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ABSTRACT

Diffusion probabilistic models (DPMs), while effective in generating high-quality
samples, often suffer from high computational costs due to their iterative sam-
pling process. To address this, we propose an enhanced ODE-based sampling
method for DPMs inspired by Richardson extrapolation, which reduces numerical
error and improves convergence rates. Our method, RX-DPM, leverages multiple
ODE solutions at intermediate time steps to extrapolate the denoised prediction
in DPMs. This significantly enhances the accuracy of estimations for the final
sample while maintaining the number of function evaluations (NFEs). Unlike
standard Richardson extrapolation, which assumes uniform discretization of the
time grid, we develop a more general formulation tailored to arbitrary time step
scheduling, guided by local truncation error derived from a baseline sampling
method. The simplicity of our approach facilitates accurate estimation of numerical
solutions without significant computational overhead, and allows for seamless and
convenient integration into various DPMs and solvers. Additionally, RX-DPM
provides explicit error estimates, effectively demonstrating the faster convergence
as the leading error term’s order increases. Through a series of experiments, we
show that the proposed method improves the quality of generated samples without
requiring additional sampling iterations.

1 INTRODUCTION

Diffusion probabilistic models (DPMs) have emerged as a powerful framework for generating high-
quality samples in a wide range of applications and domains for images (Ho et al., 2020; Song et al.,
2021b; Dhariwal & Nichol, 2021; Rombach et al., 2022), videos (Ho et al., 2022; Singer et al., 2022;
Zhou et al., 2022; Wang et al., 2023), 3D shapes (Zeng et al., 2022), etc. While DPMs demonstrate
impressive performance in data fidelity and diversity, they also have limitations, particularly their
computational inefficiency due to the sequential nature of sampling. Addressing this issue is crucial
for enhancing the usability of DPMs in real-world scenarios, where time constraints are critical for
practical deployment.

The generation process of DPMs can be formulated as a problem of finding solutions to SDEs or
ODEs (Song et al., 2021b), where the truncation errors of the numerical solutions are highly correlated
to the quality of the generated samples. To enhance the quality of these samples, it is essential to
reduce truncation errors, which can be achieved by adopting advanced solvers or numerical techniques
that improve the accuracy of numerical estimations. In this context, we aim to lower truncation errors
by applying numerical extrapolation to existing sampling methods for DPMs. The key ingredient
of the proposed method is Richardson extrapolation, a proven and widely used technique in the
mathematical modeling of physical problems such as fluid dynamics and heat transfer, which demand
high computational resources. While numerous variants and strategies have been studied (Richards,
1997; Botchev & Verwer, 2009; Zlatev et al., 2010), its application to DPMs remains unexplored. The
method uses a simple linear combination of multiple numerical estimates from different resolutions
of a grid to approximate the ideal solution, where the estimates are expected to converge as the
resolution becomes finer, ultimately reaching the target value in the limit.
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Figure 1: Application of the proposed extrap-
olation on two denoising steps (k = 2) with
time steps of [ti, ti−1, ti−2]. x̂

(n)
ti−2

denotes
that n steps are used by the baseline sampler
within the same interval. x̃

(2)
ti−2

represents
the extrapolated estimation using two ODE
solutions at ti−2, x̂(1)

ti−2
and x̂

(2)
ti−2

.

We propose an extrapolation algorithm that is applied
repeatedly every k denoising steps of an ODE-based
sampling method to improve the accuracy of interme-
diate denoising steps. This is achieved by utilizing
an additional ODE solution, which is estimated by
a single step over an interval of k time steps. Fig-
ure 1 illustrates this concept with k = 2 on time
steps [ti, ti−1, ti−2], which forms a unit block of our
extrapolation-based sampling. Two ODE solutions—
single-step and two-step estimations at ti−2 from ti—
can be leveraged to achieve an approximation closer
to the ideal solution x∗ti−2

, which is unknown.

The standard Richardson extrapolation assumes a uni-
form discretization of the time grid. However, the
uniform grid of denoising time steps might be sub-
optimal for DPMs; a smaller time interval near the
clean sample is often more beneficial (Karras et al.,
2022; Song et al., 2021a) given the same number of
steps. Considering such characteristics of DPMs and
the advantages offered by specific time step discretizations, we propose an algorithm applicable to
arbitrary schedules, with coefficients determined by the chosen configuration. We observe that our
grid-aware approach yields better performance than conventional methods.

Although there exist other methods applying extrapolation techniques to diffusion models, their
usages of extrapolation are somewhat different from ours. For example, Zhang & Chen (2023);
Zhang et al. (2023) utilize estimations from earlier steps to improve the estimation at the time step, ti,
whereas our approach adopts two denoised estimations at the same time step, ti, to enhance accuracy
at ti. In addition, the main building block of our approach, Richardson extrapolation, is proven to
enhance numerical accuracy and provides an explicit estimate of the error, which allows for a clear
understanding of the convergence behavior. Furthermore, the implementation of our algorithm is
simple and cost-effective because it requires no additional network evaluations and insignificant
computational overhead to perform the extrapolation. We refer to the proposed sampling algorithm
as RX-DPM.

Our main contributions are summarized below:

• We introduce an improved diffusion sampler, RX-DPM, inspired by Richardson extrapo-
lation, which effectively increases the order of accuracy of existing ODE-based samplers
without increasing NFEs.

• We systematically develop an algorithm for general DPM solvers with arbitrary time step
scheduling starting from the derivation of a truncation error of the Euler method on a
non-uniform grid.

• Our experiments across various well-known baselines demonstrate that RX-DPM exhibits
strong generalization performance and high practicality, regardless of ODE designs, model
architectures, and base samplers.

