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ABSTRACT

We present a framework to define a large class of neural networks for which, by
construction, training by gradient flow provably reaches arbitrarily low loss when
the number of parameters grows. Distinct from the fixed-space global optimality
of non-convex optimization, this new form of convergence, and the techniques
introduced to prove such convergence, pave the way for a usable deep learning
convergence theory in the near future, without overparameterization assumptions re-
lating the number of parameters and training samples. We define these architectures
from a simple computation graph and a mechanism to lift it, thus increasing the
number of parameters, generalizing the idea of increasing the widths of multi-layer
perceptrons. We show that architectures similar to most common deep learning
models are present in this class, obtained by sparsifying the weight tensors of usual
architectures at initialization. Leveraging tools of algebraic topology and random
graph theory, we use the computation graph’s geometry to propagate properties
guaranteeing convergence to any precision for these large sparse models.

1 INTRODUCTION

We consider the supervised learning task, of infering a function f⋆ : X → Y from pairs of samples
(x, f⋆(x)) ∈ X × Y , with x following a distribution D. We restrict our attention to the case X = R

d

and Y = R
k, with a parametric model F : Rm × R

d → R
k, approximating the target function as

F (θ⋆, ·) : Rd → R
k for a fixed parameter θ⋆ ∈ R

m. The loss L : θ 7→ E(x,y)

[

∥F (θ, x)− y∥22
]

is

used to “learn” the parameter θ : R+ → R
m by a gradient flow ∂tθ = −∇L(θ) from θ0 ∈ R

m.

In the context of deep learning, contrary to more generic non-convex optimization, we are not
intrinsically interested in global minima of the fixed-dimension parametric loss L, or in this model
F specifically. This optimization is only a means to the end of finding, among a family of models
Fm : Rm × R

d → R
k of varying sizes m ∈ N, one model-parameter pair (Fm, θ

⋆ ∈ R
m) such

that Fm(θ⋆, ·) ≈ f⋆. The ability of families of models, given as neural networks, to “scale up” to
consistently avoid optimization issues is what the present theory aims to explain and predict.

Challenges. The class of models empirically known to reach near-zero loss when scaled up is large,
and it remains unclear whether it is possible to construct a formalism both sufficiently flexible to cover
all such neural networks and sufficiently rigid to allow non-trivial claims. For two-layer networks
of width h with parameters θ ∈ R

d×h × R
h×k, Cybenko (1989) and Barron (1993) have shown for

various non-linearities σ that for any continuous f⋆ : X → R
k with compact domain X ⊆ R

d, and
any threshold ε ∈ R

∗
+, as h → +∞, there exists θ such that supx∥fθ(x) − f⋆(x)∥2 ≤ ε. We call

the minimal such width h the approximation number h0(f
⋆, ε) ∈ N. This existence result does not

imply that a gradient flow will converge to such a parameter. Nonetheless, the question of whether
a given architecture enjoys similar approximation properties has sparked much interest over the
following decades, with extensions to more layers Leshno et al. (1993), more non-linearities (Pinkus,
1999), convolutional architectures (Cohen & Shashua, 2016), graph-processing (Xu et al., 2019;
Brüel Gabrielsson, 2020) and outside Euclidean geometry (Kratsios & Bilokopytov, 2020), and with
investigations of the link between width and depth (Poggio et al., 2017; Johnson, 2019), and handling
of symmetries (Lawrence, 2022). For the harder question of convergence, with two layers, Robin
et al. (2022, Proposition 4.6) shows that for any ε ∈ R

∗
+ and δ ∈ ]0, 1[, there exists a learning number

h1(f
⋆, ε, δ) ∈ N such that if h ≥ h1, then under standard initialization schemes, a gradient flow will

1



converge to a loss value below ε with probability greater than (1− δ). Note that earlier infinite-width
results hinted at the existence of this number (without assumptions on the sample count), e.g. Chizat
& Bach (2018). The problem of focusing on only approximation is that the corresponding learning
number could be orders of magnitude larger than the approximation number, since it corresponds to a
much stronger property: the target function is not only representable with a model, it is learnable
with this model. Universal approximation is insufficient to predict which models will perform better
in practice, because it fails to quantify the learning number h1, which could be intractably larger
than the approximation number h0; in which case at all tractable sizes h ∈ N with h0 ≤ h < h1, we
would observe models not reaching low loss despite the existence of parameters in dimension h with
lower loss. We seek to upper-bound learning numbers when approximation has been established. This
size-varying gradient flow point of view is meant to model practical deployment of neural networks,
in contrast with works that aim to find a global minimum of fixed size by e.g. convex reformulations
of two and three layers ReLU networks (Ergen & Pilanci, 2021; Wang et al., 2021).
To curb the difficulty of constructing bounds for learning numbers with more than two layers, many
attempts have focused on the simpler setting of a fixed dataset X ∈ Xn of n ∈ N training samples
and growing model size, and provided (typically asymptotic) bounds for this X , independently of
f⋆, by leveraging positive-definiteness of the neural tangent kernel (NTK) matrix under sufficient
overparameterization (Jacot et al., 2018; Du et al., 2018; Ji & Telgarsky, 2020; Chen et al., 2021).
This allows viewing functions X → R as finite-dimensional vectors in R

n, by restriction to X . In
contrast, our objective is to derive bounds for fixed f⋆ independently of n (thus infinite dimension),
to avoid overparameterization assumptions relating number of parameters and samples, so our bounds
depend on a (model-specific) “complexity” of f⋆, but do not diverge with infinitely many samples.

Related formalizing works. We obtain convergence guarantees for broad classes of “neural networks”
when “lifted”, by formalizing a precise meaning for these terms, usable in rigorous proofs. The class
of neural networks that can be described with this theory is more expressive than the Tensor Programs
of Yang & Littwin (2021), in particular because it allows non-linear weight manipulations, and
distinct “scaling dimensions” (e.g. embedding dimension versus hidden layer width in transformers,
which need not be related). In that sense, the core idea is much closer to the description with Named
Tensors of Chiang et al. (2023). Thus the focus is on large but finite-size networks, contrary to
infinite-width limits. However, the convergence shown applies only to sparse networks (in the sense
of Erdös-Renyi, different from the Lottery Ticket (Frankle & Carbin, 2019) use of the term “sparse”).
Several ideas used in our proofs are inspired by Pham & Nguyen (2021), which — in the context
of non-quantitative mean-field convergence — introduce tools to show that throughout training, the
distribution of weights, albeit finitely supported, has positive density in a neighbourhood of any point.

Contributions. We discuss the tangent approximation property in Section 2, and show how it implies
probably approximately correct convergence when the model size grows. We introduce in Section 3 a
formalism to build architectures having by construction a way to lift, and recover usual architectures
in this form. We show in Section 4 that when such systems are sparsified at initialization in a specific
way, then tangent approximation is satisfied, thus PAC-convergence of gradient flows when lifting.

2 CONVERGENCE BY TANGENT APPROXIMATION

Let X ⊆ R
d be a compact set, and let Y = R

k. Let F be the set of continuous functions from X to
Y . Let D be a distribution on X . Let f⋆ : X → Y be a continuous function. Let L : F → R+ be the
function L : f 7→ Ex∼D

[

∥f(x)− f⋆(x)∥22
]

. We write for shortness ∥·∥2D : f 7→ Ex∼D
[

∥f(x)∥22
]

.

Let (S,⪯) be an infinite partially ordered set. For s ∈ S, let Gs be a finite set representing “size-s
architectures”, and let Θs be a finite-dimensional vector space with an inner product, of corresponding
“weights”. For every s ∈ S, let Ns be a distribution on Gs ×Θs. For every s ∈ S and g ∈ Gs, let
F(s,g) : Θs → F be a differentiable function. Let S0 ⊆ S be an infinite set, called “admissible set”.

We will illustrate constructions with two examples, of (possibly sparse) two-and three-layer networks
without biases to learn a function R

d → R. For two layers, S = N is the number of hidden nodes
and Gs = {0, 1}d×s × {0, 1}s×1 the sparsity pattern of the layers. For three layers, S = N

2 is the
number of hidden nodes of each layer, and Gs0,s1 = {0, 1}d×s0 × {0, 1}s0×s1 × {0, 1}s1×1 the

corresponding pattern. A choice of admissible subset — e.g. S0 = {(s0, s1) ∈ N
2 | s0 ≤ s1} of

networks whose width increases with depth — rules out potentially ill-behaved sizes, to formulate
statements like "all networks (not ill-behaved) above a given size (w.r.t. ⪯ on S) have property P ".
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For s ∈ S , g ∈ Gs, and any (κ, ε) ∈ R+ × R
∗
+, let As,g(κ, ε) ⊆ Θs be the set defined as

θ ∈ As,g(κ, ε) ⇔ inf
u∈Θs, ∥u∥≤κ

∥

∥F(s,g)(θ) + dF(s,g)(θ) · u− f⋆
∥

∥

2

D < ε

fθ⋆
f⋆

fθ
fθ + dfθ · u

{fθ | θ ∈ Θ}

Figure 1: Tangent approximation to ε
error (ε-ball depicted by a dotted line)
for fixed s ∈ S , g ∈ Gs with f = F(s,g).

If ∥fθ⋆ − f⋆∥2D < ε, then θ⋆ ∈ A(0, ε).
In contrast, θ ∈ A(∥u∥, ε) \ A(0, ε).

The function As,g( · , ε) is easily seen to be increasing.
Let us flesh out some intuition about it. If As,g(0, ε) ̸= ∅,
then there exists a choice of weights θ at size s such that
F(s,g)(θ) approximates f⋆ to error ε. This does not guar-
antee however that such weights are “learnable”. The
construction As,g(κ, ε) with a tiny non-zero κ allows for
some flexibility: the target is approximable by a lineariza-
tion of F(s,g) with a tiny (∥u∥ ≤ κ) variation of weights.

Hence, As,g(κ, ε) is much larger than As,g(0, ε), but un-
der some regularity conditions on Fs,g there should always
be a small ball around a point of As,g(0, ε) that is included
in As,g(κ, ε) (see Figure 1 for instance). This regularity
is irrelevant for universal approximation theorems, but
crucial for learning theorems. The following property is
sufficient to get convergence to low loss with high prob-
ability. Intuitively, we need tangent approximation with
tangent radius κ, not for a point θ0, but an entire ball
around θ0, with a tangent radius allowed to grow affinely
with the ball radius. Write Bs(θ0, R) = {θ ∈ Θs | ∥θ − θ0∥ ≤ R} the R-ball in Θs around θ0.

Condition C1 (Tangent approximation with high probability). Let (ε, δ) ∈ R
∗
+ × ]0, 1].

There exists c ∈ R+ (a constant intercept) such that for any R ∈ R+ (a maximal radius), there exists
s1 ∈ S (a threshold size) such that for all s ∈ {s ∈ S0 | s ⪰ s1} (admissible sizes above threshold),

P(g,θ)∼Ns

(

∀r ≤ R, Bs(θ, r) ⊆ As,g (c+ r, ε)
)

≥ (1− δ)

In words, with a three-layer network, this is satisfied if for an arbitrarily large radius R, there exists a
threshold size s1 = (H0, H1) ∈ N

2 such that if s0 = (h0, h1) is any network size satisfying h0 ≤ h1
(i.e. s0 ∈ S0) and h0 ≥ H0 and h1 ≥ H1 (i.e. both hidden layers are above the threshold size), then
with high probability over a random weight θ, an entire ball Bs(θ,R) around this initialization has
tangent approximation. We expect in this setting that we can’t say anything for networks whose
width is not increasing with depth (they could be ill-behaved), but other than that, any configuration
above the threshold size has (with high probability) the desirable property of tangent approximation
at initialization and on a large ball around the randomly drawn initialization. Therefore if this
holds, we can expect that a gradient flow will have some desirable properties (granted by tangent
approximation) for a long time after initialization, until it eventually exits the ball. The desirable
property in question is a “sufficient decrease” property of the loss, materialized by a local separable
Kurdyka-Łojasiewicz inequality. Indeed, by a parallelogram identity, −2⟨ dF (θ) · u, F (θ)− f⋆⟩ =
∥ dF (θ) · u∥2 + ∥F (θ) − f⋆∥2 − ∥F (θ) + dF (θ) · u − f⋆∥2. Moreover, for a gradient flow
∂tθ = −∇ℓ(θ), we have ∂t(ℓ ◦ θ) = −∥∇ℓ(θt)∥22. Leveraging the variational form of the ℓ2-norm,
we get −∂t(L◦F ) = − supu 4⟨ dF (θ) ·u, F (θ)−f⋆⟩2/∥u∥22 ≥ −(L◦F −ε)2+/(c+∥θ−θ0∥)2 for
as long as θ ∈ Bs(θ0, R). The separable structure of this bound with respect to L ◦ F and ∥θ − θ0∥,
together with the ability to choose R arbitrarily large, is sufficient to conclude.

To get a feeling of why this assumption might be satisfied, picture a large sparse network with a
“diverse enough” sparsity pattern (the clarification of what this means is the subject of this paper).
If there exists a network, sparse or not, of small size that approximates the target function, then at
initialization, there should be a myriad of small subnetworks identical to that approximator inside the
large network. If the last layer is linear, then “selecting” a convex combination of these outputs is
sufficient to reach low loss. Although the output of the large network may differ from the target, there
is a modification of its last-layer weights that approximates the target function. Lastly, if there are
many such subnetworks, then a small modification of parameters cannot substantially modify them
all if the large network is large enough. The following theorem ensures that tangent approximation is
indeed sufficient, the rest of the paper gives a precise meaning to the intuitions of this first section.

Convergence Criterion 1. Let Θ be a vector space. The pair (L : Θ → R+, θ0 ∈ Θ) satisfies this
criterion with limit error ε ∈ R+ and constant κ ∈ R

∗
+ if for all θ : R+ → Θ such that θ(0) = θ0

satisfying ∂tθ = −∇L(θ), it holds ∀t ∈ R
∗
+, L (θt) ≤ ε+ 1/ 3

√

κ t+ 1/c where c = L(θ0)3 ∈ R+.

3



Theorem 2.1 (Probably approximately correct convergence in loss). Let (ε0, δ0) ∈ R
∗
+ × ]0, 1].

If for (g, θ0) ∼ Ns the variable L ◦ F(s,g)(θ0) ∈ R+ is bounded uniformly in s with high probability,

and if Condition C1 is satisfied for parameters (ε0, δ0), then for any ε > ε0 and δ > δ0, there exists
κ ∈ R

∗
+ and s1 ∈ S such that for all s ∈ S0 satisfying s ⪰ s1 and (g, θ0) ∼ Ns, with probability at

least (1− δ), the pair (L ◦ F(s,g), θ0) satisfies Convergence Criterion 1 with error ε and constant κ.

This statement is a slight extension of Robin et al. (2022, Proposition 4.6) with nearly identical
proof. The main contribution of this paper is the construction of the sparsification in the distribution
Ns satisfying by construction the tangent approximation condition when lifting. This includes
architectures such as multi-layer perceptrons, convolutional networks, and attention-like mechanisms.

3 PERCEPTRON MODULES

For consistency and shorter notations, we use the co-product symbol
∐

for disjoint unions. Formally,
for a family of sets (Ac)c indexed by c ∈ C, define

∐

c∈C Ac =
⋃

c∈C {(c, a) | a ∈ Ac}. A surjective

function p : Y → V from a set Y to a finite set V induces a partition of Y into Yv = p−1(v) indexed
by v ∈ V , i.e. there is a bijection (a.k.a an isomorphism of sets) Y ≈ ∐v∈V Yv. It is equivalent to

specify p or the partition of Y . Given Y , a choice of one element in each part (called a section1) is a
function s : V → Y such that ∀v, s(v) ∈ Yv (i.e. p ◦ s = IdV ). This is also written s ∈∏v∈V Yv .

Definition 3.1 (Euclidean bundle over a finite set). Let V be a finite set. A Euclidean bundle over
V is a set Y and a partition

∐

v∈V Yv, such that for any v ∈ V , the set Yv has the structure of a
finite-dimensional R-vector-space equipped with an inner product (i.e. Yv is a Euclidean space).

The simplest example of a Euclidean bundle is Y = V × R, which “attaches” to each v ∈ V the
Euclidean space Yv = R. The interesting property of these objects is that all attached vector spaces
need not have the same dimension, e.g. Rn

∐

R
k×m with V = {0, 1} is a Euclidean bundle, whose

sections are pairs (u,w) ∈ R
n × R

k×m. We will thus use these objects to describe parameter spaces.

Definition 3.2 (Pullbacks of bundles and sections). Let Y =
∐

v∈V Yv be a Euclidean bundle over V ,

and let U be a finite set. Any function π : U → V defines a Euclidean bundle π∗Y =
∐

u∈U Yπ(u),
and a function π∗ :

∏

v∈V Yv →
∏

u∈U Yπ(u), called a pullback of sections, π∗ : s 7→
(

sπ(u)
)

u∈U

We will use pullbacks to describe how to “make copies” of a space with a function π : U → V . This
is illustrated in Fig. 2, where from a bundle Y we construct a new bundle having a varying number of
copies of each space. π∗ also transports a choice s ∈∏v∈V Yv to

∏

u∈U Yπ(u) by “copying over”.

R R
2

R
k×k

R R R
2

R
k×k

R
k×k

R
k×k

Y =
∐

v∈V Yv

π : U → V

(π∗Y ) =
∐

u∈U Yπ(u)

Figure 2: Illustration of the construction of a pullback bundle, with π : U → V indicated by arrows.
The top row is a set V with 3 elements pictured as circles, and bottom row is U with 6 elements.

The vector spaces attached to each element are depicted next to each corresponding circle.

3.1 GENERALIZING MULTI-LAYER PERCEPTRONS TO ARBITRARY COMPUTATION GRAPHS

We use the definition of a (finite directed) graph G = (V,E) as a finite set V and a set E ⊆ V × V .
We writeG(−, v) the parents of v ∈ V inG, andG(v,−) its children, see Appendix A for a summary
of notations and Appendix C for details on graphs. With the idea of describing neural networks, we
take a computation graph whose vertices indicate variables in a program, and specify a set of “initial”
vertices I corresponding to inputs, and “terminal” vertices T corresponding to outputs. Then, attach
to each vertex v a vector space Yv of “activations at v”, and to each edge (u, v) a vector space W(u,v)

of “weights” of the connection from u to v. For more generality, we also use a vector space Z(u,v) of
pre-activations to represent the intermediary variables before the non-linearity σv associated to v.

1The nomenclature is that of algebraic topology, where these objects are common, but no prior knowledge is
assumed. The names bundle and section serve only to distinguish products / co-products with words.
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Definition 3.3 (Perceptron module). Let B = (V,E) be a finite directed acyclic graph.
A perceptron module over B is a tuple B = ((I, T ), (Y,Z,W), (M,σ)) composed of

• A subset I ⊆ V such that v ∈ I ⇒ B(−, v) = ∅, and a subset T ⊆ V .

