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Appendix for A Provably Robust Algorithm for Differentially
Private Clustered Federated Learning

A NOTATIONS

Table 1: Used notations

n number of clients, which are indexed by i
xij , yij j-th data point of client i and its label
Di, Ni local train set of client i and its size
Di,aug augmented local train set of client i
Be,ti the train data batch used by client i in round e and at the t-th gradient update
bei batch size of client i in round e: |Be,ti | = bei
b1i batch size of client i in the first round e = 1
b>1
i set of batch sizes of client i in the rounds e > 1
ϵ, δ desired DP privacy parameters
E total number of global communication rounds in the DPFL system, indexed by e
θe
m model parameter for cluster m, at the beginning of global round e
K number of local train epochs performed by clients during each global round e
h predictor function, e.g., CNN model, with parameter θ
ℓ cross entropy loss
s(i) the true cluster of client i
Re(i) the cluster assigned to client i in round e
θe,0
i the model parameter passed to client i at the beginning of round e to start its

local training
∆θ̃e

i the noisy model update of client i at the end of round e, starting from θe,0
i

σe2

i conditional variance of the noisy model update ∆θ̃e
i of client i: Var(∆θ̃e

i |θ
e,0
i )

µ∗
m(b1) the center of the m-th cluster (when all clients use batch size b1 in the first

round)
Σ∗

m(b1) the covariance matrix of the m-th cluster (when all clients use batch size b1 in
the first round)

α∗
m the prior probability of the m-th cluster

B EXPERIMENTAL SETUP

B.1 DATASETS

Data split: We use three datasets MNIST, FMNIST and CIFAR10, and consider a distributed
setting with 21 clients. In order to create majority and minority clusters, we consider 4 clusters with
different number of clients {3, 6, 6, 6} (21 clients in total). The first cluster with the minimum number
of clients is the “minority" cluster, and the last three are the “majority" ones. The data distribution
P (x, y) varies across clusters. We use two methods for making such data heterogeneity: 1. covariate
shift 2. concept shift. In covariate shift we assume that features marginal distribution P (x) differs
from one cluster to another cluster. In order to create this variation, we first allocate samples to all
clients in an uniform way. Then we rotate the data points (images) belonging to the clients in cluster
k by k ∗ 90 degrees. For concept shift, we assume that conditional distribution P (y|x) differs from
one cluster to another cluster, and we first allocate data samples to clients in a uniform way, and flip
the labels of the points allocated to clients: we flip yij (label of the j-th data point of client i, which
belongs to cluster k) to (yij + k) mod 10, The local datasets are balanced–all users have the same
amount of training samples. The local data is split into train and test sets with ratios 80%, and 20%,
respectively. In the reported experimental results, all users participate in each communication round.
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Table 2: CNN model for classification on MNIST/FMNIST datasets

Layer Output Shape # of Trainable Parameters Activation Hyper-parameters

Input (1, 28, 28) 0
Conv2d (16, 28, 28) 416 ReLU kernel size =5; strides=(1, 1)
MaxPool2d (16, 14, 14) 0 pool size=(2, 2)
Conv2d (32, 14, 14) 12,832 ReLU kernel size =5; strides=(1, 1)
MaxPool2d (32, 7, 7) 0 pool size=(2, 2)
Flatten 1568 0
Dense 10 15,690 ReLU

Total 28,938

B.2 MODELS AND OPTIMIZATION

We use a simple 2-layer CNN model with ReLU activation, the detail of which can be found in
Table 2 for MNIST and FMNIST. Also, we use the residual neural network (ResNet-18) defined in He
et al. (2015), which is a large model. To update the local models allocated to each client during each
round, we apply DPSGD (Abadi et al., 2016) with a noise scale z which depends on some parameters,
as in Equation (2)

Table 3: Details of the experiments and the used datasets in the main body of the paper. ResNet-18
is the residual neural networks defined in He et al. (2015). CNN: Convolutional Neural Network
defined in Table 2.

Datasets Train set size Test set size Data Partition method # of clients Model # of parameters

MNIST 48000 12000 cov. shift {3, 6, 6, 6} CNN 28,938
FMNIST 50000 10000 cov. shift {3, 6, 6, 6} CNN 28,938
CIFAR10 50000 10000 cov. and con. shift {3, 6, 6, 6} ResNet-18 11,181,642

B.3 DP PARAMETERS

For each dataset, 5 different values of ϵ from set {2, 3, 4, 5, 10} are used. We fix δ for all experiments
to 10−4. We also set the clipping threshold c equal to 3, as it results in better test accuracy for
the considered datasets, as reported in (Abadi et al., 2016). We use the Renyi DP (RDP) privacy
accountant (TensorFlow privacy implementation) during the training time. This accountant is able to
handle the difference in the batch size between the first round e = 1 and the next rounds e > 1 by
accounting the composition of the corresponding heterogeneous private mechanisms.

B.4 ALGORITHMS TO COMPARE AND TUNING HYPERPARAMETERS

We compare our RC-DPFL algorithm, which benefits from robust clustering, with four baseline
algorithms, including: 1) “DPFedAvg" (Noble et al., 2021), which learns one global model for all
clients 2) An extension of the IFCA algorithm (Ghosh et al., 2020) to DPFL systems, which we
call “f-CDPFL" 3) An extension of the gradient based clustering algorithm (algorithm 1 in (Werner
et al., 2023)) to DPFL systems, which we call “KM-CDPFL" 4) An oracle algorithm, which has the
knowledge of the true underlying clients’ clusters, which we call “O-CDPFL". For each algorithm
and each dataset, we find the best learning rate from a grid: the one which is small enough to avoid
divergence of the DP federated optimization, and results in the lowest average loss (across clients) at
the end of FL training on a “validation set" with size 10, 000 samples. Here are the grids we use for
each dataset:

• MNIST: {1e-3, 2e-3, 5e-3, 1e-2};

• FMNIST: {1e-3, 2e-3, 5e-3, 1e-2};

• CIFAR10: {1e-3, 2e-3, 5e-3, 1e-2}.
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B.5 GAUSSIAN MIXTURE MODEL

We use the Gaussian Mixture Model of Scikitlearn, which can be found here:
https://scikit-learn.org/dev/modules/generated/sklearn.mixture.
GaussianMixture.html. The GMM model has three hyper-parameters:

1) parameter initialization, which we set to “k-means++". This is because this type of initialization
leads to both low time to initialize and low number of EM iterations for the GMM to converge

2) Type of the covariance matrix, which we set to “spherical", i.e., each component has a
diagonal covariance matrix with a single value as its diagonal elements. This is in accordance with
Equation (18) and that we know the covariance matrices should be diagonal.

3) Finally, the number of components (clusters) is either known or it is unknown. In the latter case, we
have explained in Appendix F.2 how we can find the true number of clusters by using the confidence
level (MSS) of the GMM model.

B.6 HYPERPARAMETERS OF THE RC-DPFL

As explained in the paper, RC-DPFL has four hyperparameters, which we know how to set, as
explained in Section 4.4:

1) b1i is set locally by clients to Ni (their dataset size), i.e., full batch size for easier clustering at the
end of the first round

2) b>1
i , which is the batch size used during the rounds e > 1, and has to be set to a small value, as

observed in Figure 3 right, and as explained in Appendix F.1. As observed in Figure 10, RC-DPFL is
not sensitive to this parameter, as long as a small value is chosen for it. For the results in the paper,
we have set b>1

i = 32

3) Ec which is the time of changing the clustering strategy, and as explained in Section 4.4, it has to
be related to the uncertainty level (MPO) of the learned GMM such that Ec decreases as MPO of the
learned GMM increases. In our experiments, we have used Ec = (1 − MPO)E2 . In this way, if the
learned GMM is uncertain about its clusterings, RC-DPFL does trust it for many rounds and instead,
uses loss-based hard clustering from the early rounds by using a smaller Ec. Therefore, RC-DPFL
gradually reduces to the loss-based clustering method in the baseline “f-CDPFL" as the MPO of the
learned GMM increases.

4) Finally, if the true number of clusters M is not known, we can find it by using the very intuitive
method explained in Appendix F.2.

Therefore, all the hyperparameters of RC-DPFL can be set efficiently and easily.

C EXAMPLES

In this section, we explain an example to elaborate that why clustering clients based on their losses
(model updates) is prone to errors in the first (last) rounds. For example, consider Figure 7, where
there are M = 2 clusters (red and blue) and n = 4 clients. The clients in the red cluster have loss
functions f1(θ) = 4(θ + 6)2 and f2(θ) = 4(θ + 5)2 with optimum cluster parameter θ∞1 = −5.5.
Also, the the clients in the blue cluster have loss functions f3(θ) = 4(θ− 5)2 and f4(θ) = 4(θ− 6)2

with optimum cluster parameter θ∞2 = 5.5. Clustering algorithms, which cluster clients based on
their loss values on clusters’ models, are vulnerable to model initialization. For example, in Figure 7,
if we initialize the clusters’ parameters with θ01 = −11 and θ02 = 0 (shown in the figure), all four
clients will initially select cluster 2, since they have smaller losses on its parameter. At θ02 = 0, the
average of clients’ gradients (model updates) is zero, so all clients will remain stuck at θ02 and will
always select cluster 2.

On the other hand, clustering clients based on their model updates (gradients) (Werner et al., 2023;
Briggs et al., 2020; Sattler et al., 2019) have clearly issues. One of these issues appears after some
rounds of training. For instance, even if we assume these algorithms can initially cluster clients
“perfectly" in each round e, the clients’ model updates (gradients) will approach zero as the clusters’
models converge to their optimum parameters. Hence, clients from different clusters may appear to
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Figure 7: Loss-based clustering algorithms miscluster in the initial rounds, due to model initialization.
Also, even with the assumption of perfect clustering of clients in the first rounds, clustering algorithms
based on gradients (model updates) lead to clustering errors in the last rounds, due to the gradients
approaching to zero.

belong to the same cluster, which results in clustering mistakes. For example, as shown in Figure 1,
right, let us assume after T rounds of “correct" clustering of clients, the clusters’ parameters get to
θT1 = −4.5 and θT2 = 5.5 (shown in the figure). At this parameters, clients 1 and 2 (which have been
“correctly" assigned to cluster 1 so far) will have gradients f ′1(θ

T
1 ) = 12 and f ′2(θ

T
1 ) = 4. Similarly,

clients 3 and 4 (which have been “correctly" assigned to cluster 2 so far) will have f ′3(θ
T
2 ) = 4

and f ′4(θ
T
2 ) = −4. We see that f ′2 is closer to f ′3 and f ′4 than to f ′1, and in the next round it will

wrongly be assigned to wrong cluster 2. This happens while the clients are clearly distinguishable
based on their losses, as some progress in training has been made after T rounds: f1(θT1 ) = 9, while
f1(θ

T
2 ) = 232, which clearly means that client 1 correctly belongs to cluster 1. Therefore, after

making some progress in training the clusters’ models, it makes more sense to use a loss-based
clustering strategy than using a strategy based on clients’ gradients (model updates).

D PROOFS

Lemma 4.1. Let us assume θe,0
i is the model parameter that client i is assigned at the beginning of

round e. At the end of round, the client generates the noisy DP model update ∆θ̃e
i (b

e
i ) after K local

epochs with step size ηl. The amount of noise in the resulting model update can be found as:

σe2

i (bei ) := Var(∆θ̃e
i (b

e
i )|θ

e,0
i ) ≈ K ·Ni · η2l ·

pc2z2i (ϵ, δ, b
1
i , b

>1
i , Ni,K,E)

be
3

i

. (2)

Proof. The proof is restated from (Malekmohammadi et al., 2024). We consider two illustrative
scenarios:

Scenario 1: the clipping threshold c is effective for all samples in a batch: in this case we
have: ∀j ∈ Be,ti : c < ∥gij(θ)∥. Also, we know that the two sources of randomness (i.e. stochastic
and Gaussian noise) are independent, thus their variances can be summed up. Let us assume that
E[ḡij(θ)] = Gi(θ) for all samples j. From Equation (1), we can find the mean of each batch gradient
g̃e,ti (θ) (of client i in round e and gradient step t) as follows:

E[g̃e,ti (θ)] =
1

bei

∑
j∈Be,t

i

E[ḡij(θ)] =
1

bei

∑
j∈Be,t

i

Gi(θ) = Gi(θ). (6)
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Also, from Equation (1), we can find the variance of each batch gradient g̃e,ti (θ) (of client i in round
e and gradient step t) as follows:

σ2
i,g̃(b

e
i ) := Var[g̃e,ti (θ)] = Var

[
1

bei

∑
j∈Be,t

i

ḡij(θ)

]
+
pσ2

i,DP

be
2

i

=
1

be
2

i

(
E
[∥∥∥∥ ∑

j∈Be,t
i

ḡij(θ)

∥∥∥∥2]− ∥∥∥∥E[ ∑
j∈Be,t

i

ḡij(θ)

]∥∥∥∥2)+
pc2z2i (ϵi, δi, b

1
i , b

>1
i , Ni,K,E)

be
2

i

=
1

be
2

i

(
E
[∥∥∥∥ ∑

j∈Be,t
i

ḡij(θ)

∥∥∥∥2]− ∥∥∥∥ ∑
j∈Be,t

i

Gi(θ)

∥∥∥∥2)+
pc2z2i (ϵi, δi, b

1
i , b

>1
i , Ni,K,E)

be
2

i

=
1

be
2

i

(
E
[∥∥∥∥ ∑

j∈Be,t
i

ḡij(θ)

∥∥∥∥2]︸ ︷︷ ︸
A

−be
2

i

∥∥Gi(θ)
∥∥2)+

pc2z2i (ϵi, δi, b
1
i , b

>1
i , Ni,K,E)

be
2

i

, (7)

where:

A = E
[∥∥∥∥ ∑

j∈Be,t
i

ḡij(θ)

∥∥∥∥2] =
∑

j∈Be,t
i

E
[∥∥ḡij(θ)∥∥2]+ ∑

m ̸=n∈Be,t
i

2E
[
[ḡim(θ)]⊤[ḡin(θ)]

]

=
∑

j∈Be,t
i

E
[∥∥ḡij(θ)∥∥2]+ ∑

m ̸=n∈Be,t
i

2E
[
ḡim(θ)

]⊤
E
[
ḡin(θ)

]

= bei c
2 + 2

(
bei
2

)∥∥Gi(θ)
∥∥2. (8)

The last equation has used Equation (6) and that we clip the norm of sample gradients ḡij(θ) with an
“effective" clipping threshold c. By replacing A into eq. 7, we can rewrite it as:

σ2
i,g̃(b

e
i ) := Var[g̃e,ti (θ)] =

1

be
2

i

(
E
[∥∥∥∥ ∑

j∈Be,t
i

ḡij(θ)

∥∥∥∥2]− be2i ∥∥Gi(θ)
∥∥2)+

pc2z2i (ϵi, δi, b
1
i , b

>1
i , Ni,K,E)

be
2

i

=
1

be
2

i

(
bei c

2 +

(
2

(
bei
2

)
− be

2

i

)∥∥Gi(θ)
∥∥2)+

pc2z2i (ϵi, δi, b
1
i , b

>1
i , Ni,K,E)

be
2

i

=
c2 −

∥∥Gi(θ)
∥∥2

bei
+
pc2z2i (ϵi, δi, b

1
i , b

>1
i , Ni,K,E)

be
2

i

≈ pc2z2i (ϵi, δi, b
1
i , b

>1
i , Ni,K,E)

be
2

i
(9)

The last approximation is valid because p≫ 1 (it is the number of model parameters).

