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ABSTRACT

Understanding world dynamics is crucial for planning in autonomous driving. Re-
cent methods attempt to achieve this by learning a 3D occupancy world model
that forecasts future surrounding scenes based on current observation. However,
3D occupancy labels are still required to produce promising results. Considering
the high annotation cost for 3D outdoor scenes, we propose a semi-supervised
vision-centric 3D occupancy world model, PreWorld, to leverage the potential of
2D labels through a novel two-stage training paradigm: the self-supervised pre-
training stage and the fully-supervised fine-tuning stage. Specifically, during the
pre-training stage, we utilize an attribute projection head to generate different at-
tribute fields of a scene (e.g., RGB, density, semantic), thus enabling temporal
supervision from 2D labels via volume rendering techniques. Furthermore, we in-
troduce a simple yet effective state-conditioned forecasting module to recursively
forecast future occupancy and ego trajectory in a direct manner. Extensive exper-
iments on the nuScenes dataset validate the effectiveness and scalability of our
method, and demonstrate that PreWorld achieves competitive performance across
3D occupancy prediction, 4D occupancy forecasting and motion planning tasks.1
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Figure 1: (a) Self-Supervised 3D Occupancy Model can be trained using solely 2D labels as
supervision. However, it lacks the capability to forecast future occupancy. In contrast, (b) Fully-
Supervised 3D Occupancy World Model can forecast future occupancy, but it relies on 3D oc-
cupancy labels for meaningful results due to its indirect architecture, which employs a frozen 3D
occupancy model. To tackle these challenges, our (c) Semi-Supervised 3D Occupancy World
Model, featuring 2D rendering supervision and an end-to-end architecture, can forecast future oc-
cupancy straightly from image inputs while taking advantage of 2D labels.

∗Corresponding authors.
1Codes and models can be accessed at https://github.com/getterupper/PreWorld.
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1 INTRODUCTION

3D scene understanding forms the cornerstone of autonomous driving, exerting a direct influence
on downstream tasks such as planning and navigation. Among various 3D scene understanding
tasks (Wang et al., 2022; Li et al., 2022a; Wei et al., 2023; Jin et al., 2024), 3D Occupancy Prediction
plays a crucial role in autonomous systems. Its objective is to predict the semantic occupancy
of each voxel throughout the entire scene from limited observation. To this end, some previous
methods (Liong et al., 2020; Cheng et al., 2021; Xia et al., 2023) prioritize LiDAR as input modality
due to its robust performance in capturing accurate geometric information. Nevertheless, they are
often considered hardware-expensive. Consequently, there has been a shift towards vision-centric
solutions in recent years (Zhang et al., 2023c; Li et al., 2023a; Zheng et al., 2024).

Despite significant advancements in aforementioned methods, they primarily focus on enhancing
better perception of the current scene. For advanced collision avoidance and route planning, au-
tonomous vehicles need to not only comprehend the current scene but also forecast the evolution of
future scenes based on the understanding of world dynamics. Therefore, 4D Occupancy Forecasting
has been introduced to forecast future 3D occupancy given historical observations. Recent works
have aimed to achieve this by learning a 3D occupancy world model (Zheng et al., 2023; Wei et al.,
2024). However, when processing image inputs, these methods follow an circuitous path, as shown
in Fig 1 (b). Typically, a pre-trained 3D occupancy model is employed to obtain current occupancy,
which is then fed into a forecasting module to generate future occupancy. The forecasting module
includes a tokenizer that encodes occupancy into discrete tokens, an autoregressive architecture to
generate future tokens, and a decoder to obtain future occupancy. Information loss is prone to occur
in such repeated encoding and decoding processes. Hence, existing methods heavily rely on 3D
occupancy labels as supervision to produce meaningful results, leading to notable annotation costs.

In contrast to 3D occupancy labels, 2D labels are relatively easier to acquire. Recently, employing
purely 2D labels for self-supervised learning has shown some promising results in 3D occupancy
prediction task, as illustrated in Fig 1 (a). By utilizing volumetric rendering, RenderOcc (Pan et al.,
2024) employs 2D depth maps and semantic labels to train the model. Methods like SelfOcc (Huang
et al., 2024) and OccNerf (Zhang et al., 2023a) take a step further, using only image sequences as
supervision. However, there have not been similar attempts in 4D occupancy forecasting task.

Based on the above observations, we propose PreWorld, a semi-supervised vision-centric 3D oc-
cupancy world model, designed to fulfill the utility of 2D labels during training, while achieving
competitive performance across both 3D occupancy prediction and 4D occupancy forecasting tasks,
as shown in Fig 1 (c). To this end, we propose a novel two-stage training paradigm: the self-
supervised pre-training stage and the fully-supervised fine-tuning stage. Inspired by RenderOcc,
during the pre-training stage, we introduce an attribute projection head to obtain diverse attribute
fields of current and future scenes (e.g., RGB, density, semantic), facilitating temporal supervision
through 2D labels using volume rendering techniques. Moreover, we propose a simple yet effective
state-conditioned forecasting module, which allows us to simultaneously optimize occupancy net-
work and forecasting module, and directly forecast future 3D occupancy based on multi-view image
inputs in an end-to-end manner, thus avoiding possible information loss.