2 RELATED WORK

There exists a substantial body of research that seeks to reduce the computational burden of DPMs
while maintaining their performance. One approach in this direction involves exploring alternative
modeling strategies for the reverse process. For example, the networks in Salimans & Ho (2022);
Song et al. (2023); Kim et al. (2024) learn alternative objectives through knowledge distillation, using
the outputs obtained by iterative inferences of the pretrained (teacher) networks. On the other hand,
Bao et al. (2022) model a more accurate reverse distribution by incorporating the optimal covariance,
while Xiao et al. (2022); Kang et al. (2024) implicitly estimate the precise reverse distribution by
utilizing GAN components.

While the aforementioned methods require model training, there is also a training-free approach that
interprets the generation process of a diffusion model as solving an ODE or SDE (Song et al., 2021b;
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Karras et al., 2022). For instance, DDIM (Song et al., 2021a) proposes to skip intermediate time
steps, which is equivalent to solving an ODE using the Euler method with a large step size. To further
improve sampling quality, a large volume of research (Karras et al., 2022; Dockhorn et al., 2022; Liu
et al., 2022; Zhang & Chen, 2023; Lu et al., 2022; 2023) simply applies classical higher-order solvers
or customizes them for diffusion models. Specifically, Karras et al. (2022) adopt the second-order
Heun’s method (Süli & Mayers, 2003) and Dockhorn et al. (2022) apply the second-order Taylor
expansion. In addtion, Liu et al. (2022) propose a pseudo-numerical solver, which combines classical
high-order numerical methods and DDIM.

Building on ODE-based sampling methods, various numerical techniques have been employed to
further improve the sample quality. For example, IIA (Zhang et al., 2024) optimizes the coefficients
of certain quantities to approximate the fine-grained integration. LA-DPM (Zhang et al., 2023)
and DEIS (Zhang & Chen, 2023) adopt extrapolation techniques as our method, but with notable
differences. Specifically, LA-DPM linearly extrapolates the previous and current predictions of the
solution at t = 0—the original data manifold—while DEIS uses high-order polynomial extrapolation
on the noise prediction function. The key distinction of our approach is that, while they adopt score
(noise) predictions obtained at different time steps for each extrapolation, we utilize multiple denoised
outputs obtained at the same time step.

3 PRELIMINARIES

3.1 DIFFUSION PROBABILISTIC MODELS AS SOLVING AN ODE

For p0 = pdata and x ∈ Rd, Karras et al. (2022) defines a marginal distribution at t as

pt(x) = s(t)−dp(x/s(t);σ(t)), (1)

where p(x;σ) = pdata ∗ N (0, σ(t)2I), and s(t) and σ(t) are non-negative functions satisfying
s(0) = 1, σ(0) = 0, and limt→∞

σ(t)
s(t) =∞. The probability flow ODE,

dx = [ṡ(t)/s(t)− s(t)2σ̇(t)σ(t)∇x log p(x/s(t);σ(t))]dt, x(T ) ∼ pT (x), (2)

matches the marginal distribution. By adopting the specific choices, s(t) = 1 and σ(t) = t as
in Karras et al. (2022), Equation (2) is reduced as follows:

dx = −t∇x log p(x; t)dt, x(T ) ∼ pT (x). (3)

Diffusion models now learn the score function∇x log p(x; t), which is the only unknown component
in the equation. For sufficiently large T , the marginal distribution pT (x) can be approximated by
N (x;0, T 2I) and the generation process is equivalent to solving for x(0) using Equation (3) with
the boundary condition, x(T ) ∼ N (0, T 2I). Since the analytic solution of Equation (3) cannot
be expressed in a closed form, numerical methods are used to solve the ODE. Given the time step
scheduling, 0 = t0 < t1 < . . . < tN = T , the solution is given by

x(0) = x(T ) +

∫ 0

T

−t∇x log p(x(t); t)dt (4)

= x(T ) +

1∑
i=N

∫ ti−1

ti

−t∇x log p(x(t); t)dt, (5)

where each integration from ti to ti−1 can be approximated by ODE solvers such as the Euler method
or Heun’s method.

3.2 RICHARDSON EXTRAPOLATION

Let the exact and numerical solutions at t = 0 be V ∗ and V (h), respectively, where h (0 < h < 1)
denotes the step size. If V ∗ = limh→0 V (h) and the order of truncation error is known, Richardson
extrapolation (Richardson, 1911) identifies a faster converging sequence, Ṽ (h). For instance, V (h)
with a truncation error in the order of O(hp) is expressed by

V ∗ = V (h) + chp +O(hq) (6)
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for 0 < p < q and c 6= 0. Then, for a fixed constant k > 1,

V ∗ = V (h/k) +
c

kp
hp +O(hq). (7)

From Equations (6) and (7), eliminating the hp terms, we obtain the solution

Ṽ (h, k) =
kpV (h/k)− V (h)

kp − 1
, (8)

which has a truncation error of O(hq), asymptotically smaller than O(hp).

4 RX-DPM

Before discussing the proposed method, we first outline the algorithmic development process for the
most simplified problem and then explore an extension to a general DPM solver. The application of
our method, RX-DPM, to a specific solver will be referred to as RX-[SolverName].