• Three Euclidean bundles, Y =
∐

v∈V Yv , and W =
∐

e∈EWe, and Z =
∐

e∈E Ze
• A family of functions (Me)e∈E such that M(u,v) : W(u,v) × Yu → Z(u,v)

• A family of functions (σv)v∈V \I such that σv :
∏

u∈B(−,v) Z(u,v) → Yv
We write Param(B) =

∏

e∈EWe, and PMod(B) the set of perceptron modules over B.

The definition of perceptron modules (and later their lifts in Def. 3.5) is not restricted to multi-layer
perceptrons, and is chosen very general precisely to tackle advanced computation graphs (e.g. Fig. 6).
In most simple instances, the M map would be a regular multiplication (a, b) ∈ R× R 7→ ab ∈ R,
and the σ map an addition and non-linearity, e.g. σ : z ∈ R

k 7→ tanh (
∑

i zi), summing over parents.

Definition 3.4 (Activation map, or “forward” function, of a perceptron module). Let B = (V,E).
A perceptron module B = ((I, T ), (Y,Z,W), (M,σ)) ∈ PMod(B) comes equipped with a map

F[B] :
∏

e∈E
We ×

∏

v∈I
Yv →

∏

v∈V
Yv

with (F[B] : (w,Φ) 7→ f) defined inductively over v ∈ V by fv = Φv if v ∈ I , and for v /∈ I as

fv = σv

(

(

M(u,v)

(

w(u,v), fu
))

u∈B(−v)

)

In general, to be usable, it is also mandatory to describe how the inputs are connected. For instance in

Fig. 4b with a function c : I → {r, g, b} to ensure x 7→ F[B](w, c∗x) has inputs in R
{r,g,b}, not RI .

With the Euclidean bundles W = E × R and Y = V × R, the restriction to T of this function
(w,Φ) 7→ (F[B](w,Φ))|T has type R

m × R
d → R

k, where m = #E ∈ N is the number of
parameters, d = #I ∈ N the number of inputs, and k = #T ∈ N the number of outputs. The
notation with products will become more interesting when the dimension of weights are more unusual.

u v

σvMuv

Yu Zuv
Wuv

Yv

Figure 3: Generic blueprint notation

Blueprint notation. Instead of depicting the acyclic graph
B, with lots of annotations, we use the following graphical
convention.We draw vertices as circles, edges as squares,
with horizontal arrows to indicate vertex-edge incidence,
and vertical arrows from small circles to indicate weights.
We annotate each arrow with a vector space (W from a
small circle to a square, Y from a circle to a square, Z
from a square to a circle), and each shape (circle or square)
— except initial vertices — with a function (respectively σ
and M ) whose domain and codomain matches the spaces
defined by the incoming and outgoing arrows, cf. Figure 3. We depict terminal (resp. initial) vertices
with a continuous (resp. dashed) double circle.

3.2 LIFTING PERCEPTRON MODULES THROUGH HOMOMORPHISMS

This theory describes complicated functions by constructing a “base” perceptron module B, and
then applying a “lift” operation (Def. 3.5) to build a more powerful module G, impossible to draw
due to its large size. The intuition for how to do so is depicted in Fig. 4 with the example of the
multi-layer perceptron (MLP), “replicating” vertices vertically to increase the “width”. Fig. 4a depicts
a perceptron module corresponding to an MLP architecture with two hidden layers, with activation
bundle Y = V × R and weights W = E × R, parent summation and non-linearity σ : R → R, and
maps M(u,v) : R × R → R the multiplication (a, b) 7→ ab. No matrices appear on this blueprint.
Specifying this module, a “width” for each layer, and the connection of inputs, uniquely defines the
MLP. Thus we annotate each vertex with an integer in Fig. 4a, to specify the width of the layer in
Fig. 4b. The parameter space after lifting becomes R

3×5 × R
5×6 × R

6×4. Note how the weight
matrices W(0,1) ∈ R

3×5, W(1,2) ∈ R
5×6 and W(2,3) ∈ R

6×4 arise from the lift. Similarly, for a
convolution operation for which we would use this lift operation to construct more channels, we
expect a weight space W(u,v) = V ≈ R

k to give rise to tensors W(u,v) ∈ V nu×nv ≈ R
k×nu×nv ,

corresponding to nu input-channels and nv output-channels for that convolution.
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3 5

σ

6

σ

4

IdR
×

R R

R

×
R R

R

×
R R

R

R

(a) Blueprint notation of the base module B and lift annotation
n : VB → N above vertices (see Definition 3.6) for MLPs

b

g

r

π

(b) Graph notation of the fully-connected lift G, the homo-
morphism π : G → B is given by vertical projection to (a)

Figure 4: MLP representing functions R{r,g,b} → R
4

We will give a general definition of (sparse)
lifts first, the fully-connected example is
recovered as a subcase later. Intuitively,
from the same base module of Fig. 4a, we
want to construct the MLP with underlying
graph G (from Figure 5a) as a perceptron
module. This is done by “copying” nodes
to construct a layer of hidden nodes in G
from the single node in B that is copied
over. How to perform this copy (i.e. how
many times to copy every node and how to
connect the copied nodes) is specified by
G and a homomorphism π : G→ B. The
vertex map π : VG → VB indicates the
number of copies (v ∈ VB yields nodes
π−1(v) ⊆ VG), and the connectivity pat-
tern is indicated by the structure of the
graph G (which may be sparse) and the
induced edge map π : EG → EB . This
coincides with the transformation depicted
in Fig. 4 (dense) and Fig. 5a (sparse). The condition that π is a homomorphism of graphs ensures that
this construction is well-defined. When there are many incoming connections to a vertex v ∈ EG,
mapped by π to a single edge e ∈ EB , such as in Fig. 4b and Fig. 5, the corresponding pre-activation
values z(u,v) for (u, v) ∈ π−1(e) are summed before the computation of the non-linearity.

b

g

r

(a) Sparse lift similar to the multi-layer perceptron.

b

g

r

(b) Smaller sparse lift with the same base module
B as above. This smaller network (b) is “contained”
(strongly, extracted by fibration, in the vocabulary of
Section 4) in the larger network (a). The inclusion is
denoted by a (dark) red coloring of the nodes in (a).

Figure 5: Sparse lift graphs, denoted G in the more general Def. 3.5, not covered by Def. 3.6.

Definition 3.5 (Lift of perceptron modules). Let G = (VG,EG) and B = (VB ,EB) be graphs. A
homomorphism of graphs π : G→ B defines a function π∗ : PMod(B) → PMod(G) called “lift”,

π∗ :
(

(I, T ), (Y,Z,W), (M,σ)
)

7→
(

(π−1(I), π−1(T )), (π∗Y, π∗Z, π∗W), (M̄, σ̄)
)

where for e ∈ EG, M̄e =Mπ(e), and for v ∈ VG \ π−1(I), σ̄v :
∏

u∈G(−,v) Zπ(u,v) → Yπ(v) is

σ̄v : z 7→ σπ(v)











∑

u∈π−1(a)∩G(−,v)
z(u,v)





a∈B(−,π(v))







Let C be a finite set and pC : C → I . Define LiftPMod(B, C) as the set of tuples (G, π, c) where
π : G→ B is a graph homomorphism, and c : π−1(I) → C an injection such that pC ◦ c = π|π−1(I).

We extend the notation of forward functions to G = (G, π, c) ∈ LiftPMod(B, C) by defining the
function F[G] : Param(G)×∏u∈C YpC(u) →

∏

v∈VG
Yv as F[G] : (w, x) 7→ F[π∗

B](w, c∗x).

Recall that the bundle Y is equivalent to a family (Yv)v∈VB
of Euclidean spaces, so the the pullback

π∗Y =
∐

v∈VG
Yπ(v) is equivalent to a family ((π∗Y)v = Yπ(v))v∈VG

, consistent with the intuition
of “copying” activation spaces when replicating nodes (and similarly for Z and W indexed by edges).
Validity of this definition (e.g. well-definition of the z-sum) is easy to check, details in Appendix K.1.
Our later convergence theorem will only apply to particular sparse lifts, but most common deep
learning architectures use a lift which is maximally connected, yielding dense weight tensors.
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Definition 3.6 (Fully-connected lift). Let B = (VB ,EB) be a directed acyclic graph.
Let n : VB → N be a function, called the “lifting dimension”. Define the graph C = (VC ,EC) as

VC = { (b, i) | b ∈ VB , i ∈ [nb] } and EC = { (u, v) ∈ VC ×VC | (π(u), π(v)) ∈ EB }
with π : VC → VB projection to the first coordinate. We call C the fully-connected lift of B along n.

Similarly if B ∈ PMod(B), we call π∗
B ∈ PMod(C) the fully-connected lift of B along n.

If C =
∐

b∈IB
[nb] (i.e. an order of inputs has been chosen), then (C, π, IdC) ∈ LiftPMod(B, C).

We can check that the forward function of the lifted module from Fig. 4 is the usual perceptron
forward. Indeed, for a vertex v ∈ VB \ IB , and i ∈ [nv], we get the activation f(v,i) ∈ Yv = R as

f(v,i) = σv





∑

(u,j)∈C(−,(v,i))
M(u,v)

(

w(u,j),(v,i), f(u,j)
)



 = σv





∑

j∈[nu]

f(u,j) w(u,j),(v,i)





with u the unique parent of v in B in the last part. In matrix notation, fv = σv
(

fu ·W(u,v)

)

∈ R
nv

A more interesting example. Using the operation AddSoftMul : (Rn × R
n) × R

n×n → R
n,

((x, y), A) 7→ x+softmax(A) ·y, where the softmax is taken over each row (and potentially masked),
we recover modules similar to the transformer blocks of Vaswani et al. (2017) (see Figure 6).

q

k

AddSoftMul

d

⊗

h

ReLU

s

Add

⊗
R
n R

n × R
n

R
2

⊗

R
n

R
n × R

n
R

2

R
n×n

R
n

R

R
n

R
n

R

R
n

R
n

R

R
n

Figure 6: MixingTransformer : X ∈ R
n×q 7→ Y ∈ R

n×s, weights (top-to-bottom, left-to-right):
(MA,WV ) ∈ R

q×k × R
q×k, MB ∈ R

k×s, (WQ,WK) ∈ R
q×d × R

q×d, H0 ∈ R
k×h, H1 ∈ R

h×s,

Z = X ·MA + softmax
(

(X ·WQ) · (X ·WK)
T
)

· (X ·WV ), Y = Z ·MB + σ(Z ·H0) ·H1

The first block (X 7→ Z) is a usual self-attention when q = k and the mixing matrix is MA = Iq , the
second block (Z 7→ Y ) is a residual MLP block when k = s and the mixing matrix is MB = Ik.

4 RANDOM SPARSE LIFTS AND CONVERGENCE OF SPARSE PERCEPTRONS

We start by reviewing the proof ideas for the convergence theorem, to give intuition for the definitions.

Split setup & easy recombination. To analyse a large neural network with linear last layer, we split
it into a composition, first of a perceptron module computing deep features (whose number will scale)
followed by a linear recombination function (whose input dimension will scale, but output dimension
remains fixed). With fixed features, learning the last layer is easy by convexity, in particular if
“optimal features” are present then the global optimum of the last layer must have optimal loss.

Coverage property. If the perceptron module representing the features is sufficiently large, it should
“contain” a sub-network computing near-optimal features. The usual way to understand this term for
a directed graph G = (VG,EG) is to select a “subgraph”, which is a graph S = (VS ,ES) such that
VS ⊆ VG and ES ⊆ EG. This is for instance the way such a “sub-network” is understood in the
lottery ticket hypothesis (Frankle & Carbin, 2019). In the language of graph theory, this corresponds
to an extraction by homomorphism (because the inclusion ι : VS → VG induces a homomorphism of
graphs from S to G). These “sub-networks” are in general very different from the larger network, and
do not necessarily compute the same functions (it is the lottery ticket hypothesis that they actually do
learn similar functions, by a yet-unexplained mechanism). There is in graph theory (and algebraic
topology more generally) a different way to extract what we could call a “strong sub-graph”, by
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fibration instead of homomorphism. The inclusion map ι : VS → VG is a fibration of graphs if the
following two conditions hold: first, if (u, v) ∈ VS × VS and (u, v) ∈ EG then (u, v) ∈ ES (no
“removal of edges”); also, if v ∈ VS , then G(−, v) ⊆ VS (no “removal of parents”). Intuitively, if
S and G are viewed as computation graphs, then removing an incoming edge or removing a parent
will change the computation, while removing a child does not. Thus if S is “strong sub-graph” of G,
extracted by fibration, we can extract the subgraph then perform a computation in the subgraph and
isolate an activation, or we could equivalently perform the computation in the larger graph and then
extract the activations associated to the subgraph and isolate the activation of the target vertex. When
multi-layer perceptrons are constructed with dense linear layers, a network of width 2n does not
contain (in the sense of “strong sub-graphs” extracted by fibration) a sub-network of width n. This is
because the number of terms in each sum is 2n in the large nework, one for each parent of the node
considered, which is fully connected to every node of the previous layer. However, fibrations preserve
the number of parents, and the smaller network has n terms in each sum, again one for each parent, but
there are only n such parents at width n. Nonetheless, we can easily construct networks that do have
this property of containing smaller sub-networks by construction, by simply sparsifying the dense
layers, similarly to a dropout masking operation that would be performed at initialization and whose
mask is held constant throughout training. In these sparse networks, increasing model size cannot
hurt (provably) because a large network “contains” (strongly) a small sub-network that is computing
the same thing as a smaller model. The coverage property that we need is only very slightly stronger:
there needs to be a certain fraction (or “volume”) of sub-networks that are near-optimal, not just one,
the precise details are in the formal statements of Appendix H.

Local stability of coverage. The existence of sub-networks computing interesting features at
initialization is insufficient for a convergence proof, because we intend to train the weights of the
large network, and thus we expect the weights to move and have no guarantee that the sub-network
will continue to perform a similar computation throughout training. The last ingredient we require is
that the large network has a low “outgoing degree” (i.e. each vertex in the directed graph has few
children), such that there is no vertex whose activation is re-used too much by later vertices, no single
point of failure that could perturb the entire network if its weights move slightly too much in the
wrong direction. Coupled with a covering in volume, this low-degree property implies that there is an
entire region of parameters around initialization where we can guarantee that there is a sub-network
with near-optimal features, rather than only at the single point of initialization. This implies that
at initialization of a very large sparse network, we expect a large number of sub-networks to be
near-optimal, and throughout training the number of near-optimal sub-networks can only decrease
slowly (due to the low outgoing degree): if a sub-network is perturbed enough to no longer be close to
an optimal feature, then the last layer can simply switch the associated weight of this sub-network to
a similar but un-perturbed sub-network to recover optimality (acceptable due to easy recombination).

4.1 RANDOM SPARSE LIFTS OF PERCEPTRONS MODULES

From now on, we will only ever consider a single base module with various lifts. Therefore, let
B = (VB ,EB) be a finite directed acyclic graph. Let B ∈ PMod(B) be a perceptron module, and
write its components B = ((IB ,TB), (Y,Z,W), (M,σ)). We will also keep fixed the number of
lifted inputs (comparing modules with different inputs is not very useful anyway). Let n0 : IB → N,
and C =

∐

b∈IB
[n0b ] (without loss of generality on a finite set C =

∐

b∈IB
Cb after ordering Cb ≈ [n0b ]).

The first ingredient needed is the presence of a linear last layer with fixed output dimension even
when the number of nodes in the perceptron module computing the “deep features” tends to infinity.

Definition 4.1 (Perceptron with linear readout). Let G = (G, π, c) ∈ LiftPMod(B, C), and k ∈ N.

Let LinReadout(G, k) =
∏

v∈T (G) Yπ(v)k with LinReadout(G, k)×∏v∈V (G) Yπ(v) → R
k

(a, x) 7→ a · x =





∑

b∈TB

√

1

#π−1(b)

∑

v∈π−1(b)

⟨ai,v, xv⟩Yb





i∈[k]

We can now describe the sparsification procedure. Note that the following definition is equivalent to
using a fully-connected lift and a random dropout mask m, drawn at initialization and fixed during
training. We expect the probability distribution chosen on weights We to be a normal distribution in
all applications (thus write it N ), but we will only require the assumption that it has full support.
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Definition 4.2 (Random sparse lift). Let n : VB → N be such that nb = n0
b for all b ∈ IB .

Let λ : EB → R+, and for every e ∈ EB , let Ne be a probability distribution on We.

Let C = (VC ,EC) be the fully-connected lift of B along n, with homomorphism π : C → B.
Let (m : EC → {0, 1}, w : EC → π∗W) be independent random variables with distributions
m(u,v) ∼ Bern(λπ(u,v)/nπ(u)) Bernoulli for any (u, v) ∈ EC , and with we ∼ Nπ(e) for e ∈ EC .

The random sparse lift of B along (n, λ) with distribution N is the tuple (G, w|E), where G = (V,E)
is the random graph with V = VC , E = {e ∈ EC | me = 1}, G is the lifted perceptron module
G = (G, π, IdC) ∈ LiftPMod(B, C) and w|E ∈ Param(G).

For an architecture for which universal approximation has been established (i.e. the approximation
“number” h0(f

⋆, ε) is finite), we show that we can construct random sparse lifts for which the learning
“number” h1(f

⋆, ε, δ) is also finite for failure probabilities δ > 0 arbitrarily close to zero. However,
in general this “number” is not an integer but an element of Nk, where k ∈ N is the number of scaling
dimensions (one per vertex of B). We refer to the network approximating the target function as the
witness network, since it is a witness for the universal approximation theorem at a given precision.

4.2 CONVERGENCE OF SPARSE PERCEPTRONS

Let X ⊆∏u∈C YpC(u) be compact, D a distribution on X , and let f⋆ : X → R
k with ∥f⋆∥2D <∞.

For any G ∈ LiftPMod(B, C), define the loss L[G] : Param(G)× LinReadout(G, k) → R+ as

L[G] : (w, a) 7→ Ex∼D
[

∥a · F[G](w, x)− f⋆(x)∥22
]

Let λ : EB → R
∗
+. For e ∈ EB , let Ne be a full-support distribution on We. Additionally, de-

fine S0 = {n : VB → N | ∀b ∈ IB , nb = n0b , ∀(a, b) ∈ EB , nb ≥ na log na}, where n0
b = #p−1

C (b).
We assume B has (M,σ) maps that are continuously differentiable, to ensure gradients exist and have

finite norm. Finally, we assume that for (a, b) ∈ EB if a ∈ IB then λ(a,b) ≤ min{n0
a/2, (n

0
a/3)

1/2}.

