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Appendix for A Provably Robust Algorithm for Differentially
Private Clustered Federated Learning

A NOTATIONS

Table 1: Used notations

n number of clients, which are indexed by ¢

Tij, Yij Jj-th data point of client 7 and its label

D;, N; local train set of client ¢ and its size

Di qug augmented local train set of client ¢

Bf’t the train data batch used by client ¢ in round e and at the ¢-th gradient update

bs batch size of client i in round e: |BS"| = b

b} batch size of client 4 in the first round e = 1

b? set of batch sizes of client ¢ in the rounds e > 1

€0 desired DP privacy parameters

E total number of global communication rounds in the DPFL system, indexed by e

o:, model parameter for cluster m, at the beginning of global round e

K number of local train epochs performed by clients during each global round e

h predictor function, e.g., CNN model, with parameter 8

4 cross entropy loss

s(7) the true cluster of client i

Re(4) the cluster assigned to client ¢ in round e

05’0 the model parameter passed to client ¢ at the beginning of round e to start its
local training

AGS the noisy model update of client i at the end of round e, starting from 6; 0

sz conditional variance of the noisy model update A@¢ of client i: Var(AB¢|6¢°)

wk (oY) the center of the m-th cluster (when all clients use batch size b! in the first
round)

ux (oY) the covariance matrix of the m-th cluster (when all clients use batch size b! in

the first round)
the prior probability of the m-th cluster

B EXPERIMENTAL SETUP

B.1 DATASETS

Data split: We use three datasets MNIST, FMNIST and CIFAR10, and consider a distributed
setting with 21 clients. In order to create majority and minority clusters, we consider 4 clusters with
different number of clients {3, 6,6, 6} (21 clients in total). The first cluster with the minimum number
of clients is the “minority" cluster, and the last three are the “majority" ones. The data distribution
P(x,y) varies across clusters. We use two methods for making such data heterogeneity: 1. covariate
shift 2. concept shift. In covariate shift we assume that features marginal distribution P(z) differs
from one cluster to another cluster. In order to create this variation, we first allocate samples to all
clients in an uniform way. Then we rotate the data points (images) belonging to the clients in cluster
k by k x 90 degrees. For concept shift, we assume that conditional distribution P(y|z) differs from
one cluster to another cluster, and we first allocate data samples to clients in a uniform way, and flip
the labels of the points allocated to clients: we flip y;; (label of the j-th data point of client 4, which
belongs to cluster k) to (y;; + k) mod 10, The local datasets are balanced—all users have the same
amount of training samples. The local data is split into train and test sets with ratios 80%, and 20%,
respectively. In the reported experimental results, all users participate in each communication round.
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Table 2: CNN model for classification on MNIST/FMNIST datasets

Layer Output Shape  # of Trainable Parameters  Activation Hyper-parameters
Input (1,28, 28) 0

Conv2d (16, 28, 28) 416 ReLU kernel size =5; strides=(1, 1)
MaxPool2d (16,14, 14) 0 pool size=(2, 2)
Conv2d (32,14,14) 12,832 ReLU kernel size =5; strides=(1, 1)
MaxPool2d (32,7,7) 0 pool size=(2, 2)
Flatten 1568 0

Dense 10 15,690 ReLLU

Total 28,938

B.2 MODELS AND OPTIMIZATION

We use a simple 2-layer CNN model with ReLLU activation, the detail of which can be found in
Table 2 for MNIST and FMNIST. Also, we use the residual neural network (ResNet-18) defined in He
et al. (2015), which is a large model. To update the local models allocated to each client during each
round, we apply DP SGD (Abadi et al., 2016) with a noise scale z which depends on some parameters,
as in Equation (2)

Table 3: Details of the experiments and the used datasets in the main body of the paper. ResNet-18
is the residual neural networks defined in He et al. (2015). CNN: Convolutional Neural Network
defined in Table 2.

Datasets Train set size Test set size Data Partition method # of clients Model # of parameters

MNIST 48000 12000 cov. shift {3,6,6,6} CNN 28,938
FMNIST 50000 10000 cov. shift {3,6,6,6} CNN 28,938
CIFAR10 50000 10000 cov. and con. shift  {3,6,6,6} ResNet-18 11,181,642

B.3 DP PARAMETERS

For each dataset, 5 different values of e from set {2, 3,4, 5, 10} are used. We fix § for all experiments
to 10~%. We also set the clipping threshold ¢ equal to 3, as it results in better test accuracy for
the considered datasets, as reported in (Abadi et al., 2016). We use the Renyi DP (RDP) privacy
accountant (TensorFlow privacy implementation) during the training time. This accountant is able to
handle the difference in the batch size between the first round e = 1 and the next rounds e > 1 by
accounting the composition of the corresponding heterogeneous private mechanisms.

B.4 ALGORITHMS TO COMPARE AND TUNING HYPERPARAMETERS

We compare our RC-DPFL algorithm, which benefits from robust clustering, with four baseline
algorithms, including: 1) “DPFedAvg" (Noble et al., 2021), which learns one global model for all
clients 2) An extension of the IFCA algorithm (Ghosh et al., 2020) to DPFL systems, which we
call “f-CDPFL" 3) An extension of the gradient based clustering algorithm (algorithm 1 in (Werner
et al., 2023)) to DPFL systems, which we call “KM-CDPFL" 4) An oracle algorithm, which has the
knowledge of the true underlying clients’ clusters, which we call “O-CDPFL". For each algorithm
and each dataset, we find the best learning rate from a grid: the one which is small enough to avoid
divergence of the DP federated optimization, and results in the lowest average loss (across clients) at
the end of F'L training on a “validation set" with size 10, 000 samples. Here are the grids we use for
each dataset:

e MNIST: {1e-3, 2e-3, 5e-3, le-2};
e FMNIST: {1e-3, 2e-3, 5e-3, le-2};
e CIFAR10: {1e-3, 2e-3, 5e-3, le-2}.
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B.5 GAUSSIAN MIXTURE MODEL

We use the Gaussian Mixture Model of Scikitlearn, which can be found here:
https://scikit-learn.org/dev/modules/generated/sklearn.mixture.
GaussianMixture.html. The GMM model has three hyper-parameters:

1) parameter initialization, which we set to “k-means++". This is because this type of initialization
leads to both low time to initialize and low number of EM iterations for the GMM to converge

2) Type of the covariance matrix, which we set to “spherical", i.e., each component has a
diagonal covariance matrix with a single value as its diagonal elements. This is in accordance with
Equation (18) and that we know the covariance matrices should be diagonal.