4.1 TRUNCATION ERROR OF EULER METHOD ON NON-UNIFORM GRID

We now derive the truncation error formula for the Euler method on a non-uniform grid, based on
the local truncation error, which results from a single iteration. For intuitive clarity, we consider a
one-dimensional ODE of the form

dx = f(x, t)dt,

where f is a smooth function. Suppose that the numerical solution is obtained using the Euler method
with the discretization points [ti, ti−1, . . . , ti−k] in a reverse time order, given the initial condition
x(ti) = xti . From now on, we denote x̂(n)tj as the numerical solution at tj obtained by n iterations
and x∗tj as the exact solution at tj . Given h = ti− ti−k and λj = 1

h (ti−j+1− ti−j) for j = 1, . . . , k,
the local truncation error formula of the one-step Euler method, derived from the Taylor expansion, is
expressed as

x̂
(1)
ti−1

= xti − λ1hf(xti ; ti) = x∗ti−1
− 1

2
x′′tiλ

2
1h

2 +O(h3). (9)

Then, the truncation error of the two-step numerical solution is derived as

x̂
(2)
ti−2

= x̂
(1)
ti−1
− λ2hf(x̂

(1)
ti−1

) (10)

= x∗ti−1
− 1

2
x
′′

tiλ
2
1h

2 +O(h3)− λ2hf(x̂
(1)
ti−1

) (11)

= x∗ti−1
− λ2hf(x∗ti−1

)− 1

2
x
′′

tiλ
2
1h

2 +O(h3)− λ2hf(x̂
(1)
ti−1

) + λ2hf(x∗ti−1
) (12)

= x∗ti−2
− 1

2
x∗
′′

ti−1
λ22h

2 − 1

2
x
′′

tiλ
2
1h

2 +O(h3) (∵ Equation (9) and f is smooth) (13)

= x∗ti−2
− 1

2
x
′′

ti(λ
2
1 + λ22)h2 +O(h3) (∵ f is smooth). (14)

Inductively, we can obtain the truncation error for the k-step solution as

x̂
(k)
ti−k

= x∗ti−k
− 1

2
x
′′

ti

k∑
j=1

λ2jh
2 +O(h3), (15)

which approximates x∗ti−k
with a truncation error of O(h2).

4.2 RX-EULER

We now describe RX-Euler performing extrapolation every k steps on the Euler method. Extrapolation
is executed as a linear combination of two different numerical solutions x̂(1)

ti−k
and x̂

(k)
ti−k

obtained by
the Euler solver over a single step on the grid [ti, ti−k] and k steps on the grid [ti, ti−1, . . . , ti−k],
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respectively. To calculate coefficients for extrapolation, we use the truncation error derived in
Section 4.1, which can be also applied to Equation (3) in Section 3.1, as the ideal score function is
considered smooth; its derivative is Lipschitz continuous, referring to the equation in Appendix B.3
of Karras et al. (2022). From Equations (9) and (15), we derive the expressions for x̂(1)

ti−k
and x̂

(k)
ti−k

for a constant c as follows:
x̂
(1)
ti−k

= x∗ti−k
+ ch2 +O(h3) (16)

x̂
(k)
ti−k

= x∗ti−k
+ c

k∑
j=1

λ2jh
2 +O(h3). (17)

Then, by solving the linear system of Equations (16) and (17), we approximate x∗ti−k
through the

following extrapolation:

x̃
(k)
ti−k

=
x̂
(k)
ti−k
−
∑k
j=1 λ

2
j x̂

(1)
ti−k

1−
∑k
j=1 λ

2
j

, (18)

which involves a truncation error of O(h3), asymptotically smaller than O(h2).

In the sampling process, we set the initial condition at the next denoising step, ti−k, as x̃(k)
ti−1

, and
repeatedly perform the proposed extrapolation technique every k steps. Because this approach
provides provably more accurate solutions at every k steps, we can reduce error propagation and
expect better quality of generated examples.

The proposed method is applicable to first-order methods in general, including DDIM (Song et al.,
2021a), which is arguably the most widely used DPM sampler. In this context, we bring the
interpretation of DDIM as the Euler method applied to the following ODE:

dy = εθ(x(t), t)dγ, (19)

where y(t) = x(t)
√

1 + γ(t)2 and γ(t) =
√

1−α2
t

α2
t

in the variance-preserving diffusion pro-

cess (Song et al., 2021b), i.e., pt(x|x0) = N (αtx0, (1−α2
t )I). Thus, instead of using the time grid,

we compute λj’s in Equation (18) in terms of γ(t)’s, replacing t with the corresponding γ(t) in the
computation, while the other procedures remain unchanged.

RX-Euler (RX-DDIM) does not require additional NFEs beyond the number of time steps, as the first
prediction of every k-step-interval can be stored during the computation of x̂(k) and reused to obtain
x̂(1). The only extra computation involves a linear combination of two estimates, which is negligible
compared to the forward evaluations of DPMs.

4.3 RX-DPM WITH HIGHER-ORDER SOLVERS

We now present the algorithm for general ODE samplers of DPMs including high-order solvers.
When the extrapolation occurs every k steps, as in Section 4.2, the error of x̂(1)

ti−k
, resulting from a

single iteration of an arbitrary ODE method, is given by

x̂
(1)
ti−k

= x∗ti−k
+ chp +O(hq) (20)

for 0 < p < q and c 6= 0. For x̂(k)
ti−k

, we extend the form of the linear error accumulation observed in
Equation (17) to obtain the following equation:

x̂
(k)
ti−k

= x∗ti−k
+ c

k∑
j=1

λpjh
p +O(hq). (21)

Note that Equation (21) does not hold in general; however, we consider this simplified assumption
reasonable, as it is consistent with the standard assumption of Richardson extrapolation under uniform
discretization (see Appendix A). Finally, by solving the linear system of Equations (20) and (21), the
extrapolated solution is given by

x̃
(k)
ti−k

=
x̂
(k)
ti−k
−

∑k
j=1 λ

p
j x̂

(1)
ti−k

1−
∑k
j=1 λ

p
j

, (22)

5



Published as a conference paper at ICLR 2025

which approximates x∗ti−k
with a truncation error of O(hq), asymptotically smaller than O(hp).