Theorem 4.3 (Probable approximate correctness of random sparse lifts under gradient flow).
Let (ε, δ) ∈ R

∗
+ × ]0, 1]. If there exists G⋆ ∈ LiftPMod(B, C) a lifted perceptron module, and

parameters (w⋆, a⋆) ∈ Param(G⋆)× LinReadout(G⋆, k) such that L[G⋆](w⋆, a⋆) < ε, then there
exists κ ∈ R

∗
+ and N1 : VB → N (a size threshold) such that the following proposition holds:

For all n ∈ S0 such that n ⪰ N1, with probability at least (1 − δ) over (G, w) a random sparse
lift of B along (n, λ) with distribution N , and a = 0 ∈ LinReadout(G, k), the pair (L[G], (w, a))
satisfies Convergence Criterion 1 with limit error ε and constant κ.

We give in Appendix J a quantitative version with bounds on N1 and κ as a function of the witness
network structure and choice of parameters, allowing for future quantitative research in this direction.
Note that this is immediately extended to a loss f 7→ E(x,y)[∥f(x)− y∥22] with E(x,y)[∥y∥22] < ∞.

Indeed, that is equal to ∥f −f⋆∥2D +E[V[Y |X]] for f⋆ : x 7→ E(X,Y )∼D[Y |X = x]. Moreover, note
that this theorem holds for any ε ∈ R

∗
+ and not only near zero. This statement thus truly matches what

it means to converge to the infimum of the LiftPMod(B, C) class with large lifts, which should prove
most interesting when that architecture is restricted to respect certain symmetries by construction.

We believe that the conditions here are interesting because they are easy to verify. (1) The condition
that the architecture is obtained as a random sparse lift can be satisfied by construction with little
restriction on architecture search. (2) The condition that any lift (sparse or dense) with low loss exists
can be obtained by universal approximation, or empirically because any network with low loss can
serve as witness. Proving or disproving a similar result for dense lifts is left as future work.

We modeled dynamics in continuous-time, and considered only convergence in loss. Convergence of
parameters will require more assumptions, see e.g. Patel et al. (2022, Section 2). Discrete time results
will also require more assumptions, but are often obtained by extending continous-time results, see e.g.
Even et al. (2023, Theorem 1). We did not assume that D is finitely supported, to facilitate extensions
in online learning with test-loss bounds from stochastic gradient estimates on finite samples.

Conclusion. We have shown PAC-convergence of large random sparse lifts under gradient flow to
the infimum over all lifts, by introducing a strong formalism to define a large class of neural networks
and the tools to track their activations across training to show tangent approximation properties for a
long enough time. We believe that this direction constitutes a promising route to a strong convergence
theory for deep learning, with a principled architecture design and testable empirical predictions.
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A SUMMARY OF NOTATIONS

Table 1: Summary of principal notations used in this document

B = (VB ,EB) The base graph, for the base perceptron module

G = (VG,EG) The lifted graph when there is only one, the graph
of the random sparse lift in the last theorem

G⋆ = (V⋆,E⋆) The graph of the witness network, the lifted per-
ceptron module achieving the loss threshold.

G(−, v) = {u ∈ VG | (u, v) ∈ EG} for v ∈ VG The parents (direct ancestors) of vertex v in G.

G(v,−) = {u ∈ VG | (v, u) ∈ EG} for v ∈ VG The children (direct descendants) of v in G.

B = ((IB ,TB), (Y,Z,W), (M,σ)) The base perceptron module (Definition 3.3). The
functions (M,σ) are continuously differentiable.

C =
∐

b∈IB

Cb or pC : C → IB The “meaningful names” of input connections.
This is “simplified” to Cb = {0, . . .#Cb − 1} in
the proof without loss of generality, but leaves
room for easier implementations. For instance,
for single input type IB = {img}, lifted to three
channels (one per RGB color), meaningful names
can be Cimg = {r, g, b}, instead of {0, 1, 2}.

X ⊆
∏

b∈IB

∏

c∈Cb

Yb A compact subset of inputs accessed “by name”.
With two input types IB = {img, text}, lifted as
above for the image and to T ∈ N tokens for the
text with Ctext = [T ], then

∏

b∈IB

∏

c∈Cb
Yb =

Yimg
{r,g,b} × Ytext

T . The spaces Yb can be dis-

tinct, e.g. Yimg = R
256×256 and Ytext = R

k

with k ∈ N an arbitrary embedding dimension.

(G, π, c) ∈ LiftPMod(B, C) A lifted perceptron module (Definition 3.5). The
homomorphism π : G → B encodes the struc-
ture of the lift, the map c provides the connection
to inputs (e.g. which vertex is the r-channel, etc.)

Param(B) =
∏

e∈EB

We The parameter space of the base perceptron
module B ∈ PMod(B). There is one (multi-
dimensional) weight per edge in the base module.
All spaces We need not have the same dimension.

Param(G) =
∏

e∈EG

Wπ(e) =
∏

e∈EB

∏

f∈EG

π(f)=e

We The parameter space of a lifted perceptron mod-
ule G = (G, π, c) ∈ LiftPMod(B, C). There is
one copy of We per edge f ∈ EG with π(f) = e.
The number of edges will grow when scaling up,
the dimension of the spaces We remain fixed.

F[G] :
∏

e∈EG

Wπ(e) ×
∏

u∈C
YpC(u) →

∏

v∈VG

Yπ(v) Forward function of a lifted perceptron module
G = (G, π, c) ∈ LiftPMod(B, C) over G =
(VG,EG) with homomorphism π : G→ B.

LinReadout(G, k) =
∏

v∈T (G)

Yπ(v)k Linear readout of a perceptron module (i.e. linear
last layer), see Definition 4.1.
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Throughout this paper, we use the french notation conventions, in particular 0 ∈ N, the open and
half-open intervals are noted ]a, b[ = {u ∈ R | a < u < b} and [a, b[ = {u ∈ R | a ≤ u < b}. We
use liberally parenthesis or brackets to group factors in our proofs, for readability and without any
particular distinction. We write “log” for the natural (or base-e) logarithm, i.e. ∀u, log exp(u) = u.
For time-dependent quantities, we rarely distinguish between index notation and application, so for
θ : R+ → R

d a function, we write θt = θ(t) either in index or between parenthesis and use whichever
is more readable depending on context (only exception is when both θ a function and θ0 a constant
are defined at the same time, but we take both to coincide anyway). The norm notation ∥·∥ is used

only in finite dimension and always indicates the Euclidean norm ∥v∥V =
√

⟨v, v⟩V , a.k.a. ℓ2-norm:

∥u∥2 =
∑

i u
2
i in an orthonormal basis. On products of Euclidean spaces V andW the corresponding

norm is the induced Euclidean norm on the product ∥(v, w)∥V×W =
√

∥v∥2V + ∥w∥2W .

Table 2: Summary of advanced notations used mostly in the appendix

T (G) = π−1(TB) and I(G) = π−1(IB) The initial and terminal nodes of a lifted percep-
tron module G = (G, π, c) ∈ LiftPMod(B, C).

V (G) = VG and E(G) = EG The vertices and edges of the underlying graph
G = (VG,EG) in a lifted perceptron module
G = (G, π, c) ∈ LiftPMod(B, C).

H = (VH ,EH) The other lifted graph when there are two.

S = (VS ,ES) The subgraph of G extracted by fibration.

Ga(−, v) = π−1(a) ∩G(−, v) The “type-a” parents of v ∈ VG, with a ∈ VB
a vertex of the base graph, and π : G → B is
the homomorphism indicating “types”. In MLPs,
the “type” is the index or depth of the correspond-
ing layer. In more general perceptron modules,
the notions of layer and depth cease to be well-
defined, they are replaced by the pre-image by π
of a given vertex or edge in the base module.

π∗Y =
∐

v∈VG

Yπ(v) Pullback bundle of activations for a lift
(G, π, c) ∈ LiftPMod(B, C), see Definition 3.2.

π∗W =
∐

e∈EG

Wπ(e), π∗Z =
∐

e∈EG

Zπ(e) Pullback bundles for weights and pre-activations.

(π∗w) ∈
∏

e∈EG

Wπ(e) for w ∈
∏

b∈EB

Wb Pullback of sections (here, weights). This corre-
sponds to an intuitive copy, i.e. (π∗w)e = wπ(e).

φ∗ :
∏

h∈VH
Yh →∏

g∈VG
Yφ(g) Pullback of activations by a map φ : VG → VH .

(S, φ) : G ⇀ H The partial fibration from graph G to graph H ,
i.e. a subgraph S of G such that the inclusion
ι : S → G is a fibration, together with a fibration
φ : S → H , see Definition H.1.

(S, φ) : (G, π, c)⇀ (G⋆, π⋆, c⋆) The LiftPMod(B, C)-morphism from the ran-
dom sparse lift to the witness. See Definition F.1.
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B ORGANISATION OF THE APPENDIX

Appendix C recalls the usual definitions for graphs and various types of morphisms between them.
Appendix D studies the effect of the constants in the definition of Convergence Criterion 1 to give
some early intuition. Appendix E gives the proof of the probably approximately correct convergence
Theorem 2.1, showing how tangent approximation properties are sufficient to get convergence.
Appendix F introduces the concept of morphisms of lifted perceptrons. Appendix G shows how
to track activations even when weights can move, by leveraging the aforementionned morphisms.
Appendix H shows how the tangent approximation property can be obtained from a covering property.
Appendix I shows that the covering property previously defined is satisfied with high probability in
random sparse lifts. Appendix J ties everything together in a quantitative version of Theorem 4.3.
Appendix K provides all the more cumbersome proofs of well-definition of all concepts introduced in
the document. Finally, Appendix L provides the proof of several small technical lemmas for bounding
random variables that were used to alleviate the proofs of previous sections.

C GRAPH DEFINITIONS AND LEMMAS

C.1 GRAPH DEFINITIONS

We consider the language of graphs known to the reader, see Wilson (2010) for a thorough introduction
otherwise. All graphs we consider are finite directed (see Wilson (2010, Chapter 7) more precisely)
and acyclic. We use the following definitions in our proofs.

Definition C.1 (Graph). A (directed) graph is a couple (V,E) of a finite set V and a set E ⊆ V × V .

The set V is called the set of “vertices”, and E the set of “edges”. When G = (V,E) is a graph,
and v ∈ V , we write G(v,−) = {u ∈ V | (v, u) ∈ E } the set of out-neighbours of v (also called
children), and G(−, v) = {u ∈ V | (u, v) ∈ E } the set of in-neighbours of v (also called parents).

Definition C.2 (Homomorphism). Let G = (VG, EG) and H = (VH , EH) be graphs. A function
φ : VG → VH is a homomorphism of graphs if (u, v) ∈ EG ⇒ (φ(u), φ(v)) ∈ EH

We write homomorphisms as φ : G→ H , by extending naturally the function of vertices to a function
of edges φ : EG → EH , (u, v) 7→ (φ(u), φ(v)).

It is immediate from the definition that the composition of homomorphisms is also a homomorphism.

For our purposes, a directed graph G = (V,E) is acyclic if there exists a total order ≺ on V such
that (u, v) ∈ E ⇒ u ≺ v. This is equivalent to the definition of acyclicity as being “without cycles”.

Definition C.3 (Fibration). A fibration from a graph G = (V,E) to a graph H is a homomorphism
φ : G→ H such that for all v ∈ V, the restriction φ|G(−,v) : G(−, v) → H(−, φ(v)) is bijective.

In words, a fibration is a homomorphism that is also an isomorphism of in-neighbourhoods.

C.2 FIBRATIONS ARE CLOSED UNDER COMPOSITION

Proposition C.4. If φ : G→ H and ψ : H → K are fibrations, then ψ ◦ φ : G→ K is a fibration.

Proof. A fibration is a homomorphism that is an isomorphism of in-neighbourhoods. Therefore,
since ψ ◦ φ is a homomorphism by composition, it suffices to show that it is an isomorphism of
in-neighbourhoods. Write G = (VG, EG), H = (VH , EH) and K = (VK , EK). Let vK ∈ VK , and
vG ∈ VG such that (ψ ◦ φ)(vG) = vK . Write vH = φ(vG) ∈ VH . By the fibration property of ψ,
there exists a bijection s : H(−, vH) → K(−, vK) with s = ψ|H(−,vH). By the fibration property

of φ, there exists a bijection t : G(−, vG) → H(−, vH) with t = φ|G(−,vG). The composition

s ◦ t : G(−, vG) → K(−, vK) is a bijection as a composition of bijections, it remains to check that it
coincides with (ψ ◦ φ), which is immediate since (s ◦ t)(u) = s(t(u)) = s(φ(u)) = ψ(φ(u)).
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D CONVERGENCE CRITERION 1 : DEPENDENCY ON PARAMETERS

Proposition D.1 (Convergence Criterion weakening).
Let κ0 ∈ R+ and ε0 ∈ R+. Let κ1 ∈ R+ and ε1 ∈ R+ be such that κ1 ≤ κ0 and ε1 ≥ ε0.

If (L : Θ → R+, θ0 ∈ Θ) satisfies Convergence Criterion 1 with limit error ε0 and constant κ0, then
(L, θ0) also satisfies Convergence Criterion 1 with limit error ε1 and constant κ1.

This is consistent with the intuition that in Convergence Criterion 1, the constant κ is a form of
“speed” (higher speed is more impressive) and ε a form of “error” (lower error is more impressive).

Proof of Proposition D.1. For any t ∈ R+, let St : R+ × R+ × R
∗
+ → R+ be the function

St : (κ, ε, c) 7→ ε+
1

3

√

κ t+ 1
c

Let us show that St is increasing with respect to ε, decreasing with respect to κ and increasing with
respect to c. Let (κ, ε, c) ∈ R

2
+ × R

∗
+. Compute the following derivatives and observe their sign

∂εSt(κ, ε, c) = +1 ≥ 0

∂κSt(κ, ε, c) = −1

3
(t) (κ t+ 1/c)

−4/3 ≤ 0

∂cSt(κ, ε, c) = −1

3

(−1

c2

)

(κ t+ 1/c)
−4/3 ≥ 0

Now to conclude, let (L, θ0) be a pair satisfying Convergence Criterion 1 with limit error ε0 and
constant κ0. Let θ : R+ → Θ be such that θ(0) = θ0 and ∂tθ = −∇L(θ). Let c0 = L(θ0)3 and
t ∈ R+. By assumption, L(θt) ≤ St(κ0, ε0, c0). By the study of variations above, St(κ0, ε0, c0) ≤
St(κ1, ε0, c0) ≤ St(κ1, ε1, c0). Thus for t ∈ R+, it holds L(θt) ≤ St(κ1, ε1, c0), which is the
definition of Convergence Criterion 1 with limit error ε1 and constant κ1, and concludes the proof.

Bonus: Note that we have also shown increase of St with respect to c, so in later proofs it is sufficient
to show L(θt) ≤ St(κ, ε, c) with an inequality c ≤ L(θ0)3 rather than equality.

Definition D.2 (Extended Convergence Criterion). Let ε ∈ R+. The pair (L : Θ → R+, θ0 ∈ Θ)
satisfies the extended Convergence Criterion with limit error ε and constant κ = +∞ if for all
θ : R+ → Θ such that θ(0) = θ0, satisfying ∂tθ = −∇L(θ), it holds ∀t ∈ R+, L(θt) ≤ ε.

It is immediately observed by the previous proposition — and the fact that [St(κ, ε, c) → ε] when
[κ→ +∞] — that this statement is equivalent to “Convergence Criterion 1 is satisfied with constant
+∞ if it is satisfied with all finite constants κ ∈ R+”. This is also consistent with the intuition that
the statement of a flow reaching a loss ε with “speed” κ can be naturally extended to a statement with
“infinite speed” if the flow just reaches loss ε instantly. Because of this consistency with the previous
criterion, we do not in the following distinguish this extension from Convergence Criterion 1.
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E PROBABLE APPROXIMATE CORRECTNESS BY TANGENT APPROXIMATION

Lemma E.1 (Convergence criterion by integration of a separable Kurdyka-Łojasiewicz inequality).
Let Θ be a vector space, L : Θ → R+ a differentiable function, and θ0 ∈ Θ. Let ε ∈ R

∗
+, R ∈ R+,

c ∈ R
∗
+. If for all θ ∈ Θ such that ∥θ− θ0∥ ≤ R, it holds ∥∇L(θ)∥ ≥ (L(θ)− ε)+/(∥θ − θ0∥+ c),

Then the pair (L, θ0) satifies Convergence Criterion 1 with limit error ε0 = τ ·L(θ0)+(1−τ)·ε ∈ R+

where τ = c/(R+ c) ∈ ]0, 1], and with constant κ = 3 c−2(L(θ0)− ε)−2
+ ∈ R+ ∪ {+∞},

Since Convergence Criterion 1 uses a bound L(θt) ≤ ε0 + 1/ 3
√

κ t+ 1/C0 for which the right hand
side is strictly decreasing with respect to κ, we can naturally extend its definition to κ = +∞ if the
convergence criterion is satisfied for all positive finite κ, which is also equivalent to simply a bound
of ∀t, L(θt) ≤ ε0. Those are not the most interesting cases anyway, but this stresses the fact that this
statement is well-defined in all edge cases. Note also that for fixed c, this statement has ε0 −→

R→∞
ε.

Proof. Let θ : R+ → Θ be a differentiable curve such that θ(0) = θ0 and ∂tθ = −∇L(θ). Note that
if L(θ0) ≤ ε then the conclusion is immediate because L(θ0) ≤ ε0 and the loss is non-increasing
since ∂t(L ◦ θ)t = ∇L(θt) · ∂tθt = −∥∇L(θt)∥2 ≤ 0. It remains to tackle only the other case,
thus for the remainder of the proof, let us assume L(θ0) > ε, and in particular ε ≤ ε0, then define
T = inf ({ t ∈ R+ | ∥θt − θ0∥ ≤ R }⋂{ t ∈ R+ | L(θt) > ε }).

Radius upper-bound by separable KŁ integration. Define r : [0, T [→ R+ as r : t 7→
∫ t

0
∥∂tθu∥ du.

Observe that for all t ≤ T , by triangle inequality it holds ∥θt − θ0∥ ≤ r(t). Therefore,

∂trt = ∥∂tθt∥ = ∥∇L(θt)∥ =
(S1)

∥∇L(θt)∥2
∥∇L(θt)∥

≤
(S2)

∥∇L(θt)∥2
1

rt+c
(L(θt)− ε)+

=
(S3)

(rt + c)
−∂t(L ◦ θ)t
L(θt)− ε

where (S1) is valid because ∥∇L(θt)∥ > 0 by the initial assumption and restriction to L(θt) > ε,
and (S2) is the initial assumption again, and (S3) uses ∂t(L ◦ θ)t = −∥∇L(θt)∥2 and L(θt) > ε.