Scenario 2: the clipping threshold c is ineffective for all samples in a batch: when the clipping
is ineffective for all samples, i.e., ∀j ∈ Be,ti : c > ∥gij(θ)∥, we have a noisy version of the batch
gradient ge,ti (θ) = 1

bei

∑
j∈Be,t

i
gij(θ), which is unbiased with variance bounded by σ2

i,g(b
e
i ) (see

Assumption 3.2). We note that σ2
i,g(b

e
i ) is a constant that depends on the used batch size bei . The

larger the batch size bei used during round e, the smaller the constant. Hence, in this case:

E[g̃e,ti (θ)] = E[ge,ti (θ)] = ∇fi(θ), (10)
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Figure 8: Plot of zi(ϵ, δ, b1i , b
>1
i , Ni,K,E) v.s. b1i and b>1

i obtained from Renyi-DP Accountant
(Mironov et al., 2019) in a setting with Ni = 6600, ϵ = 5, δ = 10−4,K = 1, E = 200. It is clearly
observed that the effect of b>1

i is much more than the effect of b1i . The reason is that b>1
i is used in

E−1 rounds, while b1i is used only in the first round. So it is the value of b>1
i that affects zi the most.

and

σ2
i,g̃(b

e
i ) = Var[g̃e,ti (θ)] = Var[ge,ti (θ)] +

pσ2
i,DP

be
2

i

≤ σ2
i,g(b

e
i ) +

pσ2
i,DP

be
2

i

= σ2
i,g(b

e
i ) +

pc2z2i (ϵ, δ, b
1
i , b

>1
i , Ni,K,E)

be
2

i

≈ pc2z2i (ϵ, δ, b
1
i , b

>1
i , Ni,K,E)

be
2

i

. (11)

The approximation is valid because p≫ 1 (number of model parameters). Also, note that σ2
i,g(b

e
i )

decreases with bei . Therefore, we got to the same result as in Equation (9).

As observed in see Figure 8, zi grows with b1i and b>1
i sub-linearly (especially with b1i ). Therefore,

the variance of the client i’s DP batch gradients g̃e,ti (θ) during communication round e, decreases
with bei fast. The larger the batch size bei , the less the noise existing in its batch gradients during the
same round.

With the findings above, we now investigate the effect of batch size bei on the noise level in clients’
model updates at the end of round e. During the global communication round e, a participating
client i performs Ee

i = K · ⌈Ni

bei
⌉ batch gradient updates locally with step size ηl:

θe,k
i = θe,k−1

i − ηlg̃i(θe,k−1
i ), k = 1, . . . , Ee

i . (12)

Hence,

∆θ̃e
i = θ

e,Ee
i

i − θe,0
i (13)

In each update, it adds a Gaussian noise from N (0,
c2z2

i (ϵ,δ,b
1,b>1,Ni,K,E)

be2
Ip) to its batch gradients

independently (see Equation (1)). Hence:

Var[∆θ̃e
i |θ

e,0
i ] = Ee

i · η2l · σ2
i,g̃(b

e
i ), (14)

where σ2
i,g̃(b

e
i ) was computed in Equation (9) and Equation (11), and was a decreasing function of bei .

Therefore:

Var[∆θ̃e
i |θ

e,0
i ] ≈ K ·Ni · η2l ·

pc2z2i (ϵ, δ, b
1
i , b

>1
i , Ni,K,E)

be
3

i

. (15)
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E EFFECT OF BATCH SIZE INCREMENT ON CLUSTERING

Lemma 4.2. Let us assume ∆m,m′(b1) := ∥µ∗
m(b1)−µ∗

m′(b1)∥ when ∀i : b1i = b1. Then, the overlap

between the pair N
(
µ∗
m(b1),Σ∗

m(b1)
)

and N
(
µ∗
m′(b1),Σ∗

m′(b1)
)

is Om,m′ = 2Q(
√
p∆m,m′ (b1)

2σ1(b1) ),

where σ12(b1) := Var[∆θ̃1
i |θinit, b1i = b1] and Q(·) is the tail distribution function of the standard

normal distribution. Furthermore, if we increase b1i = b1 to b1i = kb1 ≤ N (for all i), we have

Om,m′ ≤ 2Q(
√
kp∆m,m′ (b1)

2ρσ1(b1) ), where 1 ≤ ρ ∈ O(1) is a small constant.

Proof. We first find the overlap between two arbitrary Gaussian distributions. Without loss of
generality, lets assume we are in 1-dimensional space and that we have two Gaussian distributions
both with variance σ2 and with means µ1 = 0 and µ2 = µ (∥µ1 − µ2∥ = µ), respectively. Based on
symmetry of the distributions, the two components start to overlap at x = µ

2 . Hence, we can find the
overlap between the two gaussians as follows:

O := 2

∫ ∞

µ
2

1√
2πσ

e−
x2

2σ2 dx = 2

∫ ∞

µ
2σ

1√
2π
e−

x2

2 dx = 2Q(
µ

2σ
), (16)

where Q(·) is the tail distribution function of the standard normal distribution. Now, lets consider
the 2-dimensional space, and consider two similar symmetric distributions centered at µ1 = (0, 0)

and µ2 = (µ, 0) (∥µ1 − µ2∥ = µ) and with Σ1 = Σ2 =

[
σ2 0
0 σ2

]
. The overlap between the two

gaussians can be found as:

O = 2

∫ ∞

−∞

∫ ∞

µ
2

1

2πσ2
e−

x2+y2

2σ2 dxdy = 2

∫ ∞

µ
2

1√
2πσ

e−
x2

2σ2 dx ·
∫ ∞

−∞

1√
2πσ

e−
y2

2σ2 dy = 2Q(
µ

2σ
).

(17)

If we compute the overlap for two similar symmetric p-dimensional distributions with ∥µ1−µ2∥ = µ
and variance σ2 in every direction, we will get to the same result 2Q( µ

2σ ).

In the lemma, when using batch size b1, we have two Gaussian distributions N
(
µ∗
m(b1),Σ∗

m(b1)
)

and N
(
µ∗
m′(b1),Σ∗

m′(b1)
)
, where

Σ∗
m(b1) = Σ∗

m′(b1) =


σ12 (b1)

p

. . .
σ12 (b1)

p

 . (18)

Therefore, from Equation (17), we can immediately conclude that the overlap between the two
Gaussians, which we denote with Om,m′(b1), is:

Om,m′(b1) = 2Q(

√
p∆m,m′(b1)

2σ1(b1)
), (19)

which proves the first part of the lemma.