A limitation of this approach is that estimating x̂
(1)
ti−k

and x̂
(k)
ti−k

through naı̈ve applications of higher-
order solvers requires additional network evaluations compared to baseline sampling. However, since
x̂
(1)
ti−k

is accessible from the network predictions made for the computation of x̂(k)
ti−k

, applying our
method to higher-order solvers does not increase the NFE provided that intermediate predictions are
properly stored. We next discuss how this is achieved using specific examples of high-order ODE
solvers; the generalization to other solvers is mostly straightforward.

Before moving forward, we note that high-order solvers typically rely on interpolation-based tech-
niques, such as the Runge-Kutta method (Süli & Mayers, 2003) and linear multistep method (Timothy,
2017), where the former employs evaluations at multiple intermediate points, while the latter leverages
evaluations from previous steps.

RX-Runge-Kutta We consider applying our method with k = 2 to the second-order Runge-Kutta
method. A sequence of one-step estimates are given by

x̂
(1)
ti−1

= xti − (ti − ti−1)(a1zi + a2zi−δ) and (23)

x̂
(2)
ti−2

= x̂
(1)
ti−1
− (ti−1 − ti−2)(a1zi−1 + a2zi−1−δ). (24)

where zj = εθ(x(tj), tj) for tj−1 < tj−δ ≤ tj . Then, we can express the single combined-step
estimate at ti−2 as

x̂
(1)
ti−2

= xti − (ti − ti−2)(a1zi + a2zi−δ′). (25)

Since zi is reusable after the calculation of x̂(1)
ti−1

, we only need to compute zi−δ′ , which is approxi-
mated as zi−1 or zi−1−δ, depending on the proximity of its time step. This approach allows us to
efficiently extrapolate the solutions without compromising the quality of the generated samples.

RX-Adams-Bashforth Suppose that, by the s-step Adams-Bashforth method, extrapolation is
performed on a grid with an interval of h every k steps. For predefined bj’s, we are given

x̂
(k)
ti−k

= x̂ti−k+1
+ h

s∑
j=0

bjεθ(x̂ti−k+j
, ti−k+j). (26)

Then, we compute x̂
(1)
ti−k

with a step size of kh for extrapolation as

x̂
(1)
ti−k

= x̂ti + kh

s∑
j=0

bjεθ(x̂ti−k+jk
, ti−k+jk) (27)

which requires no additional NFEs by storing the previous network evaluations.

Algorithm 1 summarizes the procedure of the proposed method with a generic ODE solver under the
assumption that N is a multitude of k for simplicity; it is simple to handle the last few steps by either
adjusting k for the remaining steps or skipping the extrapolation.

4.4 ANALYSIS ON GLOBAL TRUNCATION ERRORS

We perform an analysis on global truncation errors of the Euler method and RX-Euler under the
same NFEs. Assume that we solve an ODE satisfying Lipschitz condition from t = 1 to t = 0 with
NFEs = N .

Euler Since the Euler method requires a single network evaluation for each time step, the number
of time steps allowed is N . Since the local truncation error of the Euler method on step size of
h = 1/N is expressed as ch2 +O(h3), the global truncation error is given by

(ch2 +O(h3)) ·N =
c

N
+O(N−2) = O(N−1). (28)
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Algorithm 1 Sampling of RX-DPM

Require: εθ(·), N , T = tN > . . . > t0 = 0
1: Input: k, Φ(·) (ODE solver), p
2: xT ∼ pT (x)
3: for i = 1 to N do
4: # Initialization
5: if i mod k = 1 then
6: h← tN−i+1 − tN−i−k+1

7: x̂
(k)
tN−i+1

← xtN−i+1

8: end if
9: λi ← (tN−i+1 − tN−i)/h

10: x̂
(k)
tN−i

← Φ(x̂
(k)
tN−i+1

, tN−i+1, tN−i; εθ(·)) # Store εθ(t)’s if neccessary.

11: # Extrapolation (Equation (22))
12: if i mod k = 0 then
13: x̂

(1)
tN−i

← Φ(xtN−i+h, tN−i + h, tN−i; ε) # No NFE required.

14: x̃
(k)
tN−i

←
x̂

(k)
tN−i

−
∑i+k−1

j=i λp
j x̂

(1)
tN−i

1−
∑i+k−1

j=i λp
j

15: xtN−i
← x̃

(k)
tN−i

16: end if
17: end for
18: return xt0

RX-Euler If RX-Euler performs extrapolation every k steps, the extrapolation happens N/k times,
where N is equal to the NFEs for the Euler method. The local truncation error for RX-Euler over
each k steps, which has the interval of h = k/N , is expressed as c′h3 + O(h4) and therefore the
global truncation error is given by

(c′h3 +O(h4)) · N
k

=
k2c′

N2
+O(N−3) = O(N−2). (29)

RX-Euler exhibits a higher convergence rate of the global truncation error compared to the Euler
method by one order of magnitude. Using the same approach, we can also demonstrate that the
proposed method achieves faster convergence of the global truncation error for higher-order solvers.