This corresponds to the inequality ∂t(Ψ ◦ r) ≤ ∂t(Φ ◦ L ◦ θ) where Ψ : s 7→ log(s + c) and
Φ : s 7→ − log(s− ε). Integrating the inequality between 0 and t < T yields the inequality

log

(

rt + c

0 + c

)

=
[

log(ru + c)
]t

0
≤
[

− log (L(θu)− ε)
]t

0
= log

(L(θ0)− ε

L(θt)− ε

)

Thus after taking exponentials on both sides,

rt + c ≤ c
L(θ0)− ε

L(θt)− ε
(1)

Radius bound injection and reintegration. Define the ε-discounted loss Lε : Θ → R+ as
Lε : θ 7→ (L(θ)− ε)+. Injecting the radius bound inequality (1) into the initial assumption,

∂t(Lε ◦ θ)t =
(S1)

∂t(L ◦ θ)t = −∥∇L(θt)∥2 ≤
(S2)

− (Lε(θt))2

(rt + c)
2 ≤

(S3)
− (Lε(θt))4

(cLε(θ0))2
where (S1) is because for all t < T , it holds L(θt) = Lε(θt)+ ε by definition of T , (S2) is the initial
assumption coupled with rt ≥ ∥θt − θ0∥, and (S3) is the injection of the radius bound inequality.

Therefore, let κ = 3/ (cLε(θ0))2 ∈ R
∗
+, and Ξ : u 7→ −1/u3. We have shown the inequality

∂t (Ξ ◦ Lε ◦ θ)t = +3
∂t(Lε ◦ θ)t
(Lε(θt))4

≤ −κ

Integrating between 0 and t < T , this yields −Lε(θt)−3 + Lε(θ0)−3 ≤ −κt, thus after inverting Ξ,

∀t < T, Lε(θt) ≤
(

Lε(θ0)−3 + κt
)−1/3

(2)

Conclusion. We are now ready to conclude by case disjunction. If T = +∞, Eq (2) immediately
implies Convergence Criterion 1. If T < +∞, there are two cases to tackle. First, if L(θT ) ≤ ε,
then the bound of Eq (2) holds for t < T and is extended to all t ≥ T by the non-increasing property
L(θt) ≤ L(θT ) ≤ ε ≤ ε0, which concludes. Lastly, if ∥θT − θ0∥ = R, then by inequality (1) we get
L(θT )−ε ≤ c

R+c (L(θ0)−ε). Therefore L(θT ) ≤ τ ·L(θ0)+(1−τ) ·ε = ε0 where τ = c/(R+c).
We conclude this case again by non-increasing extension, which completes the proof.
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Theorem E.2 (Quantitative version of Theorem 2.1). Let (ε, δ) ∈ R
∗
+ × ]0, 1].

If there exists C : ]0, 1] → R+ such that for any s ∈ S0 and for any δ ∈ ]0, 1] it holds

P(g,θ)∼Ns

[

L ◦ F(s,g)(θ) ≤ C(δ)
]

≥ 1− δ, and if there exists constants ε0 < ε and δ0 < δ such that

Condition C1 is satisfied with parameters (ε0, δ0), then let c ∈ R+ be the corresponding intercept, let
s1 ∈ S be the threshold size associated by Condition C1 to radius R = c (C(δ − δ0)− ε0)/(ε− ε0),
and let κ = 3 c−2 C(δ − δ0)

−2∈ R
∗
+.

It holds for all s ∈ S0 satisfying s ⪰ s1, that if (g, θ0) ∼ Ns, then the pair (L ◦ F(s,g), θ0) satisfies

Convergence Criterion 1 with limit error ε and constant κ with probability at least (1− δ).

Note that Theorem 2.1 is a direct consequence of Theorem E.2, it thus suffices to prove the latter.

Proof of Theorem E.2. Let s ∈ S0 such that s ⪰ s1. Let (g, θ0) ∼ Ns. Let A be the event:
[∀r ≤ R,B(θ0, r) ⊆ As,g(c + r, ε0)]. By Condition C1, P(A) ≥ (1 − δ0). Let B be the
event: [L ◦ F(s,g)(θ0) ≤ C(δ − δ0)]. By boundedness assumption, P(B) ≥ 1 − (δ − δ0).
Therefore, by union bound, P(A ∩ B) ≥ 1 − P(¬A) − P(¬B) ≥ 1 − δ. Let S be the event
[(L ◦ F(s,g), θ0) satisfies Convergence Criterion 1 with limit error ε and constantκ]. It only remain

to show that S ⊆ A ∩B, since that will imply P(S) ≥ P(A ∩B) ≥ 1− δ.

We will do so by leveraging Lemma E.1. Write for shortness C = C(δ − δ0). Let (g, θ0) ∈ Gs ×Θs
be such that ∀r ≤ R,B(θ0, r) ⊆ As,g(c + r, ε0), and L ◦ F(s,g)(θ0) ≤ C (i.e. both events A
and B are realised). Let θ ∈ B(θ0, R), and let us show that the separable Kurdyka-Łojasiewicz
bound ∥∇(L ◦ F(s,g))(θ)∥ ≥ (L ◦ F(s,g)(θ)− ε0)+/(∥θ− θ0∥+ c) holds. Let r = ∥θ− θ0∥. Since

θ ∈ As,g(c+r, ε0), let u ∈ Θs be such that ∥u∥ ≤ c+r and ∥F(s,g)(θ)+ dF(s,g)(θ)·u−f⋆∥2D < ε0.

First, note that if L◦F(s,g)(θ) ≤ ε then the bound holds immediately since the right-hand side is null,

thus we can assume in the following that L ◦ F(s,g)(θ) > ε0. By the variational form of the ℓ2-norm,

∥∇(L ◦ F(s,g))(θ)∥2 = sup
v∈Θs

( d(L ◦ F (s, g))(θ) · v)2
∥v∥2 ≥ (− d(L ◦ F (s, g))(θ) · u)2

∥u∥2 (3)

Then since L(f) = ∥f − f⋆∥2D, we can expand the derivative to

− d(L ◦ F(s,g))(θ) · u = − dL(F(s,g)(θ)) ·
(

dF(s,g)(θ) · u
)

= −2
〈

dF(s,g)(θ) · u, F(s,g)(θ)− f⋆
〉

D

=
(S1)

L ◦ F(s,g)(θ) +
∥

∥ dF(s,g)(θ) · u
∥

∥

2

D −
∥

∥F(s,g)(θ) + dF(s,g)(θ) · u− f⋆
∥

∥

2

D

≥
(S2)

L ◦ F(s,g)(θ) + 0− ε0

where (S1) is the parallelogram indentity −2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a+ b∥2 with the definition of
L, and (S2) is the approximation inequality defining u. Using the positive part (·)+ : s 7→ max{0, s},
we can thus bound the square of this quantity irrespectively of its sign, as follows

(

− d(L ◦ F(s,g))(θ) · u
)2 ≥

(

L ◦ F(s,g)(θ)− ε0
)2

+

Observing that ∥u∥ ≤ c+ r and injecting both of these bounds into Eq (3) concludes the proof of the
separable Kurdyka-Łojasiewicz bound.

Applying now Lemma E.1, this implies that the pair (L ◦F(s,g), θ0) satisfies Convergence Criterion 1

with limit error ε1 = τ · L ◦ F(s,g)(θ0) + (1 − τ) · ε0 for τ = c/(R + c) and constant κ1 =

3 c−2
(

L ◦ F(s,g)(θ0)− ε0
)2

+
. By decrease with respect to κ and increase with respect to ε of the

Convergence Criterion 1 bound, it now only remains to show that ε1 ≤ ε and κ1 ≥ κ. The latter is
immediate because

(

L ◦ F(s,g)(θ0)− ε0
)

+
≤ L ◦ F(s,g)(θ0) ≤ C, thus κ1 ≥ 3 c−2 C−2 = κ. Then,

use the fact that τ = c/(R+c) = (ε−ε0)/(C−ε0) to get ε1 ≤ τ C+(1−τ) ε0 = τ(C−ε0)+ε0 = ε.
Thus the pair (L ◦ F(s,g), θ0) satisfies Convergence Criterion 1 with limit error ε and constant κ,
which completes the proof that S ⊆ A ∩B and thus concludes the proof of Theorem E.2.
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F MORPHISMS OF LIFTED PERCEPTRON MODULES TO TRACK ACTIVATIONS

Definition F.1 (Morphism of lifted perceptrons). Let (G, πG, cG) ∈ LiftPMod(B, C) and
(H,πH , cH) ∈ LiftPMod(B, C). A morphism of lifted perceptrons φ : (G, πG, cG) → (H,πH , cH)
is a fibration φ : G→ H such that πG = πH ◦ φ and cG = cH ◦ φ.

In other words, a morphism of lifted perceptrons G to H is a correspondance φ between the underlying
graphs G and H that preserves the activation-defining “types” π of vertices and edges, and the input
connections c, i.e. such that the following three diagrams commute

VG

VB

VH

πG πH

φ
EG

EB

EH

πG πH

φ
IG

C

IH

cG cH

φ

In the example of Figure 4 and Figure 5 of multi-layer perceptron with three layers, the base graph
has VB = {0, 1, 2, 3}, and a lifted vertex v ∈ V has π(v) = k ∈ VB if the vertex v is located
in layer k. The condition that φ preserves π means that a vertex of layer k in G must be mapped
to a vertex of layer k in H. Mapping across layers would not make much sense, because it would
not be compatible with the definition of the forward function. Similarly for this example, we have
C = {r, g, b} indicating which of the lifted inputs corresponds to each channel. The mapping φ must
also preserve these connections (map the r channel of G to the r channel of H , etc.).

Proposition F.2 (LiftPMod-morphisms preserve activations).
Let G ∈ LiftPMod(B, C) and H ∈ LiftPMod(B, C). If φ : G → H is a LiftPMod(B, C)-morphism,
then for all wG ∈ Param(G) and wH ∈ Param(H), it holds

[

wG = φ∗wH
]

⇒
[

F[G] (wG, ·) = φ∗ ◦ F[H] (wH , ·)
]

Thus one can transform the graph and weights, then compute the forward, or compute the forward
first, then transform the activations and input connections. This property of compatibility of the
forward operator and the morphisms of LiftPMod corresponds to the following commutative diagram

(G, wG) (H, wH)

F[G] (wG, ·) F[H] (wH , ·)

φ∗

φ∗
F[·](·,−) F[·](·,−)

The proof of this proposition is deferred to Appendix F.1. Intuitively, this proposition states that a
fibration of graphs compatible with the lift and preserving the weights means that the lifted perceptron
modules “compute the same thing”. Fibrations are crucial for this property to hold, a homomorphism
of graphs for φ would not suffice, thus the restriction to fibrations in the previous definition.

F.1 PROOF THAT MORPHISMS PRESERVE ACTIVATIONS

Proof of Proposition F.2. Let G = (G, πG, cG) ∈ LiftPMod(B, C) and H = (H,πH , cH) ∈
LiftPMod(B, C). Let φ : G→ H be a fibration such that (πG = πH ◦ φ) : VG → VB and
(cG = cH ◦φ) : I(G) → C. Let wG ∈ Param(G) and wH ∈ Param(H), be such that wG = φ∗wH .
Let us show that F[G](wG, ·) = φ∗ ◦ F[H](wH , ·) :

∏

u∈C YpC(u) →
∏

v∈VG
YπG(v).

Let us check first that these expressions are all well defined. As a function of sets φ : VG → VH
induces a pullback φ∗ :

∏

u∈V (H) YπH(u) →
∏

v∈V (G) YπH(φ(v)) =
∏

v∈V (G) YπG(v). Therefore,

the expression φ∗ ◦ F[H](wH , ·) is well-defined and has the correct type signature. Similarly for
the weights, wH ∈ Param(H) =

∏

e∈EH
WπH(e). As a function of sets, φ : EG → EH defines a

pullback φ∗ :
∏

e∈EH
WπH(e) →

∏

e∈EG
WπH(φ(e)) =

∏

e∈EG
WπG(e) = Param(G), where the

first equality follows from πG = πH ◦ φ. Therefore the assumption wG = φ∗wH is well-formed.
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Let x ∈∏u∈C YpC(u). We will proceed by induction on a topological ordering ≺ over VG (available
since G is acyclic). Let U ⊆ VG be the set of vertices such that

v ∈ U ⇔ [F[G](wG, x)]v ̸= [φ∗ F[H](wH , x)]v

Let us show that U = ∅. By contradiction, if U is not empty, then let v ∈ U be minimal for the
total order ≺. Proceed by case disjunction on (IG,VG \ IG). For the first case, if v ∈ U ∩ IG, then
φ(v) ∈ IH . Therefore by definition of the activation map, we get the contradiction

[F[G](wG, x)]v =
(S1)

[c∗Gx]v =
(S2)

xcG(v) =
(S3)

xcH(φ(v)) =
(S4)

[F[H](wH , x)]φ(v) =
(S5)

[φ∗F[H](wH , x)]v

where (S1) is the definition of the activation map of lifts (Definition 3.5 and Definition 3.4) for
v ∈ IG, (S2) is the definition of the pullback c∗G, (S3) follows from cG = cH ◦ φ, (S4) is the same
argument as (S1) for φ(v) ∈ IH , and (S5) the definition of φ∗, which concludes this first case.

For the second case, assume v ∈ U ∩ (VG \ IG). Write for shortness g = F[G](wG, x) and
h = F[H](wH , x). The fact that v ∈ U implies that gv ̸= hφ(v), but the assumption that v is
minimal in U implies that for all u ∈ VG, if u ≺ v, then gu = hφ(u) (otherwise u ∈ U by

definition, and thus v is not minimal). Writing Ga(−, v) = π−1
G (a) ∩G(−, v) for shortness (resp.

Ha(−, t) = π−1
H (a) ∩H(−, t)), by definition of activation maps (Def. 3.4) and lift (Def. 3.5),

gv = σπG(v)











∑

u∈Ga(−,v)
MπG(u,v)

(

[wG](u,v), gu

)





a∈B(−,πG(v))







Now, by definition, φ : G→ H being a fibration implies that φ|G(−,v) : G(−, v) → H(−, φ(v)) is
a bijection (Definition C.3). Moreover, the fact that πG = πH ◦ φ implies that for all a ∈ VB , the
restriction of φ is also a bijection Ga(−, v) → Ha(−, φ(v)). Therefore, we can replace the terms in
the sum one-by-one (note that this is not possible with a homomorphism, we need a fibration to do
this), as follows. Write ψ = φ|G(−,v) the bijection, and rewrite the previous equality

gv =
(S1)

σπG(v)











∑

u∈Ga(−,v)
MπG(u,v)

(

[wG](u,v), gu

)





a∈B(−,πG(v))







=
(S2)

σπG(v)











∑

u∈Ha(−,φ(v))
MπG(ψ−1(u),v)

(

[wG](ψ−1(u),v), gψ−1(u)

)





a∈B(−,πG(v))







=
(S3)

σπH(φ(v))











∑

u∈Ha(−,φ(v))
MπH(φ(ψ−1(u),v))

(

[wG](ψ−1(u),v), gψ−1(u)

)





a∈B(−,πH(φ(v)))







=
(S4)

σπH(φ(v))











∑

u∈Ha(−,φ(v))
MπH(u,φ(v))

(

[wH ](u,φ(v)), hu

)





a∈B(−,πH(φ(v)))







=
(S5)

hφ(v)

where (S1) is by definition of g, (S2) is the rewriting of terms reindexed by the bijection, (S3) uses
πG = πH ◦ φ, (S4) is the assumption that ψ−1(u) /∈ U by minimality of v and φ(ψ−1(u)) = u,
applied to gψ−1(u) = hφ(ψ−1(u)) = hu and rewriting of wG = φ∗wH . Finally (S5) is the definition
of h, constitutes the contradiction for the second case, thus concludes the induction and the proof.
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G TRACKING ACTIVATIONS ACROSS DEFORMATIONS OF WEIGHTS

Definition G.1 (Quantitative continuity). Let G = (VG,EG) be a graph.
Let G = ((I, T ), (Y,W,Z), (M,σ)) ∈ PMod(G) and w0 ∈ Param(G). Let X ⊆∏v∈I Yv .

For any v ∈ VG, write Fv = σv ◦
(

M(u,v)

)

u∈G(−,v) :
∏

u∈G(−,v) W(u,v) × Yu → Yv .

Write g0 = F[G](w0, ·) such that for x ∈ X and v ∈ VG, we have g0v(x) =
[

F[G](w0, x)
]

v
∈ Yv .

For any η ∈ R
∗
+ and x ∈ X , define L(η, x) : VG 7→ R+ inductively as follows from [L(η, x)]b = 0

for b ∈ I and propagated to v ∈ VG \ I as

[L(η, x)]v = sup
w∈∏

u∈G(−,v) W(u,v)

∀u,∥w(u,v)−w0
(u,v)∥≤η

sup
g∈∏

u∈G(−,v) Yv

∀u,∥gu−g0u(x)∥≤[L(η,x)]u

∥

∥Fv(w, g)− Fv(w
0, g0(x))

∥

∥

Then write L[G, w0](η,X ) = supx∈X maxv∈VG
[L(η, x)]v . If X is compact, this constant is finite.

This notion will be used in conjunction with Proposition F.2, which is the reason this convoluted

definition is chosen instead of just
[

supx∈X sup∥w−w0∥∞≤η∥F[G](w, x)− F[G](w0, x)∥∞
]

, which

is much more simply stated. The construction of Definition G.1 is such that the constant L is preserved
by morphisms, thus if we start with two networks with similar weights and a morphism between
them, we can track the evolution of all activations with a single constant.

Proposition G.2 (Tracking activations through morphisms and across weight deformations).
Let G = (G, π, c) ∈ LiftPMod(B, C) and wG ∈ Param(G) for underlying graph G = (VG,EG).
Let H ∈ LiftPMod(B, C) and wG ∈ Param(H). Let X ⊆∏u∈C YπC(u).

Let η ∈ R+. Assume φ : G → H is a LiftPMod(B, C)-morphism such that

∀e ∈ EG, ∥[wG]e − [φ∗wH ]e∥ ≤ η

Then for any v ∈ VG it holds supx∈X

∥

∥

∥[F[G](wG, x)]v − [F[H](wH , x)]φ(v)

∥

∥

∥ ≤ L[H,wH ](η,X )

Proof of Proposition G.2. To avoid confusions, write the lifted modules G = (G, πG, cG) and H =
(H,πH , cH), for the underlying graphs G = (VG,EG) and H = (VH ,EH). For vH ∈ VH , we
use the notation [L(η, x)]vH associated to vertices VH by Definition G.1 in the construction of

L[H,wH ](η,X ). Let x ∈ X . For shortness, define g = F[G](wG, x) and h = F[H](wH , x). Let us
show by induction on v ∈ VG that ∥gv − hφ(v)∥ ≤ [L(η, x)]φ(v).

To that end, let v ∈ VG be the minimal vertex satisfying ∥gv − hφ(v)∥ > [L(η, x)]φ(v), for a

topological ordering of G. If πG(v) ∈ IB , then by definition of a lift and forward (resp. Def. 3.5
and Def. 3.4) it holds gv = xcG(v) = xcH(φ(v)) = hφ(v) which constitutes the contradiction. For

the remaining case of v ∈ VG \ π−1
G (IB), let ψ = φ|G(−,v) be the bijection between parents

ψ : G(−, v) → H(−, φ(v)) (existence and bijectvity follow from the fact that φ is a fibration). Thus,

gv = σπG(v)

(

(

MπG(u,v)

(

[wG](u,v), gu

))

u∈G(−,v)

)

= σπH(φ(v))

(

(

MπH(s,φ(v))

(

[wG](ψ−1(s),v), gψ−1(s)

))

s∈H(−,φ(v))

)

However by assumption we have ∥[wG]ψ−1(s),v − [wH ]s,φ(v)∥ ≤ η, and by minimality of v it holds

∥gψ−1(s) − hs∥ ≤ [L(η, x)]s, thus by definition of [L(η, x)]φ(v) as the supremum over such values,

we get ∥gv − hφ(v)∥ ≤ [L(η, x)]φ(v), which consitutes the contradiction and concludes the induction.

Finally, observing that [L(η, x)]φ(v) ≤ L[H, wH ](η,X ) concludes the proof.
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H FROM A COVERING PARTIAL MORPHISM TO TANGENT APPROXIMATION

H.1 PARTIAL MORPHISMS, A STRONG MEANING OF “SUB-NETWORK”

Definition H.1 (Partial fibration). A partial fibration (S, φ) : G ⇀ H is a subgraph S of G such
that the inclusion map ι : S → G is a fibration, together with a fibration φ : S → H .

A subgraph S of G such that the inclusion ι : S → G is a fibration will lead to an “extraction” of a
perceptron module from a larger module, compatible with forward functions.

Definition H.2 (Partial morphisms of LiftPMod).
Let (G, πG, cG) ∈ LiftPMod(B, C) and (H,πH , cH) ∈ LiftPMod(B, C). A partial morphism
of LiftPMod(B, C) is a partial fibration of graphs (S, φ) : G ⇀ H , such that the inclusion
ι : S → G induces a LiftPMod(B, C)-morphism ι : (S, πG|S , cG|S) → (G, πG, cG), and the
fibration φ : S → H induces a LiftPMod(B, C)-morphism φ : (S, πG|S , cG|S) → (H,πH , cH).

Definition H.3 (Covering partial matchings).
Let G = (G, πG, cG) ∈ LiftPMod(B, C) and wG ∈ Param(G).
Let H = (H,πH , cH) ∈ LiftPMod(B, C) and wH ∈ Param(H), over graph H = (VH ,EH).

Let α : VH → [0, 1] and η ∈ R
∗
+. A partial LiftPMod(B, C)-morphism (S, φ) : G ⇀ H is said to

be an (α, η)-covering if it satsfies the following conditions:

∀e ∈ E(S), ∥[ι∗wG]e − [φ∗wH ]e∥ ≤ η

∀v ∈ VH , #φ−1(v) ≥ α(v) ·#π−1
G (πH(v))

We write Mα
η [(G, wG), (H, wH)] the set of such partial morphisms from G to H. Additionally, we

say that (G, wG) has (α, η)-cover of (H, wH) if the set of such partial morphisms is not empty.

H.2 TANGENT APPROXIMATION BY SUBNETWORK-MATCHING

Let us show that the tangent approximation property at a point can be reduced to a covering property.

Proposition H.4.
Let G ∈ LiftPMod(B, C), and let θ0 = (w0, a0) ∈ Param(G) × LinReadout(G, k). Define the
shorthands Θ = Param(G) × LinReadout(G, k) and F : Θ → (X → R

k) the forward function

F : (w, a) 7→ a · F[G](w,−), with norm ∥(w, a)∥2Θ =
∑

e∈EG
∥we∥2 +

∑

i∈[k],v∈T (G)∥ai,v∥2.

Let G⋆ = (G⋆, π⋆, c⋆) ∈ LiftPMod(B, C) and (w⋆, a⋆) ∈ Param(G⋆)× LinReadout(G⋆, k) over
G⋆ = (V⋆,E⋆). Let η ∈ R+, and α : V⋆ → ]0, 1]. If (G, w0) has (α, η)-cover of (G⋆, w⋆), then

inf
u∈Θ

∥u∥Θ≤κ

∥

∥F (θ0) + dF (θ0) · u− f⋆
∥

∥

D ≤
∥

∥a⋆ · F[G⋆](w⋆, ·)− f⋆
∥

∥

D + C⋆ · L[G⋆, w⋆](η,X )

with C⋆ =
∑

i∈[k]

∑

v∈V ⋆

∥a⋆i,v∥√
#π−1

⋆ (π⋆(v))
and κ = ∥a0∥+

√

∑

i∈[k]

∑

v∈V ⋆

∥a⋆i,v∥2

α(v)·#π−1
⋆ (π⋆(v))

.

Since L[G⋆, w⋆](η,X ) −→
η→0

0, this bound tends to ∥a⋆ · F[G⋆](w⋆, ·)− f⋆∥D in the limit η → 0.

This should be fairly straightforwardly connected to the tangent approximation property at θ0. Indeed
if ∥F[G⋆](w⋆, ·)− f⋆∥2D ≤ ε then this property will constitute tangent approximation at θ0 with any
error ε1 > ε provided η is taken sufficiently small. The tangent radius κ also has a manageable form.

Note that this is consistent with the intuition given by Frankle & Carbin (2019): the Lottery Ticket
Hypothesis postulates that if a large enough network contains a smaller network which achieves low
loss (a Lottery Ticket), then the larger network will achieve low loss. The principal distinction with
the present discussion — apart from the added generality of generic perceptron modules instead of
just multi-layer perceptrons — is that Frankle & Carbin (2019) considered dense networks whose
“sub-networks” were extracted by homomorphism, whereas our proof is restricted to extractions
by fibration, which is much more restrictive. The overarching intuition carries over even if the
details don’t match, largely because these early postulates were intentionally fuzzy in nature to guide
intuition, whereas our proofs are rigid by design in order to yield precise empirical predictions.
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Proof of Proposition H.4. Note first that the function F : (w, a) 7→ a · F[G](w,−) is linear with
respect to a, therefore for any b ∈ LinReadout(G, k), it holds dF (w, a) · (0, b) = b · F[G](w,−).
Then, from (S, φ) : G ⇀ G⋆ a partial fibration with (α, η)-cover, construct u ∈ LinReadout(G, k)

defined for v ∈ T (G) by uv = a⋆φ(v)/sv , where sv = #φ−1(φ(v))
√

#π−1
⋆ (π(v))/#π−1(π(v)).

∥F (w0, a0) + dF (w0, a0) · (0, u− a0)− f⋆∥D
=
(S1)

∥ dF (w0, a0) · (0, u)− f⋆∥D =
(S2)

∥u · F[G](w0,−)− f⋆∥D

≤
(S3)

∥a⋆ · F[G⋆](w⋆,−)− f⋆∥D + ∥u · F[G](w0,−)− a⋆ · F[G⋆](w⋆,−)∥D
(4)

where (S1) is the fact that for any a, we have F (w0, a) = a · F[G](w0,−) = dF (w0, a0) · (0, a),
together with linearity of the differential, (S2) is the simplification of the differential, and (S3) is
subadditivity of the semi-norm ∥·∥D on the space (X → R

k) (see Proposition K.2). Let us show
that this is valid upper-bound for the infimum in the claim, because ∥(0, u− a0)∥Θ ≤ κ. Indeed, by
subadditivity of the norm ∥(0, u− a0)∥Θ ≤ ∥(0, u)∥Θ + ∥(0, a0)∥Θ = ∥u∥+ ∥a0∥. Moreover,

∥u∥2 =
∑

i∈[k]

∑

v∈T (G)

∥ui,v∥2 =
∑

i∈[k]

∑

u∈T (G⋆)

∑

v∈φ−1(u)

∥a⋆u∥2/s2v

=
∑

i∈[k]

∑

u∈T (G⋆)

∑

v∈φ−1(u)

∥a⋆u∥2 #π−1(π⋆(u))

#φ−1(φ(v))2 #π−1
⋆ (π⋆(u))

=
∑

i∈[k]

∑

u∈T (G⋆)

∥a⋆u∥2 #π−1(π⋆(u))

#φ−1(u)#π−1
⋆ (π⋆(u))

≤
(S1)

∑

i∈[k]

∑

u∈T (G⋆)

∥a⋆u∥2
α(u)#π−1

⋆ (π⋆(u))

where (S1) is the covering property ensuring that #φ−1(φ(v)) ≥ αφ(v) #π
−1(π(v)). Now to bound

the second term in Eq. (4), let us show a more convenient rewriting of u · F[G](w0, x). Write for
shortness for any u ∈ T (G⋆) the average Fu(x) =

∑

v∈φ−1(u) F[G](w0, x)v/#φ
−1(u).

u · F[G](w0, x) =
(S1)





∑

b∈TB

1
√

#π−1(b)

∑

v∈π−1(b)

⟨ui,v,F[G](w0, x)v⟩





i∈[k]

=
(S2)





∑

b∈TB

∑

u∈π−1
⋆ (b)

∑

v∈φ−1(u)

1
√

#π−1
⋆ (b)

⟨a⋆i,u,F[G](w0, x)v⟩
#φ−1(u)





i∈[k]

=
(S3)





∑

b∈TB

∑

u∈π−1
⋆ (b)

1
√

#π−1
⋆ (b)

⟨a⋆i,u, Fu(x)⟩





i∈[k]

where (S1) is by defintion of the action, (S2) by definition of uv, and (S3) by linearity. Next, by
Proposition G.2 and subadditivity, we have ∥Fu(x)− F[G⋆](w⋆, x)∥ ≤ L[G⋆, w⋆](η,X ). Thus,

∥

∥u · F[G](w0,−)− a⋆ · F[G⋆](w⋆,−)
∥

∥

2

D = Ex







∑

i∈[k]

∣

∣

∣

∣

∣

∣

∑

b∈TB

∑

u∈π−1
⋆ (b)

⟨a⋆i,u, Fu − F[G⋆](w⋆, x)⟩
√

#π−1
⋆ (b)

∣

∣

∣

∣

∣

∣

2






≤
(S1)

Ex







∑

i∈[k]

∣

∣

∣

∣

∣

∣

∑

b∈TB

∑

u∈π−1
⋆ (b)

∥a⋆i,u∥ · ∥Fu − F[G⋆](w⋆, x)∥
√

#π−1
⋆ (b)

∣

∣

∣

∣

∣

∣

2






≤ Ex







∑

i∈[k]

∣

∣

∣

∣

∣

∣

L[G⋆, w⋆](η,X)
∑

b∈TB

∑

u∈π−1
⋆ (b)

∥a⋆i,u∥
√

#π−1
⋆ (b)

∣

∣

∣

∣

∣

∣

2






where (S1) is the Cauchy-Schwarz inequality in Yπ⋆(u). Thus taking square roots and using the

inequality ∥·∥2 ≤ ∥·∥1, we get
∥

∥u · F[G](w0,−)− a⋆ · F[G⋆](w⋆,−)
∥

∥

D ≤ C⋆ · L[G⋆, w⋆](η,X ).
Reinjecting this inequality into the first bound Eq. (4) concludes the proof.
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I COVERAGE OF RANDOM SPARSE LIFTS

Definition I.1 (α parameter of a perceptron module).
Let G⋆ = (G⋆, π⋆, c⋆) ∈ LiftPMod(B, C) and w⋆ ∈ Param(G⋆), with graph G⋆ = (V⋆,E⋆).
Let λ : EB → R

∗
+. For e ∈ EB , let Ne be a full support distribution on We. Let η ∈ R

∗
+.

Define αη : V⋆ → ]0, 1], inductively over v ∈ V⋆, from αη(u) = 1/#π−1(π(u)) for u ∈ I(G⋆), and

propagated, with the notation Kv = 21+#B(−,π⋆(v)) ·#π−1
⋆ (π⋆(v)), as follows to v ∈ V⋆ \ I(G⋆)

αη(v) =
1

Kv





∏

a∈B(−,π⋆(v))

P
(

ka(v);λ(a,π⋆(v))

)









∏

u∈G⋆(−,v)
pπ⋆(u,v)

(

w⋆(u,v), η
)

αη(u)





where ka(v) = #
(

G⋆(−, v) ∩ π−1
⋆ (a)

)

∈ N is the number of “type-a” parents of vertex v in G⋆,

P(k;λ) = e−λλk/k! is the Poisson density, and for e ∈ EB , we write pe : We × R
∗
+ → R

∗
+ the

volume of a ball as measured by Ne, i.e. pe : (s, τ) 7→ Pw∼Ne
(∥w − s∥We

≤ τ).

Validity of this definition (e.g. image of the function α) is detailled in Appendix K.2. The form of
α at vertex v (forgetting Kv) is intuitively the probability of guessing the correct degree, then the
probability that for each parent, both the weight and the corresponding subnetwork match the witness.

Based on the results of Appendix E, we know that it is sufficient for convergence to show tangent
approximation on a large ball around initialization. For a given lift and choice of parameters, we
now know from Appendix H.2 that it is sufficient to show existence of a witness extraction (a partial
morphism such that weights approximatively match) on that ball. Let us start by showing that at the
initial point, there exists a witness extraction with high probability, we will extend this to balls later.

Proposition I.2 (Large random sparse lifts are covering with high probability).
Let λ : EB → R

∗
+. For e ∈ EB , let Ne be a distribution on We with full support.

Let G⋆ = (G⋆, π⋆, c⋆) ∈ LiftPMod(B, C) and w⋆ ∈ Param(G⋆), over graph G⋆ = (V⋆,E⋆).
Let η ∈ R+. Define αη : V⋆ → ]0, 1] the α-parameter associated to (G⋆, w⋆) by Definition I.1

Let n : VB → N such that if b ∈ IB then nb = #p−1
C (b). Let (G,w) be a random sparse lift of B

along (n, λ) with distribution N . If for all (a, b) ∈ EB , na ≥ 2max(λ(a,b), λ
2
(a,b)/ log(2)), then

P

(

Mαη
η [(G, w), (G⋆, w⋆)]

)

≥
∏

b∈VB\IB



1−
∑

v∈π−1
⋆ (b)

exp

(

−τ(v)
2

4
nb · α(v)

)





+

where τ : V⋆ → [0, 1] is τ : v 7→
(

1− 1
nπ⋆(v)α(v)

)

+
which tends to 1 when

(

nπ⋆(v)α(v)
)

→ +∞.

We will write G⋆a(−, v) = G⋆(−, v) ∩ π−1
⋆ (a) with a ∈ VB in index because this will appear often

in this proof. Similarly for the graph G, we write Ga(−, v) = G(−, v) ∩ π−1(a) for v ∈ V.

For any vertex v ∈ VB , define the set Av = {u ∈ VB , u ⪯ v} (of “ancestors” of v). Define the
filtration (Fb)b∈VB

induced by the strict total order ≺ on VB as the σ-algebra

Fb = σ









⋃

(x,y)∈EB

y≺b

⋃

e∈EC

π(e)=(x,y)

{me, we}









Conditioning on the σ-algebra Fb will “freeze” the random variables corresponding to the subset
{v ∈ V | π(v) ∈ Ab \ {b}}, and allow the study in isolation of what happens when adding b ∈ VB .

Proof of Proposition I.2. We will proceed by induction on VB , the vertices of the base graph, using a
strict total topological order ≺ on VB (i.e. such that (u, v) ∈ EB ⇒ u ≺ v), available by acyclicity.

We use the notations from Definition 4.2 of random sparse lifts, with the bernoulli random variables
m(u,v) ∼ B(λπ(u,v)/nπ(u)) and weightsw(u,v) ∼ Nπ(u,v) for all (u, v) ∈ EC , whereC = (VC ,EC)
is the fully-connected lift of B along n (Definition 3.6) to define the random sparse lift (G,w, a).
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Induction hypothesis . For any subset U ⊆ VB , define M(U) the set of LiftPMod(B, C)-partial-
morphism (S, φ) : G → G⋆ such that VS ⊆ π−1(U), and the following two conditions hold:

∀e ∈ E(S), ∥we − w⋆φ(e)∥Wπ(e)
≤ η

∀v ∈ π−1
⋆ (U), #φ−1(v) ≥ α(v) ·#π−1 (π⋆(v))

The first condition is identical to the definition of covering matchings, the second is quantified
differently (on π−1

⋆ (U) not V⋆), but coincides with the definition when U = VB .

By contradiction, if the claimed inequality does not hold, then let b ∈ VB be the minimal vertex (for
the ≺ topological order) such that the following inequality holds

P (M(Ab) ̸= ∅) <
∏

a∈Ab\IB



1−
∑

v∈π−1
⋆ (a)

exp

(

−τ(v)
2

4
na · α(v)

)





+

(5)

Let us show a contradiction (thus that there is no vertex such that this condition holds, thus the inverse
inequality holds for any b and in particular it holds for M(VB) which matches the claim exactly).

Induction intialization. Let us proceed by case disjunction. If b ∈ IB first, then let us show a
contradiction. First, to tackle the edge case, note that M(∅) ̸= ∅ almost surely because it contains
(S, φ) a partial morphism with S the empty graph (no vertices and no edges). Then, let us show that
P(M(Ab) ̸= ∅) ≥ P(M(Ab \ {b}) ̸= ∅) by the almost-sure extension that follows. Recall for

that matter that the function pC : C → IB partitions C into subsets p−1
C (u) ⊆ C indexed by u ∈ IB .

Moreover, by construction of a random sparse lift, for any u ∈ IB , we have π−1(u) = p−1
C (u). Thus,

if (S, φ) ∈ M(Ab \ {b}) for a graph S = (VS ,ES), construct the extension ((VS
+,ES), φ

+) as

VS
+ = VS ∪ c⋆(π−1

⋆ (b)) with φ+|VS
= φ and for v ∈ VS

+ \ VS , let φ+(v) = c−1
⋆ (v) ∈ π−1

⋆ (b).
This construction is well-defined by injectivity of c⋆ : π−1

⋆ (IB) → C. It is also immediately

verified that φ+ is a fibration because elements of VS
+ \ VS have no parents (more formally,

v ∈ VS
+ \ VS ⇒ π(v) = b ⇒ G(−, v) = ∅). The homomorphism πS : VS

+ → VB is obtained
by restriction πS = π|VS

+ . Additionally, for every u ∈ π−1
⋆ (u), we have #(φ+)−1(u) = 1 =

α(u) ·#π−1
⋆ (π⋆(u)) = α(u) ·#π−1

S (π⋆(u)) by definition of α. Thus ((VS
+,ES), φ

+) ∈ M(Ab).
This concludes the proof that P(M(Ab) ̸= ∅) ≥ P(M(Ab \ {b}) ̸= ∅). Let us now show
why this contradicts the definition of b. If Ab \ {b} = ∅, then the inequality Eq. (5) contradicts
P(M(∅) ̸= ∅) = 1. If on the other hand there is a ∈ Ab such that a ≺ b, then a must also satisfy
the condition Eq. (5), which contradicts minimality of b. This concludes the case b ∈ IB .

Induction propagation by morphism extension. The case b ∈ IB has been tackled. Therefore
let us assume for the remainder of the proof that b ∈ VB \ IB . The idea is roughly the same as for
the previous case, we will work conditionally on Fb and show that we can extend partial morphisms
from M(Ab \ {b}) to M(Ab) with a high-enough probability, and use it to form a contradiction.

Intuitively, if (S, φ) ∈ M(Ab\{b}), we want to construct for every i ∈ π−1
⋆ (b) a setEi(φ) ⊆ π−1(b)

such that j ∈ Ei(φ) if we can extend φ into a partial fibration by mapping j to i, and if this extension
continues to satisfy both the type conditions and the weight-matching condition. We do so by
considering parents one at a time, then take intersections, and finally show that Ei(φ) is sufficiently
large with a sufficiently high probability.

Extension (a): single-parent compatibility. For every (S, φ) ∈ M(Ab \ {b}) a partial morphism
with S = (VS ,ES), and every a ∈ B(−, b), let Eai (φ) ⊆ π−1(b) be the subset of V defined as

j ∈ Eai (φ) ⇔











Ga(−, j) ⊆ VS
φ(Ga(−, j)) = G⋆a(−, i)
∀u ∈ Ga(−, j), ∥w(u,j) − w⋆(φ(u),i)∥ ≤ η

With the previous notation of P(k;λ) = e−λλk/k! and pe(w, η) = Pu∼Ne
(∥u− w∥ ≤ η), define

µi,a =
1

2
P
(

#G⋆a(−, i);λ(a,b)
)

∏

u∈G⋆
a(−,i)

p(a,b)

(

w⋆(u,i), η
)

· α(u)
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Observe that this definition is chosen such that α(i) = 1
2

(

∏

a∈B(−,b) µi,a
)

/#π−1
⋆ (π⋆(i)).

Let us show that P (j ∈ Eai (φ) | (S, φ) ∈ M(Ab \ {b}),Fb) ≥ µi,a. For shortness in the writing of

this proof, let k = #G⋆a(−, i) ∈ N and q(a,b) = λ(a,b)/na ∈ [0, 1]. For a subset I ⊆ π−1(a) ⊆ VG
such that #I = k, write Z(I) the set of bijections from I to G⋆a(−, i). Now, observe that by
disjunction over such subsets I and average over Z(I), it holds

1j∈Ea
i (φ)

≥
∑

I⊆π−1(a)
#I=k

1I=Ga(−,j)1I⊆VS

1

#Z(I)

∑

ζ∈Z(I)

1φ|I=ζ
∏

u∈I
1∥w(u,j)−w⋆

(ζ(u),i)
∥≤η

By independence and linearity, we can take the conditional expectation

E
[

1j∈Ea
i (φ)

∣

∣ (S, φ) ∈ M(Ab \ {b}),Fb
]

≥
(S1)

∑

I⊆π−1(a)
#I=k

1I⊆VS
· qk(a,b)

(

1− q(a,b)
)na−k 1

k!

∑

ζ∈Z(I)

1φ|I=ζ
∏

u∈I
p(a,b)

(

w⋆(ζ(u),i), η
)

≥
(S2)

qk(a,b)
(

1− q(a,b)
)na−ki,a 1

k!

∑

I⊆π−1(a)
#I=k

1I⊆VS
·
∑

ζ∈Z(I)

1φ|I=ζ
∏

u∈I
p(a,b)

(

w⋆(ζ(u),i), η
)

≥
(S3)

1

2

λk(a,b)

k!
e−λ(a,b)

1

nka

∑

I⊆π−1(a)
#I=k

1I⊆VS
·
∑

ζ∈Z(I)

1φ|I=ζ
∏

u∈I
p(a,b)

(

w⋆(ζ(u),i), η
)

≥
(S4)

1

2

λk(a,b)

k!
e−λ(a,b)

∏

u∈G⋆
a(−,i)

p(a,b)

(

w⋆(u,i), η
)

· 1

nka

∑

I⊆π−1(a)
#I=k

1I⊆VS
·
∑

ζ∈Z(I)

1φ|I=ζ

≥
(S5)

1

2

λk(a,b)

k!
e−λ(a,b)

∏

u∈G⋆
a(−,i)

p(a,b)

(

w⋆(u,i), η
)

· α(u)

= µi,a

where (S1) is linearity of the expectation and independence of m and w, (S2) is a factorization
of constants related to m, (S3) is the lower-bound of Proposition L.1 because by assumption
na ≥ max(2λ(a,b), 2λ

2
(a,b)/ log(2)), (S4) is a factorization of constants related to w, and (S5) is the

following counting trick:

1

nka

∑

I⊆π−1(a)
#I=k

1I⊆VS
·
∑

ζ∈Z(I)

1φ|I=ζ ≥
(S1)

1

nka

∑

ψ:G⋆
a(−,i)→VS

∀u,ψ(u)∈φ−1(u)

1

≥
(S2)

1

nka

∏

u∈G⋆
a(−,i)

(

#φ−1(u)
)

≥
(S3)

1

nka

∏

u∈G⋆
a(−,i)

(α(u) · na)

≥
∏

u∈G⋆
a(−,i)

α(u)

where (S1) is a lower-bound by exhibition of a subset of terms satisfying the indicator conditions,
(S2) is the counting of such terms, and (S3) is the hypothesis (S, φ) ∈ M (Ab \ {b}) with the
α-cover property applied to a ∈ B(−, b) ⊆ (Ab \ {b}).
This concludes the proof of the inequality E

[

1j∈Ea
i (φ)

∣

∣ (S, φ) ∈ M(Ab \ {b}),Fb
]

≥ µi,a.
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Extension (b): multi-parent compatibility. Define now Ei(φ) =
⋂

a∈B(−,b)E
a
i (φ). By condi-

tional independence given Fb of the events (j ∈ Eai (φ))a indexed by a ∈ B(−, b), we get

E
[

1j∈Ei(φ)

∣

∣ (S, φ) ∈ M (Ab \ {b}) ,Fb
]

= E





∏

a∈B(−,b)
1j∈Ea

i (φ)

∣

∣

∣

∣

∣

∣

(S, φ) ∈ M (Ab \ {b}) ,Fb





=
∏

a∈B(−,b)
E
[

1j∈Ea
i (φ)

∣

∣ (S, φ) ∈ M (Ab \ {b}) ,Fb
]

≥
∏

a∈B(−,b)
µi,a

Write for shortness µi =
∏

a∈B(−,b) µi,a, recall that α(i) = 1
2µi/#π

−1
⋆ (b), and equipped with the

inequality E
[

1j∈Ei(φ)

∣

∣ (S, φ) ∈ M (Ab \ {b}) ,Fb
]

≥ µi, let us show that Ei(φ) is large enough.

Extension (c): probability amplification. The events (j ∈ Ei(φ))j indexed by j ∈ π−1(b) are

independent conditionally on Fb. Thus the random variables Xj = 1j∈Ei(φ) for j ∈ π−1(b) have a
Bernoulli distribution and conditional expectation

P (j ∈ Ei(φ) | (S, φ) ∈ M(Ab \ {b}),Fb) ≥ µi > 0

Let δi =
1
2τ(i) ∈ [0, 1]. Since #Ei(φ) =

∑

j Xj , we get by amplification (Appendix-Lemma L.4)

P (#Ei(φ) ≤ (1− δi)µi · nb | (S, φ) ∈ M(Ab \ {b}),Fb)

≤ exp

(

−1

2
δ2i nb · µi

)

= exp

(

−τ(i)
2

8
nb · µi

)

≤ exp

(

−τ(i)
2

4
nb · α(i)

)

We can then get a lower-bound on the probability that all candidate preimage sets Ei(φ) are suffi-
ciently large, by union bound (since their cardinals are not independent)

E





∏

i∈π−1
⋆ (b)

1#Ei(φ)≥(1−δi)nbµi

∣

∣

∣

∣

∣

∣

(S, φ) ∈ M(Ab \ {b}),Fb





≥ 1−
∑

i∈π−1
⋆ (b)

E
[

1#Ei(φ)<(1−δi)nbµi

∣

∣ (S, φ) ∈ M(Ab \ {b}),Fb
]

≥ 1−
∑

i∈π−1
⋆ (b)

exp

(

−τ(i)
2

4
nb · α(i)

)

We will use positive parts (·)+ in the following to handle nicely the case where this is strictly negative.

Extension (d): tackling overlap. Let us start by showing that for any partial morphism (S, φ),

1M(Ab) ̸=∅ ≥ 1(S,φ)∈M(Ab\{b}) ·
∏

i∈π−1
⋆ (b)

1#Ei(φ)≥(1−δi)nbµi
(6)

If (S, φ) ∈ M(Ab \ {b}) and if for every i ∈ π−1
⋆ (b) it holds #Ei(φ) ≥ (1 − δi)nbµi then let

us construct an extension (S+, φ+) ∈ M(Ab). The difficulty is that the sets (Ei(φ))i may not be
disjoint, thus we must select disjoint subsets of sufficient size to satisfy the covering condition. Choose
for every i ∈ π−1

⋆ (b) a subset Vi ⊆ Ei(φ) such that (Vi)i are disjoint, and #Vi ≥ 1
2nbµi/#π

−1
⋆ (b).

Proof that such choice is possible is given in Proposition L.6, since if nbα(i) ≥ 1, for P = #π−1
⋆ (b),

⌊

#Ei(φ)

P

⌋

≥ (1− δi)
nbµi
P

− 1 =

(

1

2
+

1

2nbαi

)

nbµi
P

− 1 =
nbµi
2P

= nbα(i)

And if nbα(i) < 1, then Eq. (5) is immediately contradicted because the right-hand side is zero.
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Then, let VS
+ =

⋃

i Vi be the extended vertex set and ES
+ =

⋃

v∈VS
+

⋃

u∈G(−,v)(u, v) the

corresponding edges. Define ((VS ∪VS
+,ES ∪ ES

+), φ+) the morphism obtained as φ+|VS
= φ

and for v ∈ Vi ⊆ VS
+ as φ+(v) = i. By construction of (Vi)i, this morphism is a fibration of

graphs. Since for all i ∈ π−1
⋆ (b), we have #(φ+)−1(i) = #Vi ≥ 1

2nbµi/#π
−1
⋆ (b) = nb α(i), thus

the covering condition is satisfied, and therefore ((VS ∪ VS
+,ES ∪ ES

+), φ+) ∈ M(Ab), which
conclues the proof of Eq. (6).

Towering. We can now proceed by using the property that 1M(Ab) ̸=∅ = sup(S,φ) 1(S,φ)∈M(Ab).

E
[

1M(Ab) ̸=∅

∣

∣Fb
]

≥ E



 sup
(S,φ)

1(S,φ)∈M(Ab\{b}) ·
∏

i∈π−1
⋆ (b)

1#Ei(φ)≥(1−δi)nbµi

∣

∣

∣

∣

∣

∣

Fb





≥ sup
(S,φ)

E



1(S,φ)∈M(Ab\{b}) ·
∏

i∈π−1
⋆ (b)

1#Ei(φ)≥(1−δi)nbµi

∣

∣

∣

∣

∣

∣

Fb





= sup
(S,φ)

1(S,φ)∈M(Ab\{b}) · E





∏

i∈π−1
⋆ (b)

1#Ei(φ)≥(1−δi)nbµi

∣

∣

∣

∣

∣

∣

Fb





≥ sup
(S,φ)

1(S,φ)∈M(Ab\{b}) ·



1−
∑

i∈π−1
⋆ (b)

exp

(

−τ(i)
2

4
nb · α(i)

)





+

≥ 1M(Ab\{b}) ̸=∅ ·



1−
∑

i∈π−1
⋆ (b)

exp

(

−τ(i)
2

4
nb · α(i)

)





+

Finally, we can conclude by a towering argument

E
[

1M(Ab) ̸=∅

]

= E
[

E
[

1M(Ab) ̸=∅

∣

∣Fb
]]

≥ E









1−
∑

i∈π−1
⋆ (b)

exp

(

−τ(i)
2

4
nb · α(i)

)





+

· 1M(Ab\{b}) ̸=∅







=



1−
∑

i∈π−1
⋆ (b)

exp

(

−τ(i)
2

4
nb · α(i)

)





+

· E
[

1M(Ab\{b}) ̸=∅

]

≥
(S1)

∏

a∈Ab\IB



1−
∑

i∈π−1
⋆ (a)

exp

(

−τ(i)
2

4
na · α(i)

)





+

where (S1) is the reverse of inequality Eq. (5) for any a ∈ VB with a ≺ b by minimality of b. This
contradicts the inequality Eq. (5) defining b, thus concludes the case b ∈ VB \ IB and the induction,
which concludes the proof.
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I.1 BALLWISE RESISTANCE OF COVERINGS WITH LOW OUT-DEGREE

Recall that we write n0 : IB → N the function n0 : b 7→ #p−1
C (b).

Proposition I.3.
Let λ : EB → R

∗
+. For e ∈ EB , let Ne be a distribution on We with full support.

Let G⋆ = (G⋆, π⋆, c⋆) ∈ LiftPMod(B, C) and w⋆ ∈ Param(G⋆), over graph G⋆ = (V⋆,E⋆).
Let η ∈ R+. Define αη : V⋆ → ]0, 1] the α-parameter associated to (G⋆, w⋆) and η by Def. I.1.

Let n : VB → N such that if b ∈ IB then nb = n0
b . Let (G,w0) be a random sparse lift of B along

(n, λ) with distribution N .

Assume that for all (a, b) ∈ EB , if a ∈ IB then λ(a,b) ≤ min{n0
a/2, (n

0
a/3)

1/2}, and that

∀b ∈ VB \ IB , nb ≥ 8
(R+ η)

2

η2
(1 + Λ)

1+#VB

infv∈V⋆ αη/2(v)

where Λ =
∑

(a,b)∈EB

(

7λ(a,b) + 1 + log(2) + log(#V⋆ +#EB)− log δ
)

Then,

P

(

∀w ∈ B(w0, R), M
1
2αη/2
η [(G, w), (G⋆, w⋆)] ̸= ∅

)

≥ 1− δ

The proof is deferred to Appendix I.1.2. Together with Proposition H.4, it should be straightforward
to see how this proposition will be used to prove the tangent approximation property on an R-ball.

I.1.1 DECOMPOSITION OF BALLWISE COVER VIA LOW-DEGREE PROPERTIES

Lemma I.4 (Resistance of cover in low out-degree graphs). Let η ∈ R
∗
+ and R ∈ R+.

Let G⋆ = (G⋆, π⋆, c⋆) ∈ LiftPMod(B, C) and w⋆ ∈ Param(G⋆) over graph G⋆ = (V⋆,E⋆).
Let α : V⋆ → ]0, 1] and let G = (G, π, c) ∈ LiftPMod(B, C) and w0 ∈ Param(G).

Write n : VB → N and d : EB → N (vertex count and maximal out-degree of G) defined as

n : b ∈ VB 7→ #π−1(b) and d : (a, b) ∈ EB 7→ sup
v∈π−1(a)

#
(

G(v,−) ∩ π−1(b)
)

Assume that ∀(a, b) ∈ EB , nb ≥ na log na, and that there is a constant Λ ∈ R+ such that
[

sup
b∈VB

∑

a∈B(−,b)
d(a,b)

na
nb

]

≤ Λ and

[

inf
b∈VB\IB

nb

]

≥ 2R2

η2
(1 + Λ)

#VB

infv∈V⋆ αv

Then for every w ∈ Param(G) such that
∥

∥w − w0
∥

∥ ≤ R it holds

Mα
η

[

(G, w0), (G⋆, w⋆)
]

̸= ∅ ⇒ Mα/2
2 η [(G, w), (G⋆, w⋆)] ̸= ∅

Proof of Lemma I.4. Under the assumption that this set is non-empty, choose a partial morphism

(S, φ) ∈ Mα
η

[

(G,w0), (G⋆, w⋆)
]

and let us construct an an element of Mα/2
2η [(G,w), (G⋆, w⋆)].

Write S = (VS ,ES). We will show that we can extract a subgraph U = (VU , EU ) of S such that the
inclusion ιU : U → S is a fibration, and the restriction of φ to U preserves weights (up to 2η).

We proceed by induction on b ∈ VB , by defining Ub ⊆ VS ∩ π−1(b) as follows:

Ub =











v ∈ π−1(b) ∩VS

∣

∣

∣

∣

∣

∣

∣

G(−, v) ⊆
⋃

a∈VB
a≺b

Ua, sup
u∈G(−,v)

∥

∥w0
u − wu

∥

∥ ≤ η











In words, Ub is the set of vertices of S selected as follows: a vertex is selected if all its parents have
been selected already, and weights on links to its parents have moved no more than η from w0 to w.

The extracted graph is then U = (VU , EU ), where VU =
⋃

b∈VB
Ub, and EU = ES ∩ (VU × VU ).

First, let us check that the inclusion ιU : U → S is a fibration, and that the weight-approximation
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condition is satisfied. It is immediately verified that it is an isomorphism of graphs. Moreover, by
definition of U , if v ∈ VU then U(−, v) = G(−, v) = S(−, v), therefore ιU is an isomorphism of
in-neighborhoods, thus a fibration. To check the weight-approximation condition, let e ∈ EU , and
observe that it holds by triangle inequality in Wπ(e) that

∥(ι∗w)e − (φ∗w⋆)e∥ = ∥we − w⋆φ(e)∥ ≤ ∥we − w0
e∥+ ∥w0

e − w⋆φ(e)∥ ≤ η + η = 2η

Thus, it only remains to show that the restriction φ|U : VU → V⋆ has sufficient volume. This is a
little more tedious. We will switch points of view, to count the vertices from VS that we reject instead
of those that we keep. Define (again inductively on b ∈ VB):

Cb =











v ∈ π−1(b) ∩VS

∣

∣

∣

∣

∣

∣

∣

∃u ∈ G(−, v), u /∈
⋃

a∈VB
a≺b

Ua











Wb =
{

v ∈ π−1(b) ∩VS

∣

∣

∣
∃u ∈ G(−, v), ∥w0

(u,v) − w(u,v)∥ > η
}

In words, Wb is the set of vertices in VS of “type b” that have been rejected because one the
corresponding weights had moved to much. Similarly, Cb is the set of vertices in VS that have been
rejected because one of their parents had been rejected (C stands for “chain” rejection). Observe that

Ub =
(

π−1(b) ∩VS
)

\ (Cb ∪Wb)

Therefore #Ub ≥ #
(

π−1(b) ∪VS
)

−#Cb −#Wb. Let us bound each term separately.

First, note that if v ∈ I(G) ⊆ V, and v ∈ VS , then v ∈ Uπ(v) because G(−, v) = ∅.