3) Finally, the number of components (clusters) is either known or it is unknown. In the latter case, we
have explained in Appendix F.2 how we can find the true number of clusters by using the confidence
level (MSS) of the GMM model.

B.6 HYPERPARAMETERS OF THE RC-DPFL

As explained in the paper, RC-DPFL has four hyperparameters, which we know how to set, as
explained in Section 4.4:

1) bl1 is set locally by clients to IV; (their dataset size), i.e., full batch size for easier clustering at the
end of the first round

2) bi>1, which is the batch size used during the rounds e > 1, and has to be set to a small value, as
observed in Figure 3 right, and as explained in Appendix F.1. As observed in Figure 10, RC-DPFL is
not sensitive to this parameter, as long as a small value is chosen for it. For the results in the paper,
we have set b = 32

3) E. which is the time of changing the clustering strategy, and as explained in Section 4.4, it has to
be related to the uncertainty level (MPO) of the learned GMM such that F. decreases as MPO of the
learned GMM increases. In our experiments, we have used E. = (1 — MP O)% In this way, if the
learned GMM is uncertain about its clusterings, RC-DPFL does trust it for many rounds and instead,
uses loss-based hard clustering from the early rounds by using a smaller E.. Therefore, RC-DPFL
gradually reduces to the loss-based clustering method in the baseline “f~-CDPFL" as the MPO of the
learned GMM increases.

4) Finally, if the true number of clusters M is not known, we can find it by using the very intuitive
method explained in Appendix F.2.

Therefore, all the hyperparameters of RC-DPFL can be set efficiently and easily.

C EXAMPLES

In this section, we explain an example to elaborate that why clustering clients based on their losses
(model updates) is prone to errors in the first (last) rounds. For example, consider Figure 7, where
there are M = 2 clusters (red and blue) and n = 4 clients. The clients in the red cluster have loss
functions f1(6) = 4(0 + 6)? and f2(6) = 4(6 + 5)? with optimum cluster parameter §5° = —5.5.
Also, the the clients in the blue cluster have loss functions f3(0) = 4(6 — 5)% and f4(6) = 4(0 — 6)?
with optimum cluster parameter 65° = 5.5. Clustering algorithms, which cluster clients based on
their loss values on clusters’ models, are vulnerable to model initialization. For example, in Figure 7,
if we initialize the clusters’ parameters with #) = —11 and 69 = 0 (shown in the figure), all four
clients will initially select cluster 2, since they have smaller losses on its parameter. At 69 = 0, the
average of clients’ gradients (model updates) is zero, so all clients will remain stuck at 69 and will
always select cluster 2.

On the other hand, clustering clients based on their model updates (gradients) (Werner et al., 2023;
Briggs et al., 2020; Sattler et al., 2019) have clearly issues. One of these issues appears after some
rounds of training. For instance, even if we assume these algorithms can initially cluster clients
“perfectly” in each round e, the clients’ model updates (gradients) will approach zero as the clusters’
models converge to their optimum parameters. Hence, clients from different clusters may appear to
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Figure 7: Loss-based clustering algorithms miscluster in the initial rounds, due to model initialization.
Also, even with the assumption of perfect clustering of clients in the first rounds, clustering algorithms
based on gradients (model updates) lead to clustering errors in the last rounds, due to the gradients
approaching to zero.

belong to the same cluster, which results in clustering mistakes. For example, as shown in Figure 1,
right, let us assume after T rounds of “correct" clustering of clients, the clusters’ parameters get to
HlT = —4.5and 0; = 5.5 (shown in the figure). At this parameters, clients 1 and 2 (which have been
“correctly” assigned to cluster 1 so far) will have gradients f] (07 ) = 12 and f5(01) = 4. Similarly,
clients 3 and 4 (which have been “correctly" assigned to cluster 2 so far) will have f;(0%) = 4
and f;(03) = —4. We see that f} is closer to f} and f; than to f{, and in the next round it will
wrongly be assigned to wrong cluster 2. This happens while the clients are clearly distinguishable
based on their losses, as some progress in training has been made after 7" rounds: f;(67) = 9, while
f1(67) = 232, which clearly means that client 1 correctly belongs to cluster 1. Therefore, after
making some progress in training the clusters’ models, it makes more sense to use a loss-based
clustering strategy than using a strategy based on clients’ gradients (model updates).

D PROOFS

Lemma 4.1. Let us assume 0 0 is the model parameter that client i is assigned at the beginning of

round e. At the end of round, the client generates the noisy DP model update Aéf (b¢) after K local
epochs with step size 1;. The amount of noise in the resulting model update can be found as:

2 - . c?22(e,0,b1, b7 N;, K, F
722 (0) 1= var(BBF(5)1077) & K N, DT GO Lo

Proof. The proof is restated from (Malekmohammadi et al., 2024). We consider two illustrative
scenarios:

Scenario 1: the clipping threshold c is effective for all samples in a batch: in this case we

have: Vj € B : ¢ < ||gij(8)]. Also, we know that the two sources of randomness (i.e. stochastic
and Gaussian noise) are independent, thus their variances can be summed up. Let us assume that
Eg;;(0)] = G;(0) for all samples j. From Equation (1), we can find the mean of each batch gradient

G5 () (of client i in round e and gradient step ) as follows:

B 0) = = 3 Elgy0)] = = 3 Gi(6) = Gi(0). ©)
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Also, from Equation (1), we can find the variance of each batch gradient g ot (0) (of client ¢ in round
e and gradient step t) as follows:

2 (7 et 1 _ pUiDp
0;5(07) == Vvar[g;"(0)] = var o Z 5:(0)| + v

jeB! i
1 2 2 0, 0L 7Y N, K E
— (5] £ s ][] X auio) | ) + el )
i JEBS! eBo! i
1 2 2 6, b1 b7 N KL E
= W(EH > gz‘j(g)‘ ] —’ > Gi(e)H ) L peEe e )
i jEBS JEBS i
1 2 > 222(¢;,04,b1, 671 N;, K, E
= (B]| < ao)] | o louor) + EEELut Lo
[ jer’f‘ i
A
where:
? 2
A=1EH > 4ii(0) ]z > E[Hgij(e))u ] + > 2E[[gim(9)]T[gm(e)]]
JjEBS! jeBS! m#neBEt
9 T
- ¥ Bl X =m0 2s.0)]
jeBS! m#n€BO?
:bch—i—Q(b;)HGi(B)HQ. (8)

The last equation has used Equation (6) and that we clip the norm of sample gradients g;;(6) with an
“effective" clipping threshold c. By replacing A into eq. 7, we can rewrite it as:

> 55(0)

. e 1 2 o2 pc22? ez,5l,b21,bz>1 N, K,E
O'Zg(bi) = Var[gi’t(e)] = (EH ] — b5 ||G || ) )

b?2 b¢2
¢ jeB? i
L (e b7\ e L e ev,él,b},bjl N;, K, E)
_ A GO | pePe 6,061 07 NG KL E) | peR (e, 8, b, 07 N, K )
— = + - o

©))
The last approximation is valid because p >> 1 (it is the number of model parameters).
Scenario 2: the clipping threshold c is ineffective for all samples in a batch: when the clipping

is ineffective for all samples, i.e., Vj € B{'* : ¢ > ||gi;(0) |, we have a noisy version of the batch
gradient ¢ (8) = bi jeBet gij(e) which is unbiased with variance bounded by a 5 (b5) (see

Assumption 3.2). We note that o2 (be) is a constant that depends on the used batch size b$. The
larger the batch size b5 used durlng round e, the smaller the constant. Hence, in this case:

E[g;"(0)] = Elg;"(8)] = V£i(0), (10)
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Figure 8: Plot of z;(e, d,b},b71, N;, K, E) v.s. b} and b;"! obtained from Renyi-DP Accountant
(Mironov et al., 2019) in a setting with IV; = 6600, ¢ = 5,5 = 10~%, K = 1, E = 200. It is clearly
observed that the effect of b;"* is much more than the effect of b}. The reason is that b7 is used in

E — 1 rounds, while b} is used only in the first round. So it is the value of b;"* that affects z; the most.

and

2 2
Po;pp 2 P pp
< Ui,g (bf) +

07 5(b5) = var[gy"(8)] = var[g]"(0)] +

be? be?
2.2 1 71>1
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i
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The approximation is valid because p > 1 (number of model parameters). Also, note that afy g(bf)
decreases with b§. Therefore, we got to the same result as in Equation (9).

As observed in see Figure 8, z; grows with b} and b ! sub-linearly (especially with b}). Therefore,
the variance of the client ¢’s DP batch gradients gf’t(e) during communication round e, decreases
with bf fast. The larger the batch size bf, the less the noise existing in its batch gradients during the

same round.

With the findings above, we now investigate the effect of batch size 0§ on the noise level in clients’

model updates at the end of round e. During the global communication round e, a participating

client ¢ performs £ = K - H}H batch gradient updates locally with step size 7;:

0cF =00 g0, k=1,... EL. (12)

Hence,

AGe =9 — 920 (13)

In each update, it adds a Gaussian noise from A/(0, e (6’6’b1l’)l:;1’Ni’K’E) IL,) to its batch gradients
independently (see Equation (1)). Hence:

Var[A6;|07%) = Ef -uf - of 5 (b5), (14)

where 01-27 g (b¢) was computed in Equation (9) and Equation (11), and was a decreasing function of 5.
Therefore:

~ 222(€,6,b}, b7 Ny, K E
Var(Ad6) K Ny PEELEOP I NG E) (15)
0
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E EFFECT OF BATCH SIZE INCREMENT ON CLUSTERING

Lemma 4.2. Let us assume A, 1, (bY) := ||, (b1)—p,, (bY) || when Vi : b} = b'. Then, the overlap
1
between the pair N (p5, (b*), S5, (b1)) and N (pf,,, (b1), 57, (bY)) is Opymr = QQ(%’EI)(H),

where o'’ (b') := var[AB}6™ b} = b'] and Q(-) is the tail distribution function of the standard
normal distribution. Furthermore, if we increase bg = bl 1o b} =kl < N (for all ©), we have

1
Omm' < 2Q(%), where 1 < p € O(1) is a small constant.

Proof. We first find the overlap between two arbitrary Gaussian distributions. Without loss of
generality, lets assume we are in 1-dimensional space and that we have two Gaussian distributions
both with variance o? and with means p; = 0 and pp = g1 (|11 — pa|| = p), respectively. Based on
symmetry of the distributions, the two components start to overlap at 2 = £. Hence, we can find the
overlap between the two gaussians as follows:

<1

£ V2T

02 L s 5 de = 20(2 16
= e 202(dx = e 2 dx = —),
/& 2o (20) (16)

where Q)(+) is the tail distribution function of the standard normal distribution. Now, lets consider

the 2-dimensional space, and consider two similar symmetric distributions centered at ©; = (0, 0)
2

and 2 = (u,0) (|1 — p2l| = ) and with £ = 3y = [(6 ;)2} The overlap between the two

gaussians can be found as:

B e N <1 e < 1 _ w2 "
0=2 — 2 dxdy =2 202 dx - Zdy = 2Q(=—).
/_oo/g 277026 : B /; 27rcre o /_Oo \/27‘(0’6 o Q(QU)
17)

If we compute the overlap for two similar symmetric p-dimensional distributions with |1 — pa|| = p
and variance o in every direction, we will get to the same result 2Q(4%).

In the lemma, when using batch size b', we have two Gaussian distributions A (17, (b'), X7, (b'))
and NV (7, (1), 27, (b)), where

o’ (b))

s, =55, 0" = : (18)

o'’ (b))

p

Therefore, from Equation (17), we can immediately conclude that the overlap between the two
Gaussians, which we denote with O, ,,,/ (b1), is:

Ay (B
O 0) = 20( e ), (19

which proves the first part of the lemma.

Now, lets see the effect of increasing batch size. First, note that we had:

A0} =6 0},
0'F =0t — g0, k=1,..., EL (20

%
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where B} = K - (bﬁl} is the total number of gradients steps taken by client ¢ during communication
round e = 1. Therefore, considering that DP batch gradients are clipped with a bound ¢, we have:

IE[AG} ()| < B} -my - c. 1)

When we increase batch size b} for all clients from b' to kb', the upperbound in Equation (21) gets k
times smaller. In fact by doing so, the number of local gradient updates that client ¢ performs during
round e = 1, which is equal to Eil, decreases k times. As such, we can write:

AB}(b') = k- A} (kb') + i, (22)

where v; € R is a vector capturing the discrepancies between A8} (b') and k- A@? (kb'). Therefore,
we have:

pr (b') = E[AG] (b)[s(i) = m] = E[k - AG} (kb") + vis(i) = m)]
= k-E[AO} (kbY)] + Elvi|s(i) = m] = k - u?, (kb') + E[vg|s(i) = m].  (23)

Therefore, we have:

[ (b) = pir (B)

- Hkﬂfn(kbl) — gt (DY) + (E[wls@‘) = m] — Efvils() = ml]) H
(24)