Now, lets see the effect of increasing batch size. First, note that we had:

∆θ̃1
i = θ

1,E1
i

i − θ1,0
i ,

θ1,k
i = θ1,k−1

i − ηlg̃i(θ1,k−1
i ), k = 1, . . . , E1

i , (20)
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where E1
i = K · ⌈Nb1 ⌉ is the total number of gradients steps taken by client i during communication

round e = 1. Therefore, considering that DP batch gradients are clipped with a bound c, we have:

∥E[∆θ̃1
i (b

1)]∥ ≤ E1
i · ηl · c. (21)

When we increase batch size b1i for all clients from b1 to kb1, the upperbound in Equation (21) gets k
times smaller. In fact by doing so, the number of local gradient updates that client i performs during
round e = 1, which is equal to E1

i , decreases k times. As such, we can write:

∆θ̃1
i (b

1) = k ·∆θ̃1
i (kb

1) + υi, (22)

where υi ∈ Rp is a vector capturing the discrepancies between ∆θ̃1
i (b

1) and k ·∆θ̃1
i (kb

1). Therefore,
we have:

µ∗
m(b1) = E[∆θ̃1

i (b
1)|s(i) = m] = E[k ·∆θ̃1

i (kb
1) + υi|s(i) = m]

= k · E[∆θ̃1
i (kb

1)] + E[υi|s(i) = m] = k · µ∗
m(kb1) + E[υi|s(i) = m]. (23)

Therefore, we have:

∥µ∗
m(b1)− µ∗

m′(b1)∥ =
∥∥∥∥kµ∗

m(kb1)− kµ∗
m′(kb1) +

(
E[υi|s(i) = m]− E[υi|s(i) = m′]

)∥∥∥∥.
(24)

Based on our experiments, the last term above, in parenthesis, is small and we can have the following
approximation for the equation above:

∥µ∗
m(b1)− µ∗

m′(b1)∥ ≈ ∥kµ∗
m(kb1)− kµ∗

m′(kb1)∥, (25)

or equivalently:

∥µ∗
m(kb1)− µ∗

m′(kb1)∥ ≈
∥µ∗

m(b1)− µ∗
m′(b1)∥

k
. (26)

Figure 9 (left) shows the validity of the approximation above with some experimental results. On the
other hand, from Equation (2) and also noting that a client, with dataset size N and batch size b1,
takes N

b1 gradient steps during each epoch of the first round, we have:

∀m ∈ [M ] : σ2
m(b1) = σ2(b1) ≈ K ·N · η2l ·

pc2z2(ϵ, δ, b1, b>1, N,K,E)

b13
. (27)

When we change the batch size used during the first communication round e = 1 from b1 to kb1 and
we fix the batch size of rounds e > 1, then the noise scale z changes from z(ϵ, δ, b1, b>1, Ni,K,E) to
z(ϵ, δ, kb1, b>1, Ni,K,E). Confirmed by our experimental analysis (see Figure 9, right), the amount
of change in z due to this is small, as we have changed the batch size only in the first round e = 1
from b1 to kb1, while the batch sizes in the other E − 1 rounds are unchanged and E ≫ 1. Therefore,
supported by the results in Figure 9, we can always establish an upper bound on the amount of
change in z as b1 increases: z(ϵ, δ, kb1, b>1, N,K,E) ≤ ρz(ϵ, δ, b1, b>1, N,K,E), where ρ is a
small constant (e.g. ρ = 2.5 in Figure 9). So we have:
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Figure 9: Left: Distance between the centers of different clusters, i.e., the distance between µ∗
m(b1)

and µ∗
m′(b1), decreases k times as b1 increases k times. The three curves in the plot are obtained on

CIFAR10 with 4 clusters m ∈ {0, 1, 2, 3} obtained from covariate shift (rotation). The curves are
overlapping all with slope 0.95, which is very close to 1. This shows the validity of the approximation
in Equation (26). Right: Effect of changing batch size b1 to full batch size in the first round on the
noise scale z. In the denominator, b1 is equal to b>1. Results are obtained from Renyi-DP accountant
(Mironov et al., 2019) with N = 50000, K = 1 and E = 200. For each value of ϵ, we have shown
the results for seven values of b>1.

∀m ∈ [M ] : σ2
m(kb1) = σ2(kb1) ≈ K ·N · η2l ·

pc2z2(ϵ, δ, kb1, b>1, N,K,E)

(kb1)3

≤ K ·N · η2l ·
pc2ρ2z2(ϵ, δ, b1, b>1, N,K,E)

(kb1)3

=
ρ2σ2(b1)

k3
. (28)

From Equation (26) and Equation (28), we have:

Om,m′(kb1) = 2Q

(√
p∆m,m′(kb1)

2σ(kb1)

)
≤ 2Q

(√
p
∆m,m′ (b1)

k

2ρσ(b1)

k
3
2

)
= 2Q(

√
kp∆m,m′(b1)

2ρσ(b1)
), (29)

which completes the proof.

Theorem 4.3. (Ma et al., 2000) Given model updates {∆θ̃1
i (b

1)}ni=1, which are samples from a true
mixture of Gaussians {N

(
µ∗
m(b1),Σ∗

m(b1)
)
, α∗

m}Mm=1, if Omax(ψ∗(b1)) is small enough, then:

lim
r→∞

∥ψr+1 − ψ∗(b1)∥
∥ψr − ψ∗(b1)∥

= o

([
Omax(ψ∗(b1))

]0.5−γ
)
, (5)

as n increases. ψr is the GMM parameters returned by EM after r iterations. γ is an arbitrary small
positive number, and o(x) means it is a higher order infinitesimal as x→ 0 : limx→0

o(x)
x = 0.

Proof. The proof directly follows from the proof of Theorem 1 in Ma et al. (2000) by considering
{∆θ̃1

i (b
1)}ni=1 as the samples of Gaussian mixture {N

(
µ∗
m(b1),Σ∗

m(b1)
)
, α∗

m}Mm=1.
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Figure 10: The effect of increasing the batch size after the first round, i.e., b>1
i , on the model updates

{∆θ̃1
i }ni=1 at the end of the first round. All clients have used full batch sizes in the first round,

i.e., ∀i : b1i = Ni. The level of noise in {∆θ̃1
i }ni=1 affects the quality and confidence of the client

clustering that the server performs at the end of the first round. As can be observed, for a fixed ϵ = 10,
the model updates scatter further in space as b>1

i increases and different clusters get less separated.
This leads to an decrement in the confidence level or the “minimum pairwise separation score (MSS)"
of the resulting GMM, as b>1

i increases (see Section 4.2.2 for explanations about the score). The MSS
score for each b>1

i is mentioned on the top of the corresponding plot. All the results are obtained on
CIFAR10 with covariate shift (rotation) across clusters.
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F SETTING HYPER-PARAMETERS OF RC-DPFL

F.1 THE EFFECT OF b>1
i ON CLUSTERING

As we observed in Lemma 4.1 and Figure 3 left, Var(∆θ̃1
i (b

1
i )|θinit), which affects the clustering

done at the end of the first round, is an increasing function of b>1
i . More generally, we can describe

the effect of increasing b>1
i in three things: 1) increasing the noise variance in Var(∆θ̃1

i (b
1
i )|θinit)

(as shown in Figure 3, right) 2) decreasing the noise variance in Var(∆θ̃1
i (b

e
i )|θ

e,0
i ) (as shown in

Figure 3, right) 3) decreasing the number of gradients steps during each round e for e > 1.

While first one is only limited two the first round e = 1, while the last two affect the remaining
E − 1 rounds e > 1 and have conflicting effects on the final accuracy. However, an important point
about the problem of clustered DPFL is that finding the true structure of clusters in the first round
is a prerequisite for making progress in the next rounds. Therefore, the first effect of increasing the
noise variance in Var(∆θ̃1

i (b
1
i )|θinit) is more important and is the most undesirable result. We have

demonstrated this effect in Figure 10, which shows that how increasing b>1
i adversely affects the

clustering done at the end of the first round. Note how MSS of the learned GMM increases as b>1
i

increases. Therefore, in order to have a reliable client clustering at the end of the first round, we need
to keep the value of b>1

i as small as possible. Following this observation, we have fixed b>1
i to 32 in

all our experimental results, and RC-DPFL was able to outperform the exisitng baseline algorithms.

F.2 FINDING THE NUMBER OF CLUSTERS (M )

Knowing the number of clusters is broadly accepted and applied in the clustered FL literature
(Ghosh et al., 2020; Ruan & Joe-Wong, 2021; Briggs et al., 2020). This is the assumption of our
baseline algorithms too. Yet, techniques to determine the number of clusters can enable our approach
to be more widely adopted. In this section, we show that how we can find the true number of
clusters (M ) when it is not given. Our method, which results in a high accuracy, relies on the MSS
score (confidence level) defined in Section 4.2.2: MSS = minm,m′ ŜS(m,m′) ∈ [0,+∞), where

ŜS(m,m′) ≈
√
p∆m,m′ (b1)

2σ1(b1) =
∆m,m′ (b1)

2σ1(b1)/
√
p (please see the detailed explanations in Section 4.2.2).

Consider the Figure 2 right as an example. There is a good separation between the M = 4 existing
clusters, thanks to using full batch size b1 in the first round. Fitting a GMM with 4 components to the
model updates results in the highest MSS for the learned GMM model: remember that MSS was the
maximum pairwise separation score between the different components of the learned GMM. In contrast,
if we fit a GMM with 3 components (less than the true number of components) to the same model
updates in the figure, then two clusters will be merged into one component (for examples clusters 0
and 1) leading to a high radius (σ1(b1)/

√
p) for one of the three components of the resulting GMM.

This leads to a low MSS (confidence level) for the resulting GMM. Similarly, if we fit a GMM with
5 components, one of the four clusters (for example cluster 1) will be split between two of the 5
components (call them m and m′), which leads to a low inter-component distance (∆m,m′(b1)) for
the pair of components. This also leads to a low MSS for the resulting GMM. However, fitting a GMM
with M = 4 components leads to a well separation between all the true components and maximizes
the resulting MSS. Based on this very intuitive observation, we propose the following method for
setting m at the end of the first round. We select the number of clusters/components, which leads to
the maximum MSS for the resulting GMM. More specifically:

M = argmax
m∈S

MSS
(

GMM(∆θ̃1
1, . . . ,∆θ̃1

n;m)
)
, (line 9 of Algorithm 1) (30)

where S is a set of candidate values for M : At the end of the first round and on the server, we learn
one GMM for each candidate value in S on the same received model updates {∆θ̃1

i }ni=1. Finally, we
choose the value resulting in the GMM with the highest MSS (confidence). It is noteworthy that we
know from Lemma 4.2 that learning the GMM does not incur much computational cost.

We have evaluated this method on multiple data splits and different privacy budgets (ϵ) on CIFAR10,
MNIST and FMNIST, and it worked perfectly, as shown in Figure 11. As can be observed, the
method has made only one mistake for ϵ = 4 (seed 1) and two mistakes for ϵ = 3 (seeds 0 and 1), out
of 20 total experiments. Even in those three cases, it has predicted M as 5, which is closest to the
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Figure 11: The minimum pairwise separation score (MSS) or confidence of the GMM learned on
{∆θ̃1

i }ni=1 peaks at the true cluster number, which is equal to 4 in all the plots above. Each figure
is for a different value of ϵ (mentioned on top of each figure), and are obtained on CIFAR10 with
covariate shift (rotation) across clusters, and 5 different random data splits (5 seeds). All the results
are obtained with full batch sizes in the first round and b>1

i = 32 for all i. We can use this observation
as a method to find the true number of clusters (M ) when it is not given. For larger ϵ, this method
work perfectly and even when ϵ is too small, e.g., ϵ = 3, this method works well and predicts the true
number of clusters correctly most of the times: 3 out of the 5 curves in the bottom right plot have a
peak at M = 4 (the true cluster number). and the other 2 curves predict 5 as the true number, which
is the closest and the best alternative for the true value M = 4.

true value (M = 4) and does not lead to much performance drop. This is because having M = 5
splits an existing cluster into two and it is better than predicting for example M = 3, which results
in "mixing" two clusters with heterogeneous data. Same method could predict the number of
underlying clusters with 100% accuracy for the MNIST and FMNIST datasets for all values of
ϵ. Finally, note that none of the existing baseline algorithms has such an easy and applicable strategy
for finding M . This shows another useful feature of the proposed RC-DPFL.
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Figure 12: Pareto frontier for overall utility and fairness (in terms of the minimum test accuracy
across clients). All the results are for ϵ = 4. The results on MNIST and FMNIST (left) are both
on data splits with covariate shift. For other values of ϵ, we observe similar results, as observed in
Table 4 to Table 11.
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G DETAILED EXPERIMENTAL RESULTS

G.1 MNIST DATA SPLIT WITH COVARIATE SHIFT

Table 4: Average test accuracy of all (All), majority (Maj) and minority (Min) clients on the split of
MNIST dataset with covariate shift (rotation). The results are averaged over 3 seeds.

algorithm ϵ = 10 ϵ = 5 ϵ = 4 ϵ = 3 ϵ = 2

M
N

IS
T

DPFedAvg All: 80.92±0.83 79.37±0.76 78.73±1.04 72.88±0.79 72.29±0.77

Maj: 82.47±0.01 81.16±0.01 80.35±0.05 75.45±0.02 75.02±0.05

Min: 67.16±1.37 64.04±2.06 63.29±1.83 52.80±2.24 52.50±2.76

f-CDPFL All: 90.64±1.45 89.12±1.69 87.75±0.99 84.56±3.91 85.01±2.71

Maj: 92.72±1.42 91.25±0.01 85.93±0.02 81.75±0.3 88.80±0.03

Min: 86.98±5.77 79.12±8.94 81.36±6.03 88.12±1.02 76.07±17.79

KM-CDPFL All: 81.42±3.03 77.80±0.47 77.40±2.06 71.91±2.29 68.89±1.20

Maj: 81.55±0.01 79.20±0.01 80.60±0.07 74.38±0.02 73.11±0.02

Min: 78.78±0.08 59.01±5.07 52.57±9.51 42.33±5.2 35.13±1.81

RC-DPFL All: 92.28±0.40 90.7±0.47 89.89±0.43 89.00±0.44 87.92±0.36

Maj: 92.06±0.01 90.63±1.42 89.95±0.01 88.78±0.02 87.76±0.03

Min: 90.45±0.19 89.33±0.24 87.44±0.54 88.21±0.67 85.83±0.26

Oracle-CDPFL All: 92.71±0.27 91.06±0.06 91.09±0.53 89.33±0.44 88.94±0.47

Maj: 92.70±0.01 91.10±0.03 90.91±0.02 89.10±0.05 88.71±1.42

Min: 91.11±0.25 90.28±0.02 89.87±0.46 89.10±0.089 88.23±0.52

Table 5: Fairness evaluation in terms of different metrics on the split of MNIST dataset with covariate
shift (rotation). The results are averaged over 3 seeds.