Regarding #Wb, since we know by assumption
∑

e∈ES
∥w0

e −we∥2 ≤∑e∈E∥w0
e −we∥2 ≤ R2, but

also by definition of Wb that #Wb · η2 ≤∑e∈ES
∥w0

e − we∥2, we can deduce that #Wb ≤ R2/η2.

Regarding #Cb, we will rely on the following forward inclusion:

Cb ⊆
⋃

a∈B(−,b)

⋃

v∈Ca∪Wa

G(v,−)

therefore we can leverage outgoing degree bounds to obtain

#Cb ≤
∑

a∈B(−,b)
(#Ca +#Wa) · d(a,b)

At this point, it becomes easier to stop thinking in integers and cardinals, and to switch to rates.
Define r : VB → [0, 1] the “rejection rate” r : a 7→ (#Ca +#Wa) /na. We have shown so far that
if b ∈ IB , then rb = 0. Then, dividing the previous inequality by nb on both sides, and rewriting

rb −
#Wb

nb
=

#Cb
nb

≤
∑

a∈B(−,b)

#Ca +#Wa

na
· na
nb

· d(a,b) =
∑

a∈B(−,b)
ra · d(a,b)

na
nb

Write s = 1
2 inf α/(1 + Λ)#VB . Using the second assumption, that nb ≥ R2

η2 · 1
s , and the first

assumption
∑

(a,b)∈EB
d(a,b)

na

nb
≤ Λ, we can deduce the following bound for r

rb ≤
#Wb

nb
+

∑

a∈B(−,b)
ra · d(a,b)

na
nb

≤ R2

η2
1

nb
+





∑

a∈B(−,b)
d(a,b)

na
nb



 ·
(

max
a∈B(−,b)

ra

)

rb ≤ s+ Λ ·
(

max
a∈B(−,b)

ra

)

Hence by Appendix-Lemma L.5, we get maxb∈VB
rb ≤ s · (1 + Λ)

#VB ≤ 1
2 inf α.

We are now ready to check volume conditions on φ|U : U → G⋆. Let v ∈ V⋆, and b = π⋆(v) ∈ VB .

(φ|U )−1
(v) = φ−1(v) ∩ Ub =

(

φ−1(v)
)

\ (Cb ∪Wb)
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Thus, by using the α-covering property of φ : S → G⋆ and the previous bound rb ≤ α(v)/2,

#
(

(φ|U )−1
(v)
)

≥ #
(

φ−1(v)
)

− (#Wb +#Cb)

≥ α(v) · nb − rb · nb
≥ 1

2
α(v) · nb

Thus (U,φ|U ) ∈ Mα/2
2η [(G, w), (G⋆, w⋆)], which concludes the proof.

Lemma I.5 (Low out-degree of random sparse lifts).
Let n : VB → N such that if b ∈ IB then nb = #p−1

C (b). Let (G,w) be a random sparse lift of B
along (n, λ) with distribution N .

For any δ ∈ ]0, 1], and for (a, b) ∈ #EB , let D(a,b) = 7 nb

na
λ(a,b) + log na + log#EB − log δ.

It holds

P

(

∀(a, b) ∈ EB , sup
v∈π−1(a)

#
(

G(v,−) ∩ π−1(b)
)

≤ D(a,b)

)

≥ 1− δ

Write d : EB → N the random variable d : (a, b) ∈ EB 7→ supv∈π−1(a) #(G(v,−) ∩ π−1(b)).

Proof of Lemma I.5. Write for shortness c = − log(δ/#EB) ∈ R+. Let (a, b) ∈ EB , and
p = λ(a,b)/na. Define for all (i, j) ∈ [na] × [nb], independent random Bernoulli variables

m(i,j) ∼ Bern (p). For i ∈ [na], let Xi =
∑

j∈[nb]
m(i,j). Note that these variables have a

Binomial distribution Xi ∼ B (nb, p). Thus from Appendix-Lemma L.2,

P
(

Xu ≥ D(a,b)

)

≤ exp

(

−nbD
(

D(a,b)

nb

∥

∥

∥

∥

λ(a,b)

na

))

where D ( a ∥ p ) = a log a
p + (1− a) log 1−a

1−p . Observe that D(a,b)/nb ≥ λ(a,b)/na because

ρ =
D(a,b)

nb

na
λ(a,b)

=
7λ(a,b)

λ(a,b)
+
na log na

nb
+

c

λ(a,b)

na
nb

≥ 7λ(a,b)

λ(a,b)
= 7 > 1

Therefore, we get (S1) by Appendix-Lemma L.3 and (S2) by the previous lower-bound on ρ, in

D
(

D(a,b)

nb

∥

∥

∥

∥

λ(a,b)

na

)

≥
(S1)

D(a,b)

nb

(

log (ρ) +
1

ρ
− 1

)

≥
(S2)

D(a,b)

nb

because log(7) + 1
7 − 1 ≈ 1.09± 0.01 ≥ 1.

Hence so far, we have thus shown that nbD
(

D(a,b)

nb

∥

∥

∥

λ(a,b)

na

)

≥M ≥ log(na) + c. Thus,

P
(

Xu ≥ D(a,b)

)

≤ exp

(

−nbD
(

M

nb

∥

∥

∥

∥

λ(a,b)

na

))

≤ exp (− log na − c) =
1

na
e−c

Then let X = supu∈[na]Xu, and observe that by definition of a random sparse lift (Def. 4.2), The

random variables X and d(a,b) have the same distribution. By union bound,

P
(

d(a,b) ≥ D(a,b)

)

= P
(

X ≥ D(a,b)

)

≤
∑

u∈[na]

P
(

Xu ≥ D(a,b)

)

≤
∑

u∈[na]

1

na
e−c = e−c

Then by union bound again, and by definition of the shorthand c = − log
(

δ
#EB

)

P
(

∃(a, b) ∈ EB , d(a,b) ≥ D(a,b)

)

≤
∑

(a,b)∈EB

P
(

d(a,b) ≥ D(a,b)

)

≤ #EB · e−c = δ

By negation, it follows P
(

∀(a, b) ∈ EB , d(a,b) ≤ D(a,b)

)

≥ 1− δ.
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I.1.2 PROOF OF BALLWISE COVER RESISTANCE

Proof of Proposition I.3.
Write d : EB → N the function d : (a, b) ∈ EB 7→ d(a,b) = supv∈π−1(a) #(G(v,−) ∩ π−1(b)).

Let Acov be the event {Mαη/2

η/2 [(G, w0), (G⋆, w⋆)] ̸= ∅} (a covering exists at initialization). Then,

let Adeg be the event {∀b ∈ VB ,
∑

a∈B(−,b) d(a,b)
na

nb
≤ Λ} (the lift has relatively low out-degree).

Degree control. Let us start by showing that P(Adeg) ≥ 1 − δ/2. In order to use Lemma I.5,
let us show first that for any (a, b) ∈ EB , it holds na ≥ 2max{λ(a,b), λ2(a,b)/ log(2)}. By case

disjunction on a, first if a ∈ IB , then on one hand λ(a,b) ≤ n0
a/2 = na/2, and on the other

hand λ(a,b) ≤ (n0
a/3)

1/2 = (na/3)
1/2 thus 2λ2(a,b)/ log(2) ≤ (2/ log(2))(na/3) ≤ na because

2/ log(2) ≈ 2.88± 0.01 ≤ 3. For the other case, if a /∈ IB , then by dropping extraneous factors in
the assumption, na ≥ 2 (1 + Λ)2 since #VB ≥ 1, which concludes because Λ ≥ λ(a,b).

For every edge (a, b) ∈ EB , define D(a,b) = 7λ(a,b)nb/na + log na + log#EB − log(δ/2). By
virtue of Lemma I.5, we have

P
(

∀(a, b) ∈ EB , d(a,b) ≤ D(a,b)

)

≥ 1− δ/2

Moreover, for any b ∈ VB ,
∑

a∈B(−,b)

na
nb
D(a,b) =

(S1)

∑

a∈B(−,b)
7λ(a,b) +

na log na
nb

+
na
nb

(log#EB − log(δ/2))

≤
(S2)

∑

a∈B(−,b)
7λ(a,b) + 1 + log#EB − log(δ/2)

≤
∑

e∈EB

7λe + 1 + log(#V⋆ +#EB)− log(δ/2) =
(S3)

Λ

where (S1) is the definition of D(a,b), (S2) uses twice the assumption that nb ≥ na log na for every

a ∈ B(−, b), and (S3) is the definition of Λ. Thus

P
(

Adeg
)

≥ P
(

∀(a, b) ∈ EB , d(a,b) ≤ D(a,b)

)

≥ 1− δ/2

Initial cover. Let us show now that P(Acov) ≥ 1− δ/2. By leveraging Proposition I.2 as (S1), and

writing for shortness, when π⋆(v) = b, as in the proposition, τ(v) =
(

1− 1
nb αη/2(v)

)

+
, we have

P

(

Mαη/2

η/2 [(G, w0), (G⋆, w⋆)] ̸= ∅

)

≥
(S1)

∏

b∈VB\IB



1−
∑

v∈π−1
⋆ (b)

exp

(

−τ(v)
2

4
nb · αη/2(v)

)





+

≥
(S2)

1−
∑

b∈VB\IB

∑

v∈π−1
⋆ (b)

exp

(

−τ(v)
2

4
nb · αη/2(v)

)

≥
(S3)

1−
∑

b∈VB\IB

∑

v∈π−1
⋆ (b)

exp

(

−1

8
nb · αη/2(v)

)

≥
(S4)

1−
∑

v∈V⋆

exp

(

+ log

(

δ

2#V⋆

))

≥ 1− δ/2

where (S2) is a union bound, then (S3) uses nb · αη/2(v) ≥ 4 thus τ(v)2 ≥ (3/4)2 = 9/16 ≥ 1/2,

and (S4) uses nb · αη/2(v) ≥ 8 (R+η)2

η2 (1 + Λ)1+#VB ≥ 8Λ ≥ −8 log δ
2#V⋆ .

Conclusion. Finally, by using Lemma I.4 for (S1), and a union bound for (S2), we get the bound

P(∀w ∈ B(w0, R), M
1
2αη/2
η [(G, w), (G⋆, w⋆)] ̸= ∅) ≥

(S1)
P(Adeg ∩Acov) ≥

(S2)
1− δ
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J QUANTITATIVE PAC CONVERGENCE OF RANDOM SPARSE LIFTS

The statement of this theorem references the definitions of Section 4.2.

Theorem J.1. Let (ε, δ) ∈ R
∗
+ × ]0, 1].

Assume that there exists G⋆ = ((V⋆,E⋆), π⋆, c⋆) ∈ LiftPMod(B, C) a lifted perceptron module, and
parameters (w⋆, a⋆) ∈ Param(G⋆)× LinReadout(G⋆, k) such that L[G⋆](w⋆, a⋆) < ε.

Let L[G⋆](w⋆, a⋆) = ε0, and define the constants

C⋆ =
∑

i∈[k]

∑

v∈T (G⋆)

∥a⋆i,v∥
√

#π−1
⋆ (π⋆(v))

η = sup

{

η ∈ R
∗
+

∣

∣

∣

∣

∣

L[G⋆, w⋆](η,X ) <
1

C⋆

(

√

ε+ ε0
2

−√
ε0

)}

Λ =
∑

(a,b)∈EB

(

7λ(a,b) + 1 + log(2) + log(#V⋆ +#EB)− log δ
)

Let αη/2 : V⋆ → ]0, 1] be the α-parameter associated to (G⋆, w⋆) and
η
2 by Def. I.1. Define

c =

√

√

√

√

∑

i∈[k]

∑

v∈T (G⋆)

2 ∥a⋆i,v∥2
αη/2(v) ·#π−1

⋆ (π⋆(v))

Let κ = 3 c−2/ ∥f⋆∥4D. Let N1 = VB → N be defined for b ∈ IB as N1(b) = #p−1
C (b) and

∀b ∈ VB \ IB , N1(b) = 8

(

1 +
4 c

η

∥f⋆∥2D
ε− ε0

)2
(1 + Λ)1+#VB

infv∈V⋆ αη/2(v)

It holds, for all n ∈ S0 such that n ⪰ N1, that if (G, w) is a random sparse lift of B along (n, λ) with
distribution N , and a = 0 ∈ LinReadout(G, k), then the pair (L[G], (w, a)) satisfies Convergence
Criterion 1 with limit error ε and constant κ, with probability at least (1− δ).

Theorem 4.3 is a direct consequence of Theorem J.1, it is thus sufficient to prove the latter.

Proof of Theorem J.1. Define ε0 = L[G⋆](w⋆, a⋆) ∈ R
∗
+ the error achieved by the witness. Then,

define ε1 = (ε0 + ε)/2 ∈ ]ε0, ε[ the midpoint between the witness error and the target limit error.

Outline. The idea for the proof is as follows. First, we use the witness network to get tangent
approximation to error ε1 > ε0 on a ball around initialization (by Proposition H.4), provided the
network is large enough to have the witness as subnetwork. This is possible because we take η small
enough to ensure that the gap between the witness error and tangent approximation error is no more
than (ε1 − ε0). Then, for a yet unspecified constant R, we leverage Proposition I.3 to set N1 large
enough such that the witness is a subnetwork on an R-ball with probability at least (1− δ), thus we
have tangent approximation with error ε1 < ε with high probability. Finally, we set R large enough
with respect to the gap (ε− ε1) and the tangent approximation intercept (as per Theorem E.2 and
more precisely Lemma E.1) to ensure the limit error of gradient flows is at most ε, and propagate that
choice of radius to the definition of N1, which will be sufficient to conclude.

Proof of Condition C1. Let us reconstruct the setting of Section 2 with the definitions of perceptron
modules. Let (S,⪯) be the set S = {n : VB → N | ∀b ∈ IB , nb = #p−1

C (b)}, with the order

n0 ≤ n1 if and only if ∀b ∈ VB , n
0
b ≤ n1

b . For n ∈ S , define C = (VC ,EC) the fully-connected lift

of B along n, and the set Gn of lifted modules2 ((VG,EG), π, c) ∈ LiftPMod(B, C) with vertices
VG = VC . Let Θn =

∏

e∈EC
(π∗
CW)e. Define F(n,G) : Θn → (X → R

k) the forward function

F(n,G)(w, a) = a · F[G](w,−). Let us try to show that Condition C1 is satisfied with parameters

(ε1, δ) and with intercept c. Let R ∈ R+, and let s1(R) ∈ S be defined as follows

∀b ∈ VB \ IB , [s1(R)]b = 8
(R+ η)2

η2
(1 + Λ)1+#VB

infv∈V⋆ αη/2(v)

2Note that there are distinct elements of Gn which may be isomorphic as graphs.
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Let s ⪰ s1, let (G, w0) be a random sparse lift along (s, λ) and and a0 = 0 ∈ LinReadout(G, k).
By Proposition I.3 and by definition of s1(R), with probability at least (1 − δ) over (G,w0),
for every w ∈ Param(G) such that ∥w − w0∥ ≤ R, it holds that (G, w) has ( 12αη/2, η)-cover

of (G⋆, w⋆). Furthermore, by Proposition H.4, this implies that for every r < R and for every
a ∈ LinReadout(G, k) such that ∥(w, a)− (w0, a0)∥ ≤ r, writing θ = (w, a) ∈ Θs, the proposition
implies that there exists u ∈ Θs with ∥u∥ ≤ c+ ∥a∥ ≤ c+ r and such that

∥F(s,G)(θ) + dF(s,G)(θ) · u− f⋆∥2D ≤ (
√
ε0 + C⋆ · L[G⋆, w⋆](η,X ))2 ≤ ε1

This is nearly the (ε1, δ) tangent approximation stated in Condition C1, but the assumption uses a
strict inequality. We could proceed by extending the proof of Theorem E.2, but since our bound
on the threshold N1 is not tight anyway, we will instead choose to match the assumption exactly.
Therefore, define ε2 = (ε+ ε1)/2. Note that ε2 > ε1, therefore we have shown that Condition C1 is
satisfied with parameters (ε2, δ). Moreover, by an immediate calculation, ε− ε2 = (ε− ε0)/4.

Proof of PAC-convergence. Note that it holds L[G](w0, a0) ≤ ∥f⋆∥2D almost surely because a0 = 0.
Thus, as per Theorem E.2, set R0 = c∥f⋆∥2D/(ε − ε2) and inject that constant in N1 = s1(R0).
Indeed, this matches the definition of N1 because R0 = c∥f⋆∥2D/(ε − ε2) = 4 c∥f⋆∥2D/(ε − ε0)
This concludes the proof.

K PROOFS OMMITTED FROM THE MAIN TEXT

Here we provide several straightforward checks that the definitions introduced in this document are
properly defined. All ideas are relatively simple, but the very general notation can sometimes obscure
this simplicity. Lifting in particular requires going back to the definition and carefully checking that
every type coincides with what we expect. The MLP examples of Fig. 4 and Fig. 5 can help.

K.1 LIFTING BY HOMOMORPHISM IS WELL DEFINED

Proposition K.1 (Def. 3.5 is well-defined). Let B = (VB ,EB) be a finite directed acyclic graph.
Let B = ((IB ,TB), (Y,Z,W), (M,σ)) ∈ PMod(B) be a perceptron module.
Let G = (V,E) be a graph, and π : G→ B a homomorphism of graphs.

Then G = ((π−1(IB), π
−1(TB)), (π

∗Y, π∗Z, π∗W), (M̄, σ̄)) is a perceptron module.

Proof. Let us check the conditions of Def. 3.3 one by one. First,G is a directed acyclic graph, because
π : G → B is a homomorphism and B is a directed acyclic graph. Then, IG = π−1(IB) ⊆ V,
and if v ∈ IG, then π(v) ∈ IB therefore B(−, π(v)) = ∅, thus G(−, v) = ∅ because π is a
homomorphism. Then TG = π−1(TB) ⊆ V is immediate. The bundles π∗Y, π∗Z, π∗W over
respectively V,E,E are well-defined by pullback (Def. 3.2) through π : V → VB viewed as a
function of sets (respectively π : E → EB as a function of sets). It remains to check the domains and
co-domains of (M̄, σ̄). First let (u, v) ∈ E, and observe that

M̄(u,v) =Mπ(u,v) ∈
(

Wπ(u,v) × Yπ(u) → Zπ(u,v)
)

=
(

(π∗W)(u,v) × (π∗Y)u → (π∗Z)(u,v)

)

Then, let v ∈ V \ IG. We have π(v) ∈ VB \ IB because IG = π−1(IB), thus σπ(v) has type signature

σπ(v) :
∏

b∈B(−,π(v)) Zπ(u,v) → Yπ(v). Let z ∈ ∏

u∈G(−,v) (π
∗Z)(u,v), and let us show that

σ̄v(z) ∈ (π∗Y)v . For any a ∈ B(−, π(v)), we can define Za =
∑

u∈Ga(−,v) zu, where Ga(−, v) =
π−1(a) ∩ G(−, v). This sum is well-defined because zu ∈ (π∗Z)(u,v) = Z(π(u),π(v)) = Z(a,π(v))

and Z(a,π(v)) is a vector space. Since Ga(−, v) ⊆ G(−, v), the quantity Za is a function of z. Then

the check concludes by σ̄v(z) = σπ(v)

(

(Za(z))a∈B(−,π(v))

)

∈ Yπ(v) = (π∗Y)v by definition.