Based on our experiments, the last term above, in parenthesis, is small and we can have the following
approximation for the equation above:

[ (0 =t BV 2 (oo, (kO = Fopaz, (RBY), (25)

or equivalently:

* 1y _ % 1
”/J/:n(kbl) _ /J:n/(kibl)n ~ H/’Lm(b ) kum'(b )H (26)

Figure 9 (left) shows the validity of the approximation above with some experimental results. On the
other hand, from Equation (2) and also noting that a client, with dataset size /N and batch size b,
takes bﬂl gradient steps during each epoch of the first round, we have:

2.2 1 p>1
pcz%(e,0,b°,0"" N, K, FE
Vm e [M]:o2,(b") =)~ K -N-n; - ( pE )

. (27)

When we change the batch size used during the first communication round e = 1 from b' to kb' and
we fix the batch size of rounds e > 1, then the noise scale z changes from z (¢, §,b', b1, N;, K, E) to
2(e, 0, kb, b1, N;, K, E). Confirmed by our experimental analysis (see Figure 9, right), the amount
of change in z due to this is small, as we have changed the batch size only in the first round e = 1
from b' to kb!, while the batch sizes in the other E — 1 rounds are unchanged and E >> 1. Therefore,
supported by the results in Figure 9, we can always establish an upper bound on the amount of
change in z as b! increases: z(e, d, kb, 071, N, K, E) < pz(e,6,bY,0>1, N, K, E), where p is a
small constant (e.g. p = 2.5 in Figure 9). So we have:
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Figure 9: Left: Distance between the centers of different clusters, i.e., the distance between 1%, (b')
and p1*, (b'), decreases k times as b' increases k times. The three curves in the plot are obtained on
CIFARI10 with 4 clusters m € {0, 1, 2, 3} obtained from covariate shift (rotation). The curves are
overlapping all with slope 0.95, which is very close to 1. This shows the validity of the approximation
in Equation (26). Right: Effect of changing batch size b' to full batch size in the first round on the
noise scale z. In the denominator, b! is equal to b>1. Results are obtained from Renyi-DP accountant
(Mironov et al., 2019) with N = 50000, K = 1 and E = 200. For each value of ¢, we have shown
the results for seven values of b>1.

222(e,6,kb*, 0> N, K, E
Vim € [M]: o2 (kb)) = o2 (kbl) ~ K - N 2 - PEZ (G 0RO 07 N KL B)

(kb')?
<K N2 p02p222(e,6£]l€);,1§)§1,N, K, E)
= % (28)
From Equation (26) and Equation (28), we have:
O (Kb) = 2Q<\/]W) < 2Q<W> _ o VA (1)) g
- 20 (kbl) = 9 % 2p0(b)
which completes the proof. O

Theorem 4.3. (Ma et al., 2000) Given model updates { AQ} (b*)Y_,, which are samples from a true

=1’

mixture of Gaussians {N (5, (b*), S5, (b")), o, Y, if O™ (% (b)) is small enough, then:
e T (] < maxs k1l 0.57)
lim ——————"— = o |O™*(¢"(b , 5
L [ — = (b1)]| ol [ (v*(0"))] (%)

as n increases. V" is the GMM parameters returned by EM after r iterations. -y is an arbitrary small
positive number, and o(x) means it is a higher order infinitesimal as x — 0 : lim,_,¢ olz) —

x

Proof. The proof directly follows from the proof of Theorem 1 in Ma et al. (2000) by considering
{AB6} (b")}7, as the samples of Gaussian mixture {N (7, (b'), T, (b1)), g 12, O
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Figure 10: The effect of increasing the batch size after the first round, i.e., bi>1, on the model updates
{AB}!}7"_, at the end of the first round. All clients have used full batch sizes in the first round,
i.e., Vi: b = N;. The level of noise in {A@} }7_, affects the quality and confidence of the client
clustering that the server performs at the end of the first round. As can be observed, for a fixed ¢ = 10,
the model updates scatter further in space as b;” Lincreases and different clusters get less separated.
This leads to an decrement in the confidence level or the “minimum pairwise separation score (MSS)"
of the resulting GMM, as b;"" increases (see Section 4.2.2 for explanations about the score). The MSS

score for each b;"! is mentioned on the top of the corresponding plot. All the results are obtained on

CIFAR10 with covariate shift (rotation) across clusters.
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F SETTING HYPER-PARAMETERS OF RC-DPFL
F.1 THE EFFECT OF b;"' ON CLUSTERING

As we observed in Lemma 4.1 and Figure 3 left, Var (A8} (b})|07"), which affects the clustering
done at the end of the first round, is an increasing function of bi> L More generally, we can describe
the effect of increasing b"! in three things: 1) increasing the noise variance in Var (A8} (b})|0™")
(as shown in Figure 3, right) 2) decreasing the noise variance in Var (A8} (b$)|0°) (as shown in
Figure 3, right) 3) decreasing the number of gradients steps during each round e for e > 1.

While first one is only limited two the first round e = 1, while the last two affect the remaining
E — 1rounds e > 1 and have conflicting effects on the final accuracy. However, an important point
about the problem of clustered DPFL is that finding the true structure of clusters in the first round
is a prerequisite for making progress in the next rounds. Therefore, the first effect of increasing the
noise variance in Var (A6} (b})|0™) is more important and is the most undesirable result. We have
demonstrated this effect in Figure 10, which shows that how increasing b;! adversely affects the
clustering done at the end of the first round. Note how MSS of the learned GMM increases as b;*
increases. Therefore, in order to have a reliable client clustering at the end of the first round, we need
to keep the value of b;” ! as small as possible. Following this observation, we have fixed b 1 t0321in
all our experimental results, and RC-DPFL was able to outperform the exisitng baseline algorithms.

F.2 FINDING THE NUMBER OF CLUSTERS (M)

Knowing the number of clusters is broadly accepted and applied in the clustered FL literature
(Ghosh et al., 2020; Ruan & Joe-Wong, 2021; Briggs et al., 2020). This is the assumption of our
baseline algorithms too. Yet, techniques to determine the number of clusters can enable our approach
to be more widely adopted. In this section, we show that how we can find the true number of
clusters (M) when it is not given. Our method, which results in a high accuracy, relies on the MSS
score (confidence level) defined in Section 4.2.2: MSS = min,, ,,v SS(m,m’) € [0, 4+00), where

~ D ’ 1 ’ 1 . . . .
SS(m,m') ~ ﬁ?;’{’(’gl)(b ) — QAG ’I’L(’l’)'{)(/b \/)5 (please see the detailed explanations in Section 4.2.2).

Consider the Figure 2 right as an example. There is a good separation between the M = 4 existing
clusters, thanks to using full batch size b! in the first round. Fitting a GMM with 4 components to the
model updates results in the highest MSS for the learned GMM model: remember that MSS was the
maximum pairwise separation score between the different components of the learned GMM. In contrast,
if we fit a GMM with 3 components (less than the true number of components) to the same model
updates in the figure, then two clusters will be merged into one component (for examples clusters 0
and 1) leading to a high radius (¢*(b"')/,/p) for one of the three components of the resulting GMM.
This leads to a low MSS (confidence level) for the resulting GMM. Similarly, if we fit a GMM with
5 components, one of the four clusters (for example cluster 1) will be split between two of the 5
components (call them m and m’), which leads to a low inter-component distance (A, ,,,/ (bl)) for
the pair of components. This also leads to a low MSS for the resulting GMM. However, fitting a GMM
with M = 4 components leads to a well separation between all the true components and maximizes
the resulting MSS. Based on this very intuitive observation, we propose the following method for
setting m at the end of the first round. We select the number of clusters/components, which leads to
the maximum MSS for the resulting GMM. More specifically:

M = arg maxMSS (GMM(AH}7 . Aé,ll; m)), (line 9 of Algorithm 1) (30)
meS

where S is a set of candidate values for M/: At the end of the first round and on the server, we learn

one GMM for each candidate value in S on the same received model updates { A} }"_,. Finally, we

choose the value resulting in the GMM with the highest MSS (confidence). It is noteworthy that we

know from Lemma 4.2 that learning the GMM does not incur much computational cost.

We have evaluated this method on multiple data splits and different privacy budgets () on CIFAR10,
MNIST and FMNIST, and it worked perfectly, as shown in Figure 11. As can be observed, the
method has made only one mistake for e = 4 (seed 1) and two mistakes for e = 3 (seeds 0 and 1), out
of 20 total experiments. Even in those three cases, it has predicted M as 5, which is closest to the
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Figure 11: The minimum pairwise separation score (MSS) or confidence of the GMM learned on

{AB}}"_ | peaks at the true cluster number, which is equal to 4 in all the plots above. Each figure
is for a different value of ¢ (mentioned on top of each figure), and are obtained on CIFAR10 with
covariate shift (rotation) across clusters, and 5 different random data splits (5 seeds). All the results
are obtained with full batch sizes in the first round and b = 32 for all 7. We can use this observation
as a method to find the true number of clusters ()/) when it is not given. For larger ¢, this method
work perfectly and even when € is too small, e.g., € = 3, this method works well and predicts the true
number of clusters correctly most of the times: 3 out of the 5 curves in the bottom right plot have a
peak at M = 4 (the true cluster number). and the other 2 curves predict 5 as the true number, which
is the closest and the best alternative for the true value M = 4.

true value (M = 4) and does not lead to much performance drop. This is because having M = 5
splits an existing cluster into two and it is better than predicting for example M = 3, which results
in "mixing" two clusters with heterogeneous data. Same method could predict the number of
underlying clusters with 100% accuracy for the MNIST and FMNIST datasets for all values of
e. Finally, note that none of the existing baseline algorithms has such an easy and applicable strategy
for finding M. This shows another useful feature of the proposed RC-DPFL.
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Figure 12: Pareto frontier for overall utility and fairness (in terms of the minimum test accuracy
across clients). All the results are for ¢ = 4. The results on MNIST and FMNIST (left) are both
on data splits with covariate shift. For other values of €, we observe similar results, as observed in
Table 4 to Table 11.
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G DETAILED EXPERIMENTAL RESULTS

G.1

MNIST DATA SPLIT WITH COVARIATE SHIFT

Table 4: Average test accuracy of all (All), majority (Maj) and minority (Min) clients on the split of
MNIST dataset with covariate shift (rotation). The results are averaged over 3 seeds.

algorithm e =10 e=5 e=4 e=3 e=2
DPFedAvg All: 80.9240.83 79.37+0.76 78.73+11.04 72.8810.79 72.2940.77

Maj: 82.47;&0,01 Sl.lﬁio.ol 80.35:&0,05 75.45;&0,02 75.02i0,05

Min: 67.1641.37 64.0442 06 63.2941 83 52.8042.24 52.50+2.76

f-CDPFL All: 90.6441.45 89.1241 69 87.75+0.99 84.5643.91 85.0142.71

Maj: 92.7241.42 91.2540.01 85.93+0.02 81.7540.3 88.804+0.03

H Min: 86.9845.77 79.124+8.94 81.36+6.03 88.1241 .02 76.07+17.79
(£ KM-CDPFL All: 81.4243 03 77.80+0.47 77.40+2.06 71.9142.29 68.8941.20
Z Maj: 81.5540.01 79.2040.01 80.60+0.07 74.38+0.02 73.1140.02
E Min: 78.78+0.08 59.014+5 07 52.57+9.51 42.3345.2 35.1341.81
RC-DPFL All 92.28.40.40 90.7+0.a7 89.8940.43 89.00+0.44 87.9240.36

Maj 92.0640.01 90.6341.42 89.9540.01 88.78.10.02 87.7610.03

Min 90.4540.19 89.3310.24 87.4440.54 88.2140.67 85.8310.26

Oracle-CDPFL  All: 92.7140.27 91.06+0.06 91.0940.53 89.3340.44 88.9440.47

Maj: 92.7040.01 91.1040.03 90.9140.02 89.1040.05 88.7141 .42

Min: 91.11;&0,25 90.28i0‘02 89.87:&0,45 89.10;&0‘089 88.23i0,52

Table 5: Fairness evaluation in terms of different metrics on the split of MNIST dataset with covariate
shift (rotation). The results are averaged over 3 seeds.

algorithm e=10 e=5 e=4 e=3 €e=2
DPFedAvg Fuce: 18.4140.80 20.8142.18 20.7441 46 27.9311 .68 27.57+1.89

Floss: 1.1840.16 1.4940.26 1.5440.25 1.53+0.36 1.6140.32

Min Acc: 66‘33:&128 63.26i2_25 62.58:&2‘20 51.55+2.88 51.46i3_04

Accuracy Disparity: 18.56+0.57 21.064+2 .26 21.00+1.50 28.2541.75 27.9341 .87

f-CDPFL Face: 8.7045 52 13.3949.28 13.6043.07 10.1545.75 17.81415.77

Floss: 0.60+0.21 0.8110.19 0.86+0.11 0.57+0.11 0.89+0.17

Min Acc: 84.8144.98 78.76+9 .02 78.2542.71 79.75+6.44 72.20415.79

F Accuracy Disparity: 9.0545.33 13.704+9.12 13.834+3.07 10.2145.70 17.88415.70
Z) KM-CDPFL Fuce: 18.6716.54 41.43110.58 46.69+9.40 46.68+4.56 54.1742.67
Z Floss: 1.4840.31 2.73+0.24 3.33+0.23 2.3340.24 3.2610.58
E Min Acc: 73‘33:&&95 48.66i10_04 43.71i9‘25 40.58:&5‘24 32‘86:&2_57
Accuracy Disparity: 18.814+6.45 41.58410.67 47.0849.58 46.9844.43 54.484 2 69

RC-DPFL Face: 4.04+0.90 3.13+0.36 4.27 1+0.80 2.95410.84 4.4041 22

Floss: 0.55+0.15 0.4610.16 0.68+0.06 0.35410.14 0.5240.15

Min Acc: 89.464¢.28 88.714+0.14 86.9110.52 87.4340.81 85.2310.54

Accuracy Dispa.rity: 4.41i0,81 3.36i0_23 4.53i0_59 2-99i0.64 4.48i1_00

Oracle-CDPFL  F,.: 3.3540.81 3.10+0.73 2.9340.49 2.9240.75 2.8540.66

Floss: 0.4340.12 0.36+0.08 0.43+0.08 0.3240.05 0.36+0.08

Min Acc: 90‘33:&()‘45 89.36i0_37 89~13i0.28 87-73i0,81 87‘43:&0.86

Accuracy Disparity: 3.7140.79 3.134+0.51 3.2140.38 2.9140.74 2.9340.47
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G.2 FMNIST DATA SPLIT WITH COVARIATE SHIFT

Table 6: Average test accuracy of all (All), majority (Maj) and minority (Min) clients on the split of
FMNIST dataset with covariate shift (rotation). The results are averaged over 3 seeds.

algorithm e =10 e=5 e=4 e=3 e=2

DPFedAvg All: 62.6210.30 62.2210.35 62.3210.03 59.5840.25 59.7840.25

Maj: 66.2740.05 65.8640.05 65.8640.03 62.9047.10 62.9610.03

Min 42.3241 55 41.6141.18 44.84 1 6. 62 38.1540.73 43.2313.91

f-CDPFL All: 78.19:{:1_53 74-37;{:0_46 75.26:(:2_38 70'10ﬂ:1-30 70-42:!:3.84

Maj: 76.12i0.05 73.43;&0(03 72‘48:&0_03 67.82i0_04 67-35:t0.06

— Min 76.2144.92 73.43+6.62 T7.8910.96 69.8517.4s8 69.88+7.63
9]

E KM-CDPFL All: 60.1742.15 57.6541.00 57.3440.19 54.8249. 95 53.5540.47

2 Maj: 57.79;&0,02 58‘75:&0,03 63.22i7_10 53.31i0.03 58.30:&0‘06

T Min 59.8144.34 31.72420.48 15.9545 90 32.3312.78 19.7047.14

RC-DPFL All 80.2610.22 78.1510.23 77.8010.50 74.0411 54 74.84.10.43

Maj 80.504+0.02 78.4140.02 78.1240.06 75.1110.06 74.93+0.04

Min 79.03+1.57 77.2341.30 76.2141 96 69.354+7.17  73.29411 55

Oracle-CDPFL All: 80.46;&0,10 78‘44:&0,18 78.31i0_22 75~19i0.16 75.11:&0‘17

Maj: 80.76+0.02 78.421¢.03 78.3140.3 75.0240.05 75.2140.03

Min: 79.76+0.96 78.3540.62 77.8141.02 75.33+0.53 75.0041 .01

Table 7: Fairness evaluation in terms of different metrics on the split of FMNIST dataset with
covariate shift (rotation). The results are averaged over 3 seeds.

algorithm e=10 e=5 e=4 e=3 €e=2

DPFedAvg .7:1,“-2 25.07i2 16 24.86i1 44 23-31i6_22 26.53i2_35 22.97i4‘59

Floss: 1.26+0.05 1.0240.08 0.9940.24 0.83+0.08 0.77+0.18

Min Acc: 41.6041.55 40.6941.34 43.9346.45 37.304+1.02 42.2244 08

Accuracy Disparity: 27.8610.98 28.1141 27 25.8345.02 29.58+0.70 25.1243 31

f-CDPFL Face: 11.5941.16 11.43 41 .22 12.0040.80 18.1342.15 12.87+1.59

Floss: 0.3240.09 0.33+0.05 0.37+0.03 0.4240.07 0.3340.04

Min Acc: 72‘31:&4 33 66.73i2 89 70.61;&4,12 61.19;&2,26 64~93i6.69

E" Accuracy Disparity: 9.3644.22 13.1142.64 9.60+3 85 15.084+2.01 11.08+4.86
9!

E KM-CDPFL Face: 43.554216  59.2046.77 63414125  48.464418  54.5046.54

2 Floss: 2.4410.25 3.364+0.99 3.33+0.35 1.8940.42 2.2840.40

T Min Acc: 33.3342.08 12.4147.07 9.66+0.23 21.0342.30 14.0347.47

Accuracy Dispa.rity: 43.83i2 48 62.78i7 73 66.08i0_g7 51.40i2_53 57.91i3‘10

RC-DPFL Fuce: 7.37 1270 7.25135.20 7731205 10.55i5.1s 6.924 269

Floss: 0.28+0.06 0.2440.05 0.30+0.08 0.2240.07 0.2710.02

Min Acc: 77.31:&1‘07 75.16:&1,04 74‘03:&1‘29 67.66i6.64 71.76:&1‘62

Accuracy Disparity: 5.1841.a3 5.5+1.14 6.46+1 .10 9.214+6.10 5.661+1 .29

Oracle-CDPFL Fuce: 7.37+2.90 6.2749.96 6.50+3 19 6.5143.01 6.554+3 41

Floss: 0.2440.03 0.2440.07 0.2440.06 0.20+0.08 0.20+0.08

Min Acc: 77.7040.64 76.6140.59 75.98+0.87 73.11+0.33 72.71+0.68

Accuracy Disparity: 5.05+1.32 3.9140.49 4.6140.77 4.084+0.02 4.7540.35
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G.3 CIFARI10 DATA SPLIT WITH COVARIATE SHIFT

Table 8: Average test accuracy of all (All), majority (Maj) and minority (Min) clients on the split of
CIFARI10 dataset with covariate shift (rotation). The results are averaged over 3 seeds.