algorithm ϵ = 10 ϵ = 5 ϵ = 4 ϵ = 3 ϵ = 2

M
N

IS
T

DPFedAvg Facc: 18.41±0.80 20.81±2.18 20.74±1.46 27.93±1.68 27.57±1.89

Floss: 1.18±0.16 1.49±0.26 1.54±0.25 1.53±0.36 1.61±0.32

Min Acc: 66.33±1.28 63.26±2.25 62.58±2.20 51.55±2.88 51.46±3.04

Accuracy Disparity: 18.56±0.57 21.06±2.26 21.00±1.50 28.25±1.75 27.93±1.87

f-CDPFL Facc: 8.70±5.52 13.39±9.28 13.60±3.07 10.15±5.75 17.81±15.77

Floss: 0.60±0.21 0.81±0.19 0.86±0.11 0.57±0.11 0.89±0.17

Min Acc: 84.81±4.98 78.76±9.02 78.25±2.71 79.75±6.44 72.20±15.79

Accuracy Disparity: 9.05±5.33 13.70±9.12 13.83±3.07 10.21±5.70 17.88±15.70

KM-CDPFL Facc: 18.67±6.54 41.43±10.58 46.69±9.40 46.68±4.56 54.17±2.67

Floss: 1.48±0.31 2.73±0.24 3.33±0.23 2.33±0.24 3.26±0.58

Min Acc: 73.33±6.95 48.66±10.04 43.71±9.25 40.58±5.24 32.86±2.57

Accuracy Disparity: 18.81±6.45 41.58±10.67 47.08±9.58 46.98±4.43 54.48±2.69

RC-DPFL Facc: 4.04±0.90 3.13±0.36 4.27±0.80 2.95±0.84 4.40±1.22

Floss: 0.55±0.15 0.46±0.16 0.68±0.06 0.35±0.14 0.52±0.15

Min Acc: 89.46±0.28 88.71±0.14 86.91±0.52 87.43±0.81 85.23±0.54

Accuracy Disparity: 4.41±0.81 3.36±0.23 4.53±0.59 2.99±0.64 4.48±1.00

Oracle-CDPFL Facc: 3.35±0.81 3.10±0.73 2.93±0.49 2.92±0.75 2.85±0.66

Floss: 0.43±0.12 0.36±0.08 0.43±0.08 0.32±0.05 0.36±0.08

Min Acc: 90.33±0.45 89.36±0.37 89.13±0.28 87.73±0.81 87.43±0.86

Accuracy Disparity: 3.71±0.79 3.13±0.51 3.21±0.38 2.91±0.74 2.93±0.47
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G.2 FMNIST DATA SPLIT WITH COVARIATE SHIFT

Table 6: Average test accuracy of all (All), majority (Maj) and minority (Min) clients on the split of
FMNIST dataset with covariate shift (rotation). The results are averaged over 3 seeds.

algorithm ϵ = 10 ϵ = 5 ϵ = 4 ϵ = 3 ϵ = 2

FM
N

IS
T

DPFedAvg All: 62.62±0.39 62.22±0.35 62.32±0.93 59.58±0.25 59.78±0.25

Maj: 66.27±0.05 65.86±0.05 65.86±0.03 62.90±7.10 62.96±0.03

Min: 42.32±1.55 41.61±1.18 44.84±6.62 38.15±0.73 43.23±3.91

f-CDPFL All: 78.19±1.53 74.37±0.46 75.26±2.38 70.10±1.30 70.42±3.84

Maj: 76.12±0.05 73.43±0.03 72.48±0.03 67.82±0.04 67.35±0.06

Min: 76.21±4.92 73.43±6.62 77.89±0.96 69.85±7.48 69.88±7.63

KM-CDPFL All: 60.17±2.15 57.65±1.09 57.34±0.19 54.82±2.95 53.55±0.47

Maj: 57.79±0.02 58.75±0.03 63.22±7.10 53.31±0.03 58.30±0.06

Min: 59.81±4.34 31.72±20.48 15.95±2.90 32.33±2.78 19.70±7.14

RC-DPFL All: 80.26±0.22 78.15±0.23 77.80±0.50 74.04±1.54 74.84±0.43

Maj: 80.50±0.02 78.41±0.02 78.12±0.06 75.11±0.06 74.93±0.04

Min: 79.03±1.57 77.23±1.30 76.21±1.96 69.35±7.17 73.29±1.55

Oracle-CDPFL All: 80.46±0.10 78.44±0.18 78.31±0.22 75.19±0.16 75.11±0.17

Maj: 80.76±0.02 78.42±0.03 78.31±0.3 75.02±0.05 75.21±0.03

Min: 79.76±0.96 78.35±0.62 77.81±1.02 75.33±0.53 75.00±1.01

Table 7: Fairness evaluation in terms of different metrics on the split of FMNIST dataset with
covariate shift (rotation). The results are averaged over 3 seeds.

algorithm ϵ = 10 ϵ = 5 ϵ = 4 ϵ = 3 ϵ = 2

FM
N

IS
T

DPFedAvg Facc: 25.07±2.16 24.86±1.44 23.31±6.22 26.53±2.35 22.97±4.59

Floss: 1.26±0.05 1.02±0.08 0.99±0.24 0.83±0.08 0.77±0.18

Min Acc: 41.60±1.55 40.69±1.34 43.93±6.45 37.30±1.02 42.22±4.08

Accuracy Disparity: 27.86±0.98 28.11±1.27 25.83±5.02 29.58±0.70 25.12±3.31

f-CDPFL Facc: 11.59±1.16 11.43±1.22 12.00±0.80 18.13±2.15 12.87±1.59

Floss: 0.32±0.09 0.33±0.05 0.37±0.03 0.42±0.07 0.33±0.04

Min Acc: 72.31±4.33 66.73±2.89 70.61±4.12 61.19±2.26 64.93±6.69

Accuracy Disparity: 9.36±4.22 13.11±2.64 9.60±3.85 15.08±2.01 11.08±4.86

KM-CDPFL Facc: 43.55±2.16 59.20±6.77 63.41±1.25 48.46±4.18 54.50±6.54

Floss: 2.44±0.25 3.36±0.99 3.33±0.35 1.89±0.42 2.28±0.40

Min Acc: 33.33±2.08 12.41±7.07 9.66±0.23 21.03±2.39 14.03±7.47

Accuracy Disparity: 43.83±2.48 62.78±7.73 66.08±0.87 51.40±2.53 57.91±8.10

RC-DPFL Facc: 7.37±2.70 7.25±3.29 7.73±2.95 10.55±5.18 6.92±2.69

Floss: 0.28±0.06 0.24±0.05 0.30±0.08 0.22±0.07 0.27±0.02

Min Acc: 77.31±1.07 75.16±1.04 74.03±1.29 67.66±6.64 71.76±1.62

Accuracy Disparity: 5.18±1.43 5.5±1.14 6.46±1.10 9.21±6.10 5.66±1.29

Oracle-CDPFL Facc: 7.37±2.90 6.27±2.96 6.50±3.19 6.51±3.01 6.55±3.41

Floss: 0.24±0.03 0.24±0.07 0.24±0.06 0.20±0.08 0.20±0.08

Min Acc: 77.70±0.64 76.61±0.59 75.98±0.87 73.11±0.33 72.71±0.68

Accuracy Disparity: 5.05±1.32 3.91±0.49 4.61±0.77 4.08±0.02 4.75±0.35
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G.3 CIFAR10 DATA SPLIT WITH COVARIATE SHIFT