K.2 THE PARAMETER α OF A PERCEPTRON MODULE IS WELL DEFINED

Let us check that the parameter α defined in Definition I.1 is well-defined. First, the expression
is well-formed because the finite directed graph G⋆ is acyclic since it admits a homomorphism
π⋆ : G

⋆ → B to an acyclic graph. Then, for all v ∈ V⋆, as a product or non-negative factors lower
than 1, αη(v) ∈ [0, 1]. Finally, by induction on v, it is immediate that αη(v) > 0 provided all factors
pπ⋆(u,v)(w

⋆
(u,v), η) are strictly positive, which is granted by the full-support assumption on Nπ⋆(u,v).
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K.3 SUBADDITIVITY OF THE D-SEMINORM

Proposition K.2. Let D be a distribution on X with compact support, and define for f : X → R
k

∥·∥D : f 7→
√

Ex∼D [∥f(x)∥22]

Let a : X → R
k and b : X → R

k. Then it holds ∥a+ b∥D ≤ ∥a∥D + ∥b∥D

Proof. Since both sides of the inequality are non-negative, we work directly with squares. By a
straightforward computation, using Cauchy-Schwarz inequality in R

k, then E[AB]2 ≤ E[A2]E[B2],

E
[

∥ax + bx∥22
]

= E
[

∥ax∥22 + 2⟨ax, bx⟩Rk + ∥bx∥22
]

≤ E
[

∥ax∥22 + 2∥ax∥2∥bx∥2 + ∥bx∥22
]

= ∥a∥2D + 2E [∥ax∥2∥bx∥2] + ∥b∥2D
≤ ∥a∥2D + 2

√

E [∥ax∥22]
√

E [∥bx∥22] + ∥b∥2D
= (∥a∥D + ∥b∥D)2

L TECHNICAL LEMMAS

Proposition L.1. Let λ ∈ R
∗
+, n ∈ N, k ∈ [n]. If n ≥ max(2λ, 2λ2/ log(2)), then

(

1− λ

n

)n−k
≥ 1

2
e−λ

Proof. Let g : [0, 1/2] → R, x 7→ log(1 − x) + x. We will start by showing that g(x) ≥ −2x2.
Indeed by computing the derivatives, g(0) = 0 and g′(x) = 1 − 1/(1 − x) so g′(0) = 0 and

g′′(x) = −1/(1− x)
2
. Observing that g′′(x) ≥ −4 for x ∈ [0, 1/2], and integrating twice following

Taylor-Laplace’s theorem with integral remainder, we get

g(x) = g(0) + g′(0)(x− 0) +

∫ x

0

g′′(s)(x− s) ds

≥
∫ x

0

−4(x− s) ds =

[

−4

(

xs− s2

2

)]x

0

= −2x2

Let us now apply this result to x = λ/n ≤ 1/2.

n

(

log

(

1− λ

n

)

+
λ

n

)

= ng

(

λ

n

)

≥ −2
λ2

n

Therefore, moving the λ term from the left to the right hand side, and taking exponentials,

(

1− λ

n

)n−k
≥
(S1)

(

1− λ

n

)n

≥
(S2)

e−2λ2/n · e−λ ≥
(S3)

1

2
e−λ (7)

where (S1) uses 0 < 1− λ/n ≤ 1, (S2) is the exponential of the previous inequality, and (S3) is the
assumption n ≥ 2λ2/ log(2) which implies −2λ2/n ≥ − log(2).

Lemma L.2. Let X ∼ Bern(n, p) be a binomial random variable, and M ∈ R+.

P (X ≥M) ≤ exp

(

−nD
(

M

n

∥

∥

∥

∥

p

))

where D ( a ∥ p ) = a log a
p + (1− a) log 1−a

1−p .

This lemma is Mulzer (2018, Theorem 2.1), which presents and discusses several proofs.
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Lemma L.3. For all (a, p) ∈ ]0, 1[
2
, let D ( a ∥ p ) = a log a

p + (1− a) log 1−a
1−p . It holds

a ≥ p ⇒ D ( a ∥ p ) ≥ a

(

log
a

p
+
p

a
− 1

)

Proof. Note that it is sufficient to show that log 1−a
1−p ≥ p− a. Let f : [p, a] → R, u 7→ log(1− u).

This function has derivative f ′(u) = −1/(1− u). For u ≤ a, it holds f ′(u) ≥ −1/(1− a). Thus,

log
1− a

1− p
=
[

f(u)
]a

p
=

∫ a

p

f ′(u) du ≥
∫ a

p

−1

1− a
du =

p− a

1− a

Multiplying both members by (1− a) ≥ 0 concludes the proof.

Lemma L.4. Let (Xi)i∈[n] be independent identically distributed random variables with values in

{0, 1} such that E[Xi] ≥ µ ∈ [0, 1]. Let X =
∑

iXi. For all δ ∈ ]0, 1[,

P (X ≤ (1− δ)nµ) ≤ exp

(

−1

2
δ2nµ

)

This lemma is Mulzer (2018, Corollary 4.3).

Proposition L.5. Let S be a finite set with a strict total order ≺. Let r : S → R+ be a function such
that r(minS) = 0 and such that there exist two constants (p, q) ∈ R

2
+ such that

∀s ∈ S, r(s) ≤ p+ q ·
(

max
a≺s

r(a)

)

Then, it holds

max
s∈S

r(s) ≤ p · (1 + q)
#S

Proof. Let x : N → R+ be the sequence defined by x0 = 0 and xk+1 = p + q · xk. By a quick
induction, xk = p

∑

i<k q
i. The total ordering of S induces ψ : S → [#S] an increasing map, called

a numbering of S. By induction on k ∈ [#S] ⊆ N, we will show that r(ψ−1(k)) ≤ maxi≤k xi. The
case k = 0 is immediate because both are null, and for s = ψ−1(k + 1) we have

r(s) ≤ p+ q ·max
a≺s

r(a) = p+ q ·max
i≤k

r(ψ−1(i)) ≤ p+ q ·max
i≤k

xi ≤ max
i≤k

p+ q · xi ≤ max
i≤k

xi+1

Now observe that for all k ∈ N, it holds xk ≤ p
∑

i≤k q
i ≤ p

∑

i≤k
(

k
i

)

qi = p · (1 + q)
k
. Thus

max
s∈S

r(s) ≤ max
i≤#S

xi ≤ max
i≤#S

p · (1 + q)
i ≤ p · (1 + q)

#S

Proposition L.6. Let P ∈ N and let {Ei | i ∈ [P ]} be a collection of finite sets. There exists a disjoint
collection {Vi | i ∈ [P ]} such that for all i ∈ [P ], it holds both Vi ⊆ Ei and #Vi ≥ ⌊#Ei/P ⌋.

Proof. The proof is an application of Hall’s marriage theorem. Define the bipartite graph G as
follows. Let c : [P ] → N be c : i 7→ ⌊#Ei/P ⌋. Define the left part of the graph as X =

∐

i∈[P ][ci],

and the right part as Y =
⋃

i∈[P ]Ei. For any (i, u) ∈ X (i.e. i ∈ [P ] and u ∈ [ci]) and e ∈ Y ,

there is an edge ((i, u), e) in G if and only if e ∈ Ei. An X-perfect matching in G is an injective
function M : X → Y such that (x,M(x)) is an edge of G for every x ∈ X . Such a matching yields
a choice of subsets (Vi =M({i}× [ci]))i satisfying the conditions, therefore, let us show that such a
matching exists by proving Hall’s condition: for every W ⊆ X , it holds #W ≤ #NG(W ) where
NG(W ) ⊆ Y are the neighbours of W in G. Let W ⊆ X . Let I = {i ∈ [P ] | ∃u, (i, u) ∈ W}
Observe that #W ≤ ∑

i∈I ci ≤ maxi∈I #Ei. However by definition of G, NG(W ) =
⋃

i∈I Ei
thus we get #W ≤ maxi∈I #Ei ≤ #(

⋃

i∈I Ei) = #NG(W ), which concludes the proof.
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M CONVOLUTIONAL EXAMPLE

We give in Figure 7 an example of fully-convolutional neural network to compute functions
R

16×16×3 → R. The max operation has signature max : R
8×8 → R and computes a maxi-

mum across the feature map, wich is typical of fully-convolutional networks. The lift dimension of
the input is 3, which corresponds to the three color channels of RGB images, and the lift dimension
of 6 for the hidden layer corresponds to 6 “channels” of activations in the hidden layer.

3 6

ReLU

1

max ◦ ReLUconvolution
no-pad

R
16×16

R
12×12

R
5×5

convolution
no-pad

R
12×12

R
8×8

R
5×5

R

Figure 7: Convolutional perceptron module. Lift dimensions correspond to channels.

N EMPIRICAL OBSERVATIONS RELATED TO THE PRESENT THEORY

We include in this section several preliminary experiments to evaluate empirical predictions based on
this theory. None of these experiments are sufficient in scale or diversity to claim anything consistent
across architectures or tasks. However, we hope that these experiments suffice to show that the theory
presented here is not entirely vacuous, and that conducting larger and broader experiments to verify
and challenge its predictions is a direction worth pursuing.

The present theory is limited to continuous-time gradient flow for very large lifts, but we hope that
future extensions will tackle time-discretization, smaller lifts, and different optimizers. For these
reasons, we perform these experiments using an empirical setting closer to the common practices of
deep learning, despite the discrepancies that this induces with the theory, to show that it still produces
valuable insights even outside its limited application domain at this early stage.

N.1 QUANTILES OF THE FINAL TRAINING LOSS

In the context of one-dimensional regression, we train random sparse lifts, with two distinct base
modules, and plot quantiles of the final training loss reached as a function of the lift dimension.

N.1.1 DETAILS OF THE EXPERIMENT SETUP

We consider the one-dimensional regression task of learning the target function f⋆ : R → R, defined
as x 7→ a sin(ω x+ φ), with target parameters a = 2, ω = 0.5 and φ = 0.42.

The training set consists of n = 104 input points independently sampled uniformly at random from
the interval [0, 100], together with the corresponding value for f⋆. We use the quadratic loss on R and
the models described in the following section. We train each model for 105 iterations with training
samples grouped by batches of 10, taken uniformly at random in the training set with replacement,
with the Adam optimizer for a step size of 10−2. We consider base perceptron modules describing
two-layer networks with biases, but with two different activations. For each lift dimension, we plot —
over twenty training runs for each lift dimension — the median of the final training loss in orange,
the first and third quartile with a box, and the first and last decile with its whiskers.

N.1.2 BASE PERCEPTRON MODULES STUDIED

We use as models the random sparse lifts defined by Figure 8 for σ = (·)+ : x 7→ max(0, x) and
σ = sin : R → [−1, 1]. Note that for two layers, since the input dimension is one and the last layer is
a fully-connected linear readout, neither of those models is effectively “sparse”, despite being defined
as random sparse lifts. This coincides with the usual definition of a multi-layer perceptron for two
layers and activation σ : R → R, with the additional node above being used to create a bias term in
the language of perceptron modules. Lift annotations of vertices are depicted above the vertex.
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Figure 8: One-dimensional two-layer perceptron blueprint with activation σ

N.1.3 EXPERIMENTAL RESULTS AND INTERPRETATION

We plot in Figure 9 the results of this experiment. We observe that, as predicted by the theory, when
the lift dimension increases then all quantiles of the final loss decrease (it is unclear whether they will
tend to zero as predicted by the theory, see the discussion with the next figure). We do not observe an
“incompressible failure probability”, of for instance 10% of networks not moving below 1.90 train
error regardless of size. We do not observe a significant chance of small networks reaching near-zero
loss, despite universality results with low lift dimension. We do not observe across blueprints the
same speed of convergence of the error to zero with respect to the lift dimension (note the differences
in scales in Figure 9), on the contrary the two blueprints define two very different families of networks
in terms of effective learnability at tractable sizes. We do not observe a “sweet spot” in lift dimension,
past which large networks would consistently fail to learn or have diverging training loss. All of these
observations, despite the notable differences between the experimental setting and the theoretical
model (discrete vs continuous time, change of optimizer, etc.), are relatively consistent with the
theoretical predictions. This suggests that this type of experiment could be conducted at a larger scale
to challenge the predictions of this theory.
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Architecture: ReLU MLP
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Figure 9: Median, inter-quartile range, first and last deciles of final training loss (106 iterations).

Since the measurements in Figure 9 are used as estimates of the limit value reached by the loss, we
assess the quality of convergence in Figure 10. We plot the same quantiles of the training loss at 80%
and 100% of the total allocated training interations: on one hand, for networks that have converged to
a critical point, we expect these quantiles to be identical since the parameters should not move when
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gradients are null; on the other hand, if they differ significantly, then the experiment would need to be
repeated with an increased training budget to rule these considerations out.
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Architecture: Sine-based MLP

Figure 10: Superposition of quantiles at 100% and 80% (in red, shifted right) of training.

For lift dimensions lower than 102, the results are similar enough that the measured loss can be
understood as the final limit. For higher lift dimensions, this conclusion is not as clear, and other
replication experiments would be needed to confidently conclude that the observations on these plots
are representative of a general behavior of neural networks, rather than only artefacts of this very
particular experimental setting. Given the very simple setting, and comparatively very large lift
dimensions and training times explored here, these observations remain promisingly similar to the
theory’s predictions.

N.2 SPARSE VERSUS DENSE LIFTS IN CLASSIFICATION

In the context of classification, for the MNIST digit-recognition dataset, we perform experiments
with dense and sparse multi-layer perceptrons to check whether there exists a fundamental difference
which would prevent the extension of this theory to the dense setting.

N.2.1 DETAILS OF THE EXPERIMENT SETUP

We train several models on the MNIST digit recognition dataset, using the cross-entropy loss and
the Adam optimizer with a step-size of 10−3 by batches of 100 samples taken with replacement, and
measure the test accuracy of the resulting models after 105 training iterations.
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Figure 11: Blueprint of the base perceptron module used for the MNIST experiment. Lift annotations
are depicted above the vertices, and inside the boxes for edges (∞ indicates dense connection)

For the dense networks, we use three-layer fully connected perceptrons with hidden widths h ∈ N

and ReLU activation. We initialize each weight matrix W ∈ R
n×m with independent identicaly

distributed entries, with a gaussian distribution of mean zero and variance 1/n, also known as
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“Kaiming He’s normal initialization with fan-in mode”, and biases with normal distributions. Each
“linear” layer computes the function (W, b, x) 7→W · x+ b (i.e. without a renormalizing factor).

For sparse networks, we use random sparse lifts derived from the blueprint of Figure 11, to have nearly-
identical architectures. We use a lift dimension h ∈ N identical for all layers, and a degree parameter
λ ∈ R+. We initialize all weights with a normal distribution. Consistently with the definition of

linear readouts, the last “linear” operation computes the function (W, b, x) 7→ (W · x)/
√
h+ b (i.e.

with a renormalization factor of
√
h for the matrix W ∈ R

h×10). We vary λ ∈ R+ the expected
incoming degree of hidden nodes, and for both dense and sparse models, we use various powers of
two for the lift dimension h ∈ N.

N.2.2 EXPERIMENT RESULTS

The results of this experiment are depicted in Figure 12. In the absence of any regularization or
data augmentation, or even large hyperparameter scans, we do not expect particularly impressive
performance for either family of models, but only look for differences between the two families. At
this small scale, differences in accuracy lower than 1% are to be interpreted with care.

We observe in Figure 12 that for similar lift dimensions, sparse networks perform slightly worse and
their performance degrades when the sparsity is more extreme. However this drop remains relatively
small, for instance at h = 128 there is only a 3% drop from the dense model to the sparse model with
λ = 10. For scale, in the first hidden layer of the dense model, there are 784× h ≈ 105 parameters,
while in the corresponding sparse model there are λ× h ≈ 103. Overall the sparse models appear
very similar to their dense counterparts, we do not observe a plateau at a very low (e.g. 70%) accuracy,
and we do not observe failures to learn (e.g. order of 10% accuracy) even at large lift dimensions.
We also plot in Figure 12 the accuracy as a function of the total number of floating-point parameters,
for which the performance is even closer Sparse models appear to outperform dense models with the
same number of floating-point parameters, however this gap is too small for conclusions at this scale.
In particular, the number of floating-point parameters does not account for the total storage space of
the network, since the connectivity of the sparse network also has to be stored (e.g. using one bit per
corresponding dense-network parameter, with a naive encoding), which should be accounted for in
future larger-scale experiments. We did not include large lift dimensions in sparse networks in this
experiment, due to our inefficient implementation of sparse operations with few non-zero entries.
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Figure 12: MNIST accuracy of dense and sparse Multi-Layer Perceptrons with ReLU activations

This experiment is overall inconclusive in uncovering a fundamental difference betweent the behaviors
of sparse and dense lifts. This leaves hope that the current proof of convergence, tailored to the sparse
case at the moment, will admit extensions to explain the performance of similar dense networks.

39


	Introduction
	Convergence by tangent approximation
	Perceptron modules
	Generalizing multi-layer perceptrons to arbitrary computation graphs
	Lifting perceptron modules through homomorphisms

	Random sparse lifts and convergence of sparse perceptrons
	Random sparse lifts of perceptrons modules
	Convergence of sparse perceptrons

	Summary of notations
	Organisation of the appendix
	Graph definitions and lemmas
	Graph definitions
	Fibrations are closed under composition

	Convergence Criterion 1 : dependency on parameters
	Probable approximate correctness by tangent approximation
	Morphisms of lifted perceptron modules to track activations
	Proof that morphisms preserve activations

	Tracking activations across deformations of weights
	From a covering partial morphism to tangent approximation
	Partial morphisms, a strong meaning of ``sub-network''
	Tangent approximation by subnetwork-matching

	Coverage of random sparse lifts
	Ballwise resistance of coverings with low out-degree
	Decomposition of ballwise cover via low-degree properties
	Proof of ballwise cover resistance


	Quantitative PAC convergence of random sparse lifts
	Proofs ommitted from the main text
	Lifting by homomorphism is well defined
	The parameter  of a perceptron module is well defined
	Subadditivity of the D-seminorm

	Technical lemmas
	Convolutional example
	Empirical observations related to the present theory
	Quantiles of the final training loss
	Details of the experiment setup
	Base perceptron modules studied
	Experimental results and interpretation

	Sparse versus dense lifts in classification
	Details of the experiment setup
	Experiment results