5 EXPERIMENT

5.1 IMPLEMENTATION DETAILS

We conduct the experiment with EDM (Karras et al., 2022), Stable Diffusion V21 (Rombach et al.,
2022), DPM-Solver (Lu et al., 2022), and PNDM (Liu et al., 2022) using their official implementations
and provided pretrained models. Throughout all experiments, we retain the default settings from
the official codebases, except for additional hyperparameters related to the proposed method. For
experiments with EDM, DPM-Solver, and PNDM as backbones, we generate 50K images and
compute FID (Heusel et al., 2017) using the evaluation code provided in their implementations. To
evaluate Stable Diffusion V2 results, we use the PyTorch implementation for the computation of
FID2 and CLIP score3 with the patch size of 32× 32.

5.2 VALIDITY TEST

We first evaluate the effectiveness of RX-Euler under the EDM backbone for k ∈ {2, 3, 4}, where
smaller k values correspond to more frequent extrapolation over the same number of time steps. As

1https://github.com/Stability-AI/stablediffusion, v2-1 512-ema-pruned.ckpt
2https://github.com/mseitzer/pytorch-fid
3https://huggingface.co/openai/clip-vit-base-patch32
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shown in Figure 2, RX-Euler consistently achieves significantly better FID scores than the Euler
method across all values of k. In particular, when extrapolation is applied every two steps, i.e., k = 2,
our approach achieves the best performance across a wide range of NFEs. This indicates that more
frequent extrapolation leads to more accurate intermediate predictions, effectively mitigating error
accumulation in the final samples. Meanwhile, the curves for k ≥ 3 remain closer to that of k = 2
than to the Euler method, empirically validating the reduced truncation error derived in Equation (18)
for general k. In other words, even sparse extrapolation still has a significant impact on the output
quality. For the rest of our results, we set k = 2.
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Figure 2: Effect of extrapolation on the Euler
method with different k’s.

We also compare the proposed method with con-
ventional Richardson extrapolation, as formu-
lated in Equation (8) with k = 2, which em-
ploys fixed coefficients. This baseline is labeled
as Naı̈ve (k = 2) in Figure 2. When comparing
RX-Euler (k = 2) with Naı̈ve (k = 2), we find
that our method produces superior results. This
implies that extrapolation coefficients adapted to
arbitrary time step scheduling are more effective
than fixed coefficients derived from uniformly
discretized time steps. In other words, the pro-
posed grid-aware coefficients enable more effec-
tive extrapolation than deterministic ones, better
capturing the varying importance of precision in
DPMs over time (Karras et al., 2022).

5.3 QUANTITATIVE COMPARISONS ON EDM BACKBONE

We compare RX-Euler with other methods on four different datasets—CIFAR-10 (Krizhevsky &
Hinton, 2009), FFHQ (Karras et al., 2019), AFHQv2 (Choi et al., 2020), and ImageNet (Deng et al.,
2009)—using the EDM (Karras et al., 2022) backbone. Following standard practice, we evaluate the
performance of class-conditional generation on CIFAR-10 and ImageNet while testing unconditional
generation on the other two datasets. In this experiment, we include Heun’s method, LA-DPM (Zhang
et al., 2023), and IIA (Zhang et al., 2024) for comparisons with our approach, RX-Euler. Note that
both Heun’s method and RX-Euler are second-order numerical solvers, offering higher accuracy than
the Euler method, while LA-DPM and IIA are techniques refining baseline sampling. To reproduce
the results of LA-DPM, we use the Euler method, as it achieves better performance than Heun’s
method. For IIA (Zhang et al., 2024), we present results from the better-performing variant, selected
between IIA and BIIA, as indicated in the original paper.

Figure 3 presents a comparison of FID scores across the evaluated methods over a broad range
of NFEs. RX-Euler consistently outperforms the other approaches, particularly at lower NFEs,
demonstrating its effectiveness in fast sampling scenarios. While it occasionally falls behind LA-
DPM or IIA on CIFAR-10 within specific intervals, its overall performance remains more stable and
superior across the other three datasets, which pose greater challenges due to higher resolutions and
increased data diversity.

In the comparison between RX-Euler and Heun’s method, while RX-Euler excels at lower NFEs,
Heun’s method performs slightly better at larger NFEs. This implies that selecting a more appropriate
solver for each interval—between RX-Euler (extrapolation) and Heun’s method (interpolation)—
could yield better results. In this regard, one might expect that in the early steps—where predictions
are closer to noise and thus less accurate—interpolation tends to be more stable than extrapolation.
Based on this reasoning, we experiment with a hybrid approach of RX-Euler and Heun’s method,
labeled as RX+EDM in Figure 3. We find strong performance of this approach when RX-Euler is
selectively applied to the middle or last (low-noise) few steps, outperforming both Heun’s method
and RX-Euler. This indicates that there is still room for improvement in our algorithm and provides
another direction for future work.
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Figure 3: FIDs of RX-Euler, Heun’s method (labeled as EDM), LA-DPM and IIA (or BIIA) by
varying NFEs on the CIFAR-10, FFHQ, AFHQv2, and ImageNet datasets using the EDM backbone.
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“A red fire truck driving down a road.” “A pair of giraffe standing in a big open area.”

Figure 4: Qualitative results of DDIM and RX-DDIM based on Stable Diffusion V2. RX-DDIM
produces sharper and more detailed backgrounds, especially evident in the left example. On the
right, RX-DDIM generates more realistic giraffes, whereas DDIM struggles at NFEs = 50, failing to
properly render the giraffe.