algorithm e =10 e=5 e=4 e=3 €e=2
DPFedAvg All: 36.50+0.10 33.6440.01 33.0440.07 28.5540.01 28.1240.18
e Maj:  37.3940.02 34.1840.02 33.6940.05 29.0940.01 29.0040.04
v Min: 32.10:&0,03 30.03:&0,14 29.68io_15 25.84:“).24 25.48:&0‘47
<=
5]
o f-CDPFL All: 40.20+0.50 35.7240.01 35.1640.01 30.384+0.21 29.1710.07
"5 Maj:  41.00+0.04 36.6210.02 36.0310.05 30.811p0.08 30.05410.11
.E Min: 36.80i1,53 31.16:&0,51 30.83:&1,32 27.58i1.47 26.05:&0.13
<
C>3 KM-CDPFL All: 34.86+0.23 31.4640.12 30.4840.84 26.4840.01 26.1040.08
o Maj: 36.05:&0,12 32‘47:&0,15 32.02i0_04 27.16i0.01 26.79;&0,12
; Min:  27.6910.235  25.4340.0s  25.2040.26  22.4310.01  21.9340.13
E RC-DPFL All: 39.9740.00  35.204_ .05  34.2310.235  29.9240.50 27.78.40.69
< Maj:  40.52+0.12 35.97+0.04 35.05+0.05 30.5240.05 28.80+0.05
[_T_‘ Min: 37.7540.10 32.7640.26 32.2640.5a 27.854+1.12 26.1310.05
—
U Oracle-CDPFL All: 40.43:&0,17 36‘39:&0,20 35.46i0_43 30.79i0.19 29~34i0.61
Maj: 41.07+0.05 36.9540.05 36.474+0.11 31.1240.05 30.4143.55
Min: 37.8440.32 34.4940.33 33.07+0.39 29.63+0.76 27.3841.12

Table 9: Fairness evaluation in terms of different metrics on the split of CIFAR10 dataset with
covariate shift (rotation). The results are averaged over 3 seeds.

algorithm e=10 e=5H e=4 e=3 €e=2

DPFedAvg Face: 9.31+0.76 9.32+1.06 9.81+0.59 9.13+2.13 9.1142.15

Floss: 0.16+0.01 0.14+0.01 0.1240.01 0.08+0.01 0.07+0.01

Min Acc: 31.6540.02 28.8140.05 28.4540.28 24.7940.19 24.65+0.33

= Accuracy Disparity: 8.57+0.17 8.1440.45 8.09+1.10 7.6310.81 7.07410.33
o p—(

= f-CDPFL Fce: 7.5340.73 7.90+0.53 7.794+0.75 7.7141.36 7.6140.0
95}

O Floss: 0.1640.04 0.1940.02 0.18+0.05 0.1249.01 0.0940.02

E Min Acc: 35 97i1 47 30~31i0.56 29~75i0.76 27.43i1 04 25.01:&0,93

E Accuracy Disparity: 7.7141.50 8.2941.13 7.57+0.76 6.5541.30 6.8941.52
<

% KM-CDPFL Face: 10.88+0.28 9.30+0.97 8.9040.421 9.1840.61 8.76+0.64

Q Floss: 0.3240.07 0.2440.01 0.2240.02 0.13+0.01 0.1249.02

o Min Acc: 26.87+0.72 24.6540.08 24.1940.82 21.05+0.23 20.87+0.12

— Accuracy Disparity: 14.2140.65 11.63+0.07 10.7942.05 9.7140.23 9.3510.13

% RC-DPFL Face: T.4410.68 7.4910.74 7.05+1.10 7.041+1.76 7.03+1.17

[ Floss: 0.10+0.03 0.10+0.01 0.10+0.01 0.10+0.01 0.68+0.01

6 Min Acc: 37.29.011 31.95:028 31.37i033 27.8li00s 25371014

Accuracy Disparity: 6.354+0.34 6.21410.56 5.1941.15 5.87+0.48 6.05410.84

Oracle-CDPFL Fuce: 6.7840.46 6.53+0.61 6.4340.72 6.89+0.07 6.6210.28

Floss: 0.1040.02 0.0940.01 0.10+0.02 0.07+0.01 0.08+0.01

Min Acc: 37.41410.39 33.29+40.42 31.91+0.16 28.25+0.76 26.13+0.98

Accuracy Disparity: 6.0140.28 5.2940.22 4.9540.53 4.6340.65 4.7540.25
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G.4 CIFAR10 DATA SPLIT WITH CONCEPT SHIFT

Table 10: Average test accuracy of all (All), majority (Maj) and minority (Min) clients on the split of
CIFARI10 dataset with concept shift (label flip). The results are averaged over 3 seeds.

algorithm e =10 e=5 e=4 e=3 e=2
DPFedAvg Al 17984031 17194020  17.1040.14  17.0640.19  15.2840.27
c Maj: 19.26+0.02 18.1740.02 17.8540.11 17.80+0.19 15.864+0.25
= Min: 12514058  12.864032  12.561043  12.6550.40  11.5510 ss
<=
A f.CDPFL Al 35274283  33.214026 31744156  29.70118s  25.1841.32
a Maj: 35.1243.30 33.5610.02 32.4210.92 30.11 42 22 25.8910.65
8 Min: 36.17:&0.37 32.12:&0421 27.68;&5,58 27.25i4,70 20.95i5.37
g KM-CDPFL All: 19.67+0.70 17.8040.30 17.984+0.58 17.704+0.67 15.50+0.30
8 Maj: 20.954+0.72 19.4940.03 19.2710.65 18.9940.80 16.4410.30
O Min 12.0140.91 10.46+0.55 10.3140.46 9.9140.52 9.89+1.01
—
fY  RCDPFL Al 37.1640.26 33.41i040 32121044 30.2511.45  23.8511.40
<C Maj:  37.4540.23 33.6210.02 32.39+0.45 30.98.10.91 24.7240.80
E Min:  35.384044  32.2210.60 30.541051  25.904470  18.6115.20
U Oracle-CDPFL All: 37‘40i0,30 33‘93:&0‘20 32.98;&0,31 32.36;&0,24 26A39i0‘23
Maj: 37.64410.27 33.81+0.05 33.2040.28 32.67+0.28 26.5910.12
Min 35.9810.56 32.9140.28 31.6540.45 30.5640.12 25.1640.88

Table 11: Fairness evaluation in terms of different metrics on the split of CIFAR10 dataset with

concept shift (label flip). The results are averaged over 3 seeds.

algorithm e =10 e=5H e=4 e=3 e=2

DPFedAvg ]:,MCZ 12.14i0_92 9.25i1_55 10.03i1‘38 9.59i2 26 8.59:&0‘99

Floss: 0.2940.01 0.2440.03 0.2140.02 0.20+0.01 0.13+0.02

Min Acc: 11.11:(:0_45 11-63:l:0.25 11.19;{:0,31 11.55:(:0 76 11-17:(:0.86

G Accuracy Disparity: 11.89i0_27 9.49i0_05 10.53i1‘05 9.83i1 62 6.95:&1‘82
S

E f-CDPFL Face: 11.40+4.66 8.3840.34 9.4441.13 11.5445.45 9.5440.98

2 Floss: 0.1410.07 0.08+0.01 0.1640.12 0.2240.09 0.094+0.05

a Min Acc: 32.15;&4,49 31.07i0.17 26.69i5‘44 23.45i4 48 19.97:&5,13

8 Accuracy Disparity: 7.334+4.44 4.2640.17 8.4545.56 11.0144.73 8.59415 34

g KM-CDPFL Face: 20.9941 67 16.664+2.41 16.4142. 92 15.9543.23 11.1542.63

o Floss: 0.59+0.07 0.46+0.01 0.47+0.02 0.45+0.03 0.2440.01

o Min Acc: 10.614+1 .30 9.434+0.61 9.2540.39 8.8940.66 9.07+1.103

E Accuracy Disparily: 21.35i2_44 17.85i1_47 18.21i2‘03 18.71i2 63 12.75:&1‘31

< RC-DPFL Face: 8.0911.18 8.204+0.20 7.8810.70 8.3711.08 8.0310.03

E Floss: 0.09+40.01 0.07+0.02 0.06+0.01 0.16+0.08 0.1240.07

D Min Acc: 34‘69:&0‘11 30~97i0.82 29.45;&0,71 24.57i4 29 17‘61:&5‘09

Accuracy Disparity: 4.4510.79 4.2140.08 5.0610.81 9.5315.49 10.074+4.82

Oracle-CDPFL Face: 8.774+1.29 8.88+0.38 8.0040.44 7.804+0.45 8.2810.46

Floss: 0.0940.01 0.07+0.01 0.06+0.01 0.08+0.01 0.05+0.01

Min Acc: 34.8340.63 30.5940.32 30.9140.53 29.63+0.30 23.8340.96

Accuracy Disparity: 4.97+0.88 4.9140.22 4.4940.21 5.17+0.51 5.174+0.96
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H PRIVACY GUARANTEES OF RC-DPFL

The privacy guarantee of RC-DPFL for each client 7 in the system comes from the fact that the client
runs DPSGD with a fixed DP noise variance UzDP = 2 22(¢,6,b},b7 1, N;, K, E) in each of its

batch gradient computations. We provide a formal privacy guarantee for the algorithm to show the
record-level DP privacy guarantees provided to each client 7 with respect to its local dataset D;.

Theorem H.1. The set of model updates {Aéf E_|, which are uploaded to the server by each client
i € {1, ,n} during the training time, satisfies (€, d)-DP with respect to the client’s local dataset
D, where the parameters ¢ and ¢ depend on the amount of DP noise 01»2’ pp used by the client.

Proof. We remember that the sensitivity of the batch gradient in Equation (1) to every data sample is
c. Therefore, based on Proposition 7 in (Mironov, 2017) each of the batch gradient computations by

. . g . 2
client i (in the first round e = 1 as well as the next rounds e > 1) is (c, 52— )-RDP w.r.t the local
i,DP

dataset D;. Therefore, if the client runs E; “°* total number of gradient updates during the training

time, which results in the model updates { Aéf E | uploaded to the server, the set of model updates
will be (a, EQ:; 2<)-RDP w.r.t D;, according to Proposition 1 in (Mironov, 2017). Finally, according

%,DP

EitOt(J/,Cz

57, + loi(i{é) ,0)-DP (for any
> 1). The RDP-based guarantee is computed over a bunch of orders «v and the best result among
them is chosen as the privacy guarantee. Therefore, the proof is complete and the set {A@¢}E |

to Proposition 3 in the same work, this guarantee is equivalent to (

satisfies (e,0)-DP w.r.t D;, with e = EQ: ac | loi (_1{5) derived above, and 6 > 0. Tighter bounds for
e can be derived by using the numerical piocedure, proposed in (Mironov et al., 2019), for accounting
sampled Gaussian mechanism. L]

As a complement to the above theorem, which focuses on the privacy guarantee of the uploaded
model updates, we note that the local model selection by clients in the third stage of RC-DPFL has
also an effectively zero “record-level” privacy leakage. We explain about this important point as
follows. The sensitivity of a client’s "average train loss value" (which is not shared with the server) to
the addition or removal of a sample in the client’s local dataset is relatively small, as this value is
resulted from an “averaging over the whole dataset”. However, even if the "average train loss value"
of a client changes slightly as a result of addition or removal of a sample (a record-level change), the
client’s selected model remains the same, especially in the third stage of RC-DPFL that one of the
M existing cluster models results in a smaller loss by a large margin. Therefore, in the third stage,
the sensitivity of the local model selection of a client to a record-level change is effectively zero (in
contrast to the sensitivity of the average train loss, which was "small"). This is true especially for
our algorithm, which transitions to a loss-based strategy after some training progress in the first £
rounds. Our claim of “effectively zero record-level privacy leakage of local model selections” is an
immediate consequence of the their “zero sensitivity to record-level changes” discussed above. Please
remember that the Definition 3.1 considered in this work is concerned with "record-level" changes.

I GRADIENT ACCUMULATION

When training large models with DPSGD, increasing the batch size results in memory exploding
during training or finetuning. This might happen even when we are not using DP training. On the
other hand, using a small batch size results in larger stochastic noise in batch gradients. Also, in the
case of DP training, using a small batch size results in fast increment of DP noise (as explained in
Lemma 4.1 in details). Therefore, if the memory budget of devices allow, we prefer to avoid using
small batch sizes. But what if there is a limited memory budget? A solution for virtually increasing
batch size is “gradient accumulation", which is very useful when the available physical memory
of GPU is insufficient to accommodate the desired batch size. In gradient accumulation, gradients
are computed for smaller batch sizes and summed over multiple batches, instead of updating model
parameters after computing each batch gradient. When the accumulated gradients reach the target
logical batch size, the model weights are updated with the accumulated batch gradients. The page
inhttps://opacus.ai/api/batch_memory_manager.html shows the implementation
of gradient accumulation for DP training.
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