (19)

Therefore, the choice w = [¯̄w
w̄] satisfies conditions (13) and (14). This concludes the proof of [i].

We now prove [ii]. Let

C1 , 1 + max
i∈{1,...,m}

max
j∈{1,...,q}

|aij |, (20)

C2 , min
i∈{1,...,m}

|wTai|. (21)

Let v = [v1 · · · vq]T ∈ Rq represent an input to the neural network S that we shall construct. Also,
let v+ = [v+

1 · · · v+
q]T and v− = [v−1 · · · v−q]T ∈ Rq denote the first and the last q components of the

2q-dimensional output of S. We thus have S(v) = [v
+

v−
], and set

v+
j = φ

([
vj
y+

]T[1

− C1

C2

])
, v−j = φ

([
vj
y−

]T[1

− C1

C2

])
, j ∈ {1, . . . , q}, (22)

where y+ = φ(wT v) and y− = φ(−wT v). Let us now verify (15). Consider some index i with
wTai < 0, and suppose v = ai. For any j ∈ {1, . . . , q}, we have

v+
j = φ(vj − C1

C2
y+) = φ(vj) = φ(aij) = aij . (23)

The last equality holds as the components of ai are assumed to be all non-negative. Also,

v−j = φ(vj − C1

C2
y−) = φ(aij − C1

C2
|wTai|) ≤ φ(aij − C1) = 0. (24)

Inequality follows as |w
T ai|
C2

≥ 1 and φ is monotonic. Since v−j ≥ 0 obviously holds, we have
v−j = 0. This proves the case wTai < 0 in (15). The remaining case wTai > 0 can be verified in a
similar manner. This concludes the proof of [ii], and thus that of Lemma 1 as well.

Step-3: We can now proceed to describe the full network architecture, as shown in Fig. 6 for the
example in Step 2. The first layer of the network is an additive translation by the vector [0M · · ·M]T ,
and is explained in Step 1 above. We use the notation T to denote the translation, which is followed
by a sequence of switches as described in Step 2. In particular, Sij provides the outputs of ū and 03

to its top and bottom branches, respectively, if its input ū remains above the line defined by wij in
Fig. 5b. By construction, the neurons on a given path of switches is activated for a unique dataset
member. For example, the path S11,S21,S32 is activated only for the dataset member x6. The path
of switches that correspond to some xi is followed by a ReLU neuron whose weights satisfy the
property that φ(γTi ¯̄xi) = di, where ¯̄xi is the output of the first layer when the input to the network is
x̄i. Since the first component of ¯̄xi equals 1 for any i, one can simply set the first component of γi to
be equal to di, and the rest of the component of γi to be equal to zero. The final layers of the network
simply adds all the outputs from the γi-neurons.

In the figure, we also show the induced signals on the branches when the input is u = x̄6 as an
example. Note that only the block T, switches S11,S21,S32, the neuron with weight γT6 , and the a
subset of the summation neurons remains active. Most of the neurons of the network are deactivated
through zero signals. We also note that the desired output signal d6 is obtained.

The construction generalizes to an arbitrary dataset of cardinality n in the same manner. The only
difference is that, in order to support r-dimensional desired outputs as stated in the theorem, we
need to use r ReLU units in place of each γi to reproduce the r components of the desired output, as
opposed to a single ReLU unit in the example above. Also, the final summation unit will consist of r
sub-summation units operating on individual components. Formally, the first layer for the general case
is the translation T as before. Next, dlog2 ne layers of switches arranged on a binary tree structure

17

Published as a conference paper at ICLR 2023

= [1
x6

]

u = x̄6 T S11
ū = ¯̄x6

S21

S22

¯̄x6

0

S32

S31

S33

0

¯̄x6

0

γ2

γ7

γ6

γ3

γ5

γ1

γ4

0

0

¯̄x6

0

0

0

0

∑
d6

0

0
d6

0

0

0

0

Figure 6: An example network architecture for the achievability result. The block T represents the
transformation in Step 1. Blocks Sij are the routing switches. Blocks γi represent ReLU neurons
with weights γi, and the

∑
block represents a ReLU neuron with all-one weights. This figure is a

duplicate of Fig. 2 in order to make the proof easier to follow.

act on the translated inputs, forming n leaves as the output, where each leaf has the same dimension
as the input. Let h1, . . . , hn denote the feature vectors produced at the leaf nodes after the switches.
By Lemma 1, and a rearrangement of indices, we can guarantee that for every i, if the network input
is x̄i, then hi = ¯̄xi and hj = 0, ∀j 6= i. Here, ¯̄xi = T([1 xTi]T), as defined in Fig. 6. Each leaf is
then followed by a single-layer network that can map ¯̄xi to its corresponding desired output vector
di. Specifically, there exists Ui such that di = φ(Ui ¯̄xi). Indeed, since

∑
k ui,j,k ¯̄xi,k = di,j has to be

satisfied, one can pick ui,j,k = 0, k 6= 1 and ui,j,1 = di,j/¯̄xi,1 = di,j , where the last equality holds
as ¯̄xi,1 = 1 by construction. The overall network output is the accumulation of the outputs of the Ui-
neurons, and is given by f(xi) = φ(

∑n
i=1 φ(Uihi)). Let us show that all input-output relationships

are satisfied so that the claim f(x̄i) = di, ∀i in the statement of the theorem holds. If the input is x̄i,
we have hi = ¯̄xi and hj = 0, j 6= i, by construction. As a result, f(xi) = φ(φ(Ui ¯̄xi)) = φ(di) = di,
as desired. The last equality holds as the components of di are assumed non-zero in the statement of
the theorem (A ReLU network cannot provide a negative output.).

Let us now calculate the number of active neurons and weights when the input belongs to any member
of the dataset. The block T always remains active and consists of q− 1 neurons with weight 2. There
are at most dlog2 ne active switches per input. Each switch contains 2q + 2 neurons with 6q weights
total. There is one active block γi consisting of r neurons with q weights each. Finally, the sum unit
has r active weights. Hence, an upper bound on the total number of active neurons are given by

q − 1 + (2q + 2)dlog2 ne+ r + 1 = 2(q + 1)dlog2 ne+ q + r (25)
∈ O(r + q log n), (26)

and an upper bound on the number of active weights can be calculated to be

2(q − 1) + 6q(2q + 2)dlog2 ne+ rq + r = 12q(q + 1)dlog2 ne+ (r + 2)q + r − 2 (27)

∈ O(rq + q2 log n). (28)

This concludes the proof of the theorem.

18