Table 1: FID and CLIP scores of DDIM and RX-DDIM using Stable Diffusion V2.
NFEs 15 20 30 50

Method \ Metric FID (↓) CLIP (↑) FID (↓) CLIP (↑) FID (↓) CLIP (↑) FID (↓) CLIP (↑)
DDIM 19.15 31.727 18.43 31.716 19.00 31.750 18.65 31.711
RX-DDIM 17.24 31.629 17.12 31.721 17.62 31.781 17.83 31.727

5.4 COMPARISONS ON STABLE DIFFUSION

We apply RX-DDIM to Stable Diffusion V2, which provides various conditional generations. For
evaluation, we generate 10K 512×512 images from unique text prompts in the COCO2014 (Lin et al.,
2014) validation set and compute FID and CLIP scores on resized 256× 256 images. As shown in
Table 1, our method also performs well on large models. However, we observe that RX-DDIM yields
lower CLIP scores at NFEs = 15, which we attribute to classifier-guidance scales. According to
Rombach et al. (2022), optimal classifier-free guidance scales differ across models. Since the default
setting is tuned for DDIM, RX-DDIM may benefit from further optimization. Figure 4 presents
qualitative comparisons between DDIM and RX-DDIM, highlighting the superior image quality of
RX-DDIM. Notably, RX-DDIM generates images with more vivid colors, sharper textures, and more
realistic object depictions, leading to an overall more natural appearance. We provide more examples
for qualitative comparisons between DDIM and RX-DDIM in Figures 13 and 14 of Appendix F.
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Table 2: FID scores of DPM-Solvers (Lu et al., 2022) and RX-DPMs applied to DPM-Solvers on
CIFAR-10 and LSUN Bedroom datasets. All baseline results are reproduced under the same setting
as RX-DPMs.

CIFAR-10 (32×32) LSUN Bedroom (256×256)

Method \ NFEs 9 10 12 15 9 10 12 15

DPM-Solver-2 – 15.06 11.33 7.36 – 14.67 11.38 6.44
RX-DPM-Solver-2 – 12.94 9.80 6.53 – 12.66 10.13 5.72
DPM-Solver-3 12.39 – 6.76 5.00 8.79 – 5.37 4.04
RX-DPM-Solver-3 11.50 – 6.62 4.85 8.12 – 5.18 4.04

Table 3: FID scores of two types of PNDM (Liu et al., 2022) and RX-DPMs applied to each solver
on CIFAR-10, CelebA and LSUN Church datasets. Note that S-PNDM and F-PNDM require 1 and
9 additional NFEs to the number of time steps, respectively. The baseline results are copied from
PNDM (Liu et al., 2022).

CIFAR-10 (32×32) CelebA (64×64) LSUN Church (256×256)

Method \ # of steps 5 10 20 5 10 20 5 10 20

S-PNDM 18.3 8.64 5.77 15.2 12.2 9.45 20.5 11.8 9.20
RX-S-PNDM 19.69 7.64 4.72 11.56 9.22 6.89 21.15 10.96 8.96
F-PNDM 18.2 7.05 4.61 11.3 7.71 5.51 14.8 8.69 9.13
RX-F-PNDM – 6.60 3.99 – 7.10 4.99 – 8.85 9.41

5.5 COMPARISONS ON HIGHER-ORDER SOLVERS

We further apply the proposed method to advanced ODE samplers with higher-order accuracy. Table 2
presents the effectiveness of RX-DPM when applied to DPM-Solvers (Lu et al., 2022) on CIFAR-10
and LSUN Bedroom (Yu et al., 2015). Among the variations of DPM solvers, we utilize the single-
step versions of DPM-Solver-2 and DPM-Solver-3. Note that, since a single-step DPM-solver-n
can be considered as an nth-order Runge-Kutta-like solver, we apply RX-DPM with p = n+ 1 in
Equation (22) for the DPM-solver-n. Additionally, we compare our method with another accelerated
diffusion sampler, DEIS (Zhang & Chen, 2023), for class-conditioned image generation on ImageNet
(64× 64) in Table 4 of Appendix B.1. As shown in the results, RX-DPM consistently achieves the
best performance across all NFEs.

As another type of advanced sampler, we consider PNDM (Liu et al., 2022). S-PNDM and F-PNDM
employ linear multistep methods, specifically the 2-step and 4-step Adams-Bashforth methods,
respectively, except for the initial few time steps. Accordingly, we apply RX-DPM with p = 3 and
p = 5 in Equation (22) for S-PNDM and F-PNDM, respectively. The results on the CIFAR-10,
CelebA (Liu et al., 2015), and LSUN Church (Yu et al., 2015) datasets are presented in Table 3.
While RX-DPM improves performance in most cases, an exception arises with F-PNDM on the
LSUN Church dataset, where RX-DPM does not provide a clear advantage. Upon analysis, we
observe that the baseline performance of F-PNDM is highest when using 10 time steps and degrades
as the number of steps increases (Liu et al., 2022). Since RX-DPM enhances accuracy by leveraging
improvements in the baseline solver with finer time steps, its effectiveness is limited when the baseline
itself deteriorates under finer discretization. A similar phenomenon with F-PNDM on LSUN datasets
has also been reported in IIA (Zhang et al., 2024).

6 CONCLUSION

We introduced RX-DPM, an advanced ODE sampling method for DPMs that leverages extrapolation
based on two ODE solutions derived from different discretizations of the same time interval. Our
algorithm computes the optimal coefficients for arbitrary time step scheduling without additional
training and incurs no extra NFEs by utilizing past predictions. This approach effectively reduces
truncation errors, resulting in improved sample quality. Extensive experiments on well-established
baseline models and datasets confirm that RX-DPM surpasses existing sampling methods, offering a
more efficient and accurate solution for DPMs.
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A JUSTIFICATION ON EQUATION (21)

Assuming a uniform grid as in the context of conventional Richardson extrapolation in Section 3.2,
and the ODE solver with O(hp+1) of local truncation error formula, we have

V ∗ = V (h) + chp +O(hp+1) and (30)

V ∗ = V (
h

k
) + c(

h

k
)p +O(hp+1) (31)

since we expect the O(hp) of the global truncation error. Then, we have the following extrapolated
solution with a truncation error of O(hp+1) by Richardson extrapolation (Equation (8)):

Ṽ (h, k) =
kpV (h/k)− V (h)

kp − 1
. (32)

Now, considering the case of Equations (20) and (21) with uniform discretization, we have

V ∗ = V (h) + c′hp+1 +O(hp+2) and (33)

V ∗ = V (
h

k
) + kc′(

h

k
)p+1 +O(hp+2), (34)

each correspondingly. Then, the extrapolated solution Ṽours obtained from solving linear system of
Equations (33) and (34) becomes

Ṽours =
kpV (h/k)− V (h)

kp − 1
, (35)

which turns out to be exactly the same as Equation (32). Thus, we believe our approach can
be considered to employ assumptions shared by those used in common practices of Richardson
extrapolation and also can reduce global errors which is backed by experimental results as well.

B MORE QUANTITATIVE RESULTS

B.1 COMPARISON WITH DEIS

We compare DEIS variants (Zhang & Chen, 2023), DPM-Solvers, and RX-DPMs applied to DPM-
Solvers on class-conditioned ImageNet (64×64) in Table 4. The results clearly demonstrate that our
method outperforms all other approaches across all NFEs.

B.2 DPMS WITH OPTIMAL COVARIANCES

Although our method is designed for ODE solvers, we also conduct experiments with SN-DPM and
NPR-DPM (Bao et al., 2022) on CIFAR-10 (Krizhevsky & Hinton, 2009) and CelebA datasets (Liu
et al., 2015) to evaluate its performance when applied to SDE solvers. We use the official codes and
provided pretrained models as described in Section 5.1. SN-DPM and NPR-DPM are two different
models that correct the imperfect mean prediction in the reverse process of existing models through
optimal covariance learning.

To incorporate our method into stochastic sampling, we decompose it into a deterministic sampling
component and a stochastic component, and apply our method to the deterministic sampling part.
Specifically, within each k-step interval, we execute RX-DPM algorithm using the deterministic
sampling component and then add the stochasticity term afterward. In this way, our method uses the
stochasticity of the baseline sampling method in a limited manner compared to the baseline sampling
with the same NFEs. For a better understanding of our implementation, we provide the diagrams of
the proposed method in Appendix C.

In Table 5, we show the results on NPR-DPM and SN-DPM along with the vanilla DDIM and LA-
DPM (Zhang et al., 2023), which is another extrapolation-based sampling method. We observe that
our method outperforms the compared methods in most cases, although a performance degradation
is noted with RX-SN-DDIM on the CIFAR-10 dataset. This implies that our approach of solving
the ODE might offset the benefits of the model’s optimization. Despite this, we observe significant
performance improvements in the most extreme case, NFEs = 10.
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Table 4: Comparisons of DEIS variants, DPM-Solvers and RX-DPMs applied to DPM-Solvers
on class-conditioned ImageNet (64×64). All results of DEIS and DPM-Solvers are copied from
DEIS (Zhang & Chen, 2023) except for the result of DPM-Solver-3 with NFEs = 9.

NFEs

Method 9 10 12 18 30

tAB-DEIS – 6.65 3.99 3.21 2.81
ρAB-DEIS – 9.28 6.46 3.74 2.87

DPM-Solver-2 – 7.93 5.36 3.63 3.00
ρMid-DEIS – 9.12 6.78 4.00 2.99
RX-DPM-Solver-2 – 6.11 5.61 3.64 2.93

DPM-Solver-3 7.45 – 5.02 3.18 2.84
ρKutta-DEIS – – 13.12 3.63 2.82
RX-DPM-Solver-3 7.08 3.90 2.36 2.18

Table 5: FID scores for CIFAR-10 and CelebA on DDIM, NPR-DDIM and SN-DDIM models. The
values for each baseline and LA-DDIM results are copied from Zhang et al. (2023).

Dataset CIFAR-10 (32×32) CelebA (64×64)

Method \ NFEs 10 25 50 10 25 50

DDIM 21.31 10.70 7.74 20.54 13.45 9.33
RX-DDIM 14.78 8.42 6.30 18.31 10.54 6.88
NPR-DDIM 13.40 5.43 3.99 14.94 9.18 6.17
LA-NPR-DDIM 10.74 4.71 3.64 14.25 8.83 5.67
RX-NPR-DDIM 6.35 3.92 3.34 11.58 6.61 3.98
SN-DDIM 12.19 4.28 3.39 10.17 5.62 3.90
LA-SN-DDIM 8.48 3.15 2.93 8.05 4.56 2.93
RX-SN-DDIM 7.50 5.12 4.40 5.20 2.72 2.25

C DIAGRAMS

Figure 5 compares the diagrams of an ODE solver, the proposed method with an ODE solver, and the
proposed method with an SDE solver.

D COMPUTATIONAL COST

We compare the computational time and GPU memory usage of the Euler method and RX-Euler
using the EDM backbone in Tables 6 and 7, respectively. For measurements, we set the batch size
to 128 and use 10-step sampling on an A6000 GPU. The average runtime per batch is measured for
computational time. The additional operations introduced by our method, which consist of linear
combinations of precomputed values, result in negligible computational overhead compared to the
time required for the network forward pass. Furthermore, as the model size increases, the relative
overhead diminishes (e.g., only 0.11% increase for ImageNet class-conditional sampling). Similarly,
GPU memory usage increases slightly with RX-Euler, primarily due to the storage of previous
predictions. However, this increase is minimal and decreases as model or data size increases, showing
a similar trend to that observed with computational time.

E LIMITATIONS

As our method is primarily designed for an ODE solver, to integrate it with an SDE solver (or a
stochastic sampling method), we partially apply the stochasticity component of the SDE solver as
demonstrated in Appendix B.2. Consequently, in some cases, the effectiveness is offset because
the full effects of stochasticity are not captured. However, in scenarios where NFE is very limited,
which are of greater interest to us, the combined effect of RX-DPM and stochastic sampling has been
empirically shown to be highly beneficial. We leave the development of methods that can perform
better in more general cases for future work. Additionally, in the extension of the RX-Euler algorithm
to a higher-order solver in Section Section 4.3, there remains room for improvement since we impose
assumptions about linear error propagation. We believe that relaxing these assumptions or deriving
more accurate equations could further enhance the performance.
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ODE solver

(a) One step of an ODE solver

ODE solver

ODE solver ODE solver⋯

Eq (24)

k

(b) k steps of RX-DPM applied to an ODE solver

Add 
stochasticity

ODE solver

ODE solver ODE solver⋯

Eq (24)

k

(c) k steps of RX-DPM applied to an SDE solver

Figure 5: Digarams of the baseline and the proposed sampling methods. The blue-bordered boxes in
(b) and (c) indicate that the corresponding operation does not require network evaluation. The ODE
solver in (c) refers to the deterministic sampling component of the SDE solver.

Table 6: Comparison of per-batch computation times between the Euler method and RX-Euler with
the EDM backbone. The reported values represent the average runtime across 100 measurements (in
seconds).

CIFAR-10 cond. (32x32) FFHQ (64x64) ImageNet cond. (64x64)

Euler 1.737 ± 0.028 3.895 ± 0.023 6.436 ± 0.033
RX-Euler 1.743 ± 0.031 3.903 ± 0.025 6.443 ± 0.039

Table 7: Comparison of GPU memory usage (MiB) during inference between the Euler method and
RX-Euler with the EDM backbone.

CIFAR-10 cond. (32x32) FFHQ (64x64) ImageNet cond. (64x64)

Euler 2929 9433 12661
RX-Euler 3033 9477 12705

F QUALITATIVE RESULTS

We provide qualitative results using the EDM backbone in Figures 6 to 12 and Stable Diffusion V2 in
Figures 13 and 14.
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Euler (NFEs = 10, FID: 15.88) EDM (NFEs = 11, FID: 14.46)

RX-Euler (NFEs = 10, FID 4.35) RX+EDM (NFEs = 10, FID 4.26)

Figure 6: Qualitative results of CIFAR-10 of different sampling methods with EDM backbone.
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Euler (NFEs = 9, FID: 24.27) EDM (NFEs = 9, FID: 57.12)

RX-Euler (NFEs = 8, FID: 12.94) RX+EDM (NFEs = 9, FID: 6.83)

Figure 7: Qualitative results of FFHQ of different sampling methods with EDM backbone.
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Euler (NFEs = 11, FID: 18.30) EDM (NFEs = 11, FID: 29.34)

RX-Euler (NFEs = 10, FID: 7.20) RX+EDM (NFEs = 11, FID: 5.50)

Figure 8: Qualitative results of FFHQ of different sampling methods with EDM backbone.
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Euler (NFEs = 9, FID: 11.81) EDM (NFEs = 9, FID: 27.92)

RX-Euler (NFEs = 8, FID: 6.49) RX+EDM (NFEs = 9, FID: 3.88)

Figure 9: Qualitative results of AFHQv2 of different sampling methods with EDM backbone.
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Euler (NFEs = 11, FID: 8.94) EDM (NFEs = 11, FID: 13.61)

RX-Euler (NFEs = 10, FID: 4.02) RX+EDM (NFEs = 10, FID: 3.72)

Figure 10: Qualitative results of AFHQv2 of different sampling methods with EDM backbone.
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Euler (NFEs = 9, FID: 20.49) EDM (NFEs = 9, FID: 35.34)

RX-Euler (NFEs = 8, FID: 12.38) RX+EDM (NFEs = 9, FID: 7.94)

Figure 11: Qualitative results of ImageNet of different sampling methods with EDM backbone.

22



Published as a conference paper at ICLR 2025

Euler (NFEs = 11, FID: 14.84) EDM (NFEs = 11, FID: 15.35)

RX-Euler (NFEs = 10, FID: 6.95) RX+EDM (NFEs = 11, FID: 5.83)

Figure 12: Qualitative results of ImageNet of different sampling methods with EDM backbone.
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“A pair of giraffe standing in a big open area.”

Figure 13: Qualitative results on Stable Diffusion V2 of DDIM and RX-DDIM.
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Figure 14: Qualitative results on Stable Diffusion V2 of DDIM and RX-DDIM.

25


	Introduction
	Related work
	Preliminaries
	Diffusion probabilistic models as solving an ODE
	Richardson extrapolation

	RX-DPM
	Truncation error of Euler method on non-uniform grid
	RX-Euler
	RX-DPM with higher-order solvers
	Analysis on global truncation errors

	Experiment
	Implementation details
	Validity test
	Quantitative comparisons on EDM backbone
	Comparisons on Stable Diffusion
	Comparisons on higher-order solvers

	Conclusion
	Justification on eq:odee2
	More quantitative results
	Comparison with DEIS
	DPMs with optimal covariances

	Diagrams
	Computational cost
	Limitations
	Qualitative results