Table 8: Average test accuracy of all (All), majority (Maj) and minority (Min) clients on the split of
CIFAR10 dataset with covariate shift (rotation). The results are averaged over 3 seeds.

algorithm ϵ = 10 ϵ = 5 ϵ = 4 ϵ = 3 ϵ = 2

C
IF

A
R

10
(c

ov
ar

ia
te

sh
if

t)

DPFedAvg All: 36.50±0.10 33.64±0.01 33.04±0.07 28.55±0.01 28.12±0.18

Maj: 37.39±0.02 34.18±0.02 33.69±0.05 29.09±0.01 29.00±0.04

Min: 32.10±0.03 30.03±0.14 29.68±0.15 25.84±0.24 25.48±0.47

f-CDPFL All: 40.20±0.50 35.72±0.01 35.16±0.01 30.38±0.21 29.17±0.07

Maj: 41.00±0.04 36.62±0.02 36.03±0.05 30.81±0.08 30.05±0.11

Min: 36.80±1.53 31.16±0.61 30.83±1.32 27.58±1.47 26.05±0.13

KM-CDPFL All: 34.86±0.23 31.46±0.12 30.48±0.84 26.48±0.01 26.10±0.08

Maj: 36.05±0.12 32.47±0.15 32.02±0.04 27.16±0.01 26.79±0.12

Min: 27.69±0.23 25.43±0.08 25.20±0.26 22.43±0.01 21.93±0.13

RC-DPFL All: 39.97±0.09 35.20±−.25 34.23±0.23 29.92±0.50 27.78±0.69

Maj: 40.52±0.12 35.97±0.04 35.05±0.05 30.52±0.05 28.80±0.05

Min: 37.75±0.10 32.76±0.26 32.26±0.54 27.85±1.12 26.13±0.05

Oracle-CDPFL All: 40.43±0.17 36.39±0.20 35.46±0.43 30.79±0.19 29.34±0.61

Maj: 41.07±0.05 36.95±0.05 36.47±0.11 31.12±0.05 30.41±3.55

Min: 37.84±0.32 34.49±0.33 33.07±0.39 29.63±0.76 27.38±1.12

Table 9: Fairness evaluation in terms of different metrics on the split of CIFAR10 dataset with
covariate shift (rotation). The results are averaged over 3 seeds.

algorithm ϵ = 10 ϵ = 5 ϵ = 4 ϵ = 3 ϵ = 2

C
IF

A
R

10
(c

ov
ar

ia
te

sh
if

t)

DPFedAvg Facc: 9.31±0.76 9.32±1.06 9.81±0.59 9.13±2.13 9.11±2.15

Floss: 0.16±0.01 0.14±0.01 0.12±0.01 0.08±0.01 0.07±0.01

Min Acc: 31.65±0.02 28.81±0.05 28.45±0.28 24.79±0.19 24.65±0.33

Accuracy Disparity: 8.57±0.17 8.14±0.45 8.09±1.10 7.63±0.81 7.07±0.33

f-CDPFL Facc: 7.53±0.73 7.90±0.53 7.79±0.75 7.71±1.36 7.61±0.9

Floss: 0.16±0.04 0.19±0.02 0.18±0.05 0.12±0.01 0.09±0.02

Min Acc: 35.97±1.47 30.31±0.56 29.75±0.76 27.43±1.04 25.01±0.93

Accuracy Disparity: 7.71±1.50 8.29±1.13 7.57±0.76 6.55±1.30 6.89±1.52

KM-CDPFL Facc: 10.88±0.28 9.30±0.97 8.90±0.421 9.18±0.61 8.76±0.64

Floss: 0.32±0.07 0.24±0.01 0.22±0.02 0.13±0.01 0.12±0.02

Min Acc: 26.87±0.72 24.65±0.08 24.19±0.82 21.05±0.23 20.87±0.12

Accuracy Disparity: 14.21±0.65 11.63±0.07 10.79±2.05 9.71±0.23 9.35±0.13

RC-DPFL Facc: 7.4±0.68 7.49±0.74 7.05±1.10 7.04±1.76 7.03±1.17

Floss: 0.10±0.03 0.10±0.01 0.10±0.01 0.10±0.01 0.68±0.01

Min Acc: 37.29±0.11 31.95±0.28 31.37±0.33 27.81±0.98 25.37±0.14

Accuracy Disparity: 6.35±0.34 6.21±0.56 5.19±1.15 5.87±0.48 6.05±0.84

Oracle-CDPFL Facc: 6.78±0.46 6.53±0.61 6.43±0.72 6.89±0.07 6.62±0.28

Floss: 0.10±0.02 0.09±0.01 0.10±0.02 0.07±0.01 0.08±0.01

Min Acc: 37.41±0.39 33.29±0.42 31.91±0.16 28.25±0.76 26.13±0.98

Accuracy Disparity: 6.01±0.28 5.29±0.22 4.95±0.53 4.63±0.65 4.75±0.25
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G.4 CIFAR10 DATA SPLIT WITH CONCEPT SHIFT

Table 10: Average test accuracy of all (All), majority (Maj) and minority (Min) clients on the split of
CIFAR10 dataset with concept shift (label flip). The results are averaged over 3 seeds.

algorithm ϵ = 10 ϵ = 5 ϵ = 4 ϵ = 3 ϵ = 2

C
IF

A
R

10
(c

on
ce

pt
sh

if
t)

DPFedAvg All: 17.98±0.31 17.19±0.20 17.10±0.14 17.06±0.19 15.28±0.27

Maj: 19.26±0.02 18.17±0.02 17.85±0.11 17.80±0.19 15.86±0.25

Min: 12.51±0.58 12.86±0.32 12.56±0.43 12.65±0.40 11.55±0.88

f-CDPFL All: 35.27±2.83 33.21±0.26 31.74±1.56 29.70±1.84 25.18±1.32

Maj: 35.12±3.30 33.56±0.02 32.42±0.92 30.11±2.22 25.89±0.65

Min: 36.17±0.37 32.12±0.21 27.68±5.58 27.25±4.70 20.95±5.37

KM-CDPFL All: 19.67±0.70 17.80±0.30 17.98±0.58 17.70±0.67 15.50±0.30

Maj: 20.95±0.72 19.49±0.03 19.27±0.65 18.99±0.80 16.44±0.30

Min: 12.01±0.91 10.46±0.55 10.31±0.46 9.91±0.52 9.89±1.01

RC-DPFL All: 37.16±0.26 33.41±0.49 32.12±0.44 30.25±1.45 23.85±1.40

Maj: 37.45±0.23 33.62±0.02 32.39±0.45 30.98±0.91 24.72±0.80

Min: 35.38±0.44 32.22±0.60 30.54±0.51 25.90±4.70 18.61±5.20

Oracle-CDPFL All: 37.40±0.30 33.93±0.20 32.98±0.31 32.36±0.24 26.39±0.23

Maj: 37.64±0.27 33.81±0.05 33.20±0.28 32.67±0.28 26.59±0.12

Min: 35.98±0.56 32.91±0.28 31.65±0.45 30.56±0.12 25.16±0.88

Table 11: Fairness evaluation in terms of different metrics on the split of CIFAR10 dataset with
concept shift (label flip). The results are averaged over 3 seeds.

algorithm ϵ = 10 ϵ = 5 ϵ = 4 ϵ = 3 ϵ = 2

C
IF

A
R

10
(c

on
ce

pt
sh

if
t)

DPFedAvg Facc: 12.14±0.92 9.25±1.55 10.03±1.38 9.59±2.26 8.59±0.99

Floss: 0.29±0.01 0.24±0.03 0.21±0.02 0.20±0.01 0.13±0.02

Min Acc: 11.11±0.45 11.63±0.25 11.19±0.31 11.55±0.76 11.17±0.86

Accuracy Disparity: 11.89±0.27 9.49±0.05 10.53±1.06 9.83±1.62 6.95±1.82

f-CDPFL Facc: 11.40±4.66 8.38±0.34 9.44±1.13 11.54±5.45 9.54±0.98

Floss: 0.14±0.07 0.08±0.01 0.16±0.12 0.22±0.09 0.09±0.05

Min Acc: 32.15±4.49 31.07±0.17 26.69±5.44 23.45±4.48 19.97±5.13

Accuracy Disparity: 7.33±4.44 4.26±0.17 8.45±5.56 11.01±4.73 8.59±5.34

KM-CDPFL Facc: 20.99±1.67 16.66±2.41 16.41±2.92 15.95±3.23 11.15±2.63

Floss: 0.59±0.07 0.46±0.01 0.47±0.02 0.45±0.03 0.24±0.01

Min Acc: 10.61±1.30 9.43±0.61 9.25±0.39 8.89±0.66 9.07±1.103

Accuracy Disparity: 21.35±2.44 17.85±1.47 18.21±2.03 18.71±2.63 12.75±1.81

RC-DPFL Facc: 8.09±1.18 8.20±0.20 7.88±0.70 8.37±1.08 8.03±0.03

Floss: 0.09±0.01 0.07±0.02 0.06±0.01 0.16±0.08 0.12±0.07

Min Acc: 34.69±0.11 30.97±0.82 29.45±0.71 24.57±4.99 17.61±5.09

Accuracy Disparity: 4.45±0.79 4.21±0.08 5.06±0.81 9.53±5.49 10.07±4.82

Oracle-CDPFL Facc: 8.77±1.29 8.88±0.38 8.00±0.44 7.80±0.45 8.28±0.46

Floss: 0.09±0.01 0.07±0.01 0.06±0.01 0.08±0.01 0.05±0.01

Min Acc: 34.83±0.63 30.59±0.32 30.91±0.53 29.63±0.30 23.83±0.96

Accuracy Disparity: 4.97±0.88 4.91±0.22 4.49±0.21 5.17±0.51 5.17±0.96
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H PRIVACY GUARANTEES OF RC-DPFL

The privacy guarantee of RC-DPFL for each client i in the system comes from the fact that the client
runs DPSGD with a fixed DP noise variance σ2

i,DP = c2 · z2i (ϵ, δ, b1i , b>1
i , Ni,K,E) in each of its

batch gradient computations. We provide a formal privacy guarantee for the algorithm to show the
record-level DP privacy guarantees provided to each client i with respect to its local dataset Di.

Theorem H.1. The set of model updates {∆θ̃e
i }Ee=1, which are uploaded to the server by each client

i ∈ {1, · · · , n} during the training time, satisfies (ϵ, δ)-DP with respect to the client’s local dataset
Di, where the parameters ϵ and δ depend on the amount of DP noise σ2

i,DP used by the client.

Proof. We remember that the sensitivity of the batch gradient in Equation (1) to every data sample is
c. Therefore, based on Proposition 7 in (Mironov, 2017) each of the batch gradient computations by
client i (in the first round e = 1 as well as the next rounds e > 1) is (α, αc2

2σ2
i,DP

)-RDP w.r.t the local

dataset Di. Therefore, if the client runs E tot
i total number of gradient updates during the training

time, which results in the model updates {∆θ̃e
i }Ee=1 uploaded to the server, the set of model updates

will be (α, E
tot

i αc2

2σ2
i,DP

)-RDP w.r.t Di, according to Proposition 1 in (Mironov, 2017). Finally, according

to Proposition 3 in the same work, this guarantee is equivalent to (
E tot

i αc2

2σ2
i,DP

+ log(1/δ)
α−1 , δ)-DP (for any

δ > 1). The RDP-based guarantee is computed over a bunch of orders α and the best result among
them is chosen as the privacy guarantee. Therefore, the proof is complete and the set {∆θ̃e

i }Ee=1

satisfies (ϵ, δ)-DP w.r.tDi, with ϵ = E tot
i αc2

2σ2
i,DP

+ log(1/δ)
α−1 derived above, and δ > 0. Tighter bounds for

ϵ can be derived by using the numerical procedure, proposed in (Mironov et al., 2019), for accounting
sampled Gaussian mechanism.

As a complement to the above theorem, which focuses on the privacy guarantee of the uploaded
model updates, we note that the local model selection by clients in the third stage of RC-DPFL has
also an effectively zero “record-level” privacy leakage. We explain about this important point as
follows. The sensitivity of a client’s "average train loss value" (which is not shared with the server) to
the addition or removal of a sample in the client’s local dataset is relatively small, as this value is
resulted from an “averaging over the whole dataset”. However, even if the "average train loss value"
of a client changes slightly as a result of addition or removal of a sample (a record-level change), the
client’s selected model remains the same, especially in the third stage of RC-DPFL that one of the
M existing cluster models results in a smaller loss by a large margin. Therefore, in the third stage,
the sensitivity of the local model selection of a client to a record-level change is effectively zero (in
contrast to the sensitivity of the average train loss, which was "small"). This is true especially for
our algorithm, which transitions to a loss-based strategy after some training progress in the first Ec

rounds. Our claim of “effectively zero record-level privacy leakage of local model selections” is an
immediate consequence of the their “zero sensitivity to record-level changes” discussed above. Please
remember that the Definition 3.1 considered in this work is concerned with "record-level" changes.

I GRADIENT ACCUMULATION

When training large models with DPSGD, increasing the batch size results in memory exploding
during training or finetuning. This might happen even when we are not using DP training. On the
other hand, using a small batch size results in larger stochastic noise in batch gradients. Also, in the
case of DP training, using a small batch size results in fast increment of DP noise (as explained in
Lemma 4.1 in details). Therefore, if the memory budget of devices allow, we prefer to avoid using
small batch sizes. But what if there is a limited memory budget? A solution for virtually increasing
batch size is “gradient accumulation", which is very useful when the available physical memory
of GPU is insufficient to accommodate the desired batch size. In gradient accumulation, gradients
are computed for smaller batch sizes and summed over multiple batches, instead of updating model
parameters after computing each batch gradient. When the accumulated gradients reach the target
logical batch size, the model weights are updated with the accumulated batch gradients. The page
in https://opacus.ai/api/batch_memory_manager.html shows the implementation
of gradient accumulation for DP training.
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