To demonstrate the effectiveness of PreWorld, we conduct extensive experiments on the widely
used Occ3D-nuScenes benchmark (Tian et al., 2024) and compare with recent methods using both
2D and/or 3D supervision. Experimental results indicate that our approach can yield competitive
performance across multiple tasks. For 3D occupancy prediction, PreWorld outperforms the pre-
vious best method OccFlowNet (Boeder et al., 2024) with an mIoU of 34.69 over 33.86. For 4D
occupancy forecasting, PreWorld sets the new SOTA performance, outperforming existing methods
OccWorld (Zheng et al., 2023) and OccLLaMA (Wei et al., 2024). For motion planning, PreWorld
yields comparable and often better results than other vision-centric methods (Hu et al., 2022; Jiang
et al., 2023; Tong et al., 2023). Furthermore, we validate the scalability of our two-stage training
paradigm, showcasing its potential for large-scale training.

Our main contributions are as follows:

• A semi-supervised vision-centric 3D occupancy world model, PreWorld, which takes ad-
vantage of both 2D labels and 3D occupancy labels during training.
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• A novel two-stage training paradigm, the effectiveness and scalability of which has been
validated by extensive experiments.

• A simple yet effective state-conditioned forecasting module, enabling simultaneous opti-
mization with occupancy network and direct future forecasting based on visual inputs.

• Extensive experiments compared to SOTA method, demonstrating that our method achieves
competitive performance across multiple tasks, including 3D occupancy prediction, 4D
occupancy forecasting and motion planning.

2 RELATED WORK

2.1 3D OCCUPANCY PREDICTION

Due to its vital application in autonomous driving, 3D occupancy prediction has attracted consider-
able attention. According to the input modality, existing methods can be broadly categorized into
LiDAR-based and vision-centric methods. While LiDAR-based methods excel in capturing geomet-
ric details (Tang et al., 2020; Ye et al., 2021; 2023), vision-centric methods have garnered growing
interest in recent years due to their rich semantic information, cost-effectiveness, and ease of de-
ployment (Philion & Fidler, 2020; Liu et al., 2023; Ma et al., 2024). However, these methods focus
solely on understanding the current scene while ignoring the forecasting of future scene changes.
Therefore in this paper, we follow the approach of OccWorld (Zheng et al., 2023) and endeavor to
address both of these tasks in a unified manner.

2.2 WORLD MODELS FOR AUTONOMOUS DRIVING

The objective of world models is to forecast future scenes based on action and past observations (Ha
& Schmidhuber, 2018). In autonomous driving, world models can be utilized to generate synthetic
data and aid in decision making. Some previous approaches (Hu et al., 2023a; Gao et al., 2023;
Wang et al., 2024) aim to generate image sequences of outdoor driving scenarios using large pre-
trained generative models. However, relying on 2D images as scene representations leads to the lack
of structural information. Some works (Khurana et al., 2022; 2023; Zhang et al., 2023b) tend to
generate 3D point clouds, which on the other hand, fail to capture the semantic of the scene.

Recent attempts have emerged to generate 3D occupancy representations, which combine an un-
derstanding of both semantic and geometric information. The pioneering OccWorld (Zheng et al.,
2023) introduces the 3D occupancy world model that, employing an autoregressive architecture, can
forecast future occupancy based on current observation. Taking it a step further, OccLLaMA (Wei
et al., 2024) integrates occupancy, action, and language, enabling 3D occupancy world model to pos-
sess reasoning capabilities. However, when it comes to vision-centric approaches, they both adopt
an indirect path, requiring the usage of pre-trained 3D occupancy models for current occupancy
prediction, succeeded by an arduous encoding-decoding process to forecast future occupancy. This
manner poses challenges in model training, thus necessitating 3D occupancy labels as supervision to
yield effective results. Considering this, we explore a straightforward way to directly forecast future
occupancy using image inputs.

2.3 SELF-SUPERVISED 3D OCCUPANCY PREDICTION

While 3D occupancy provides rich structural information for training, it necessitates expensive and
laborious annotation processes. In contrast, 2D labels are more readily obtainable, presenting an
opportunity for self-supervised 3D occupancy prediction. Recently, some works have explored using
Neural Radiance Fields (NeRFs) (Mildenhall et al., 2021) to perform volume rendering of scenes,
thereby enabling 2D supervision for the model. RenderOcc (Pan et al., 2024) tends to use 2D depth
maps and semantic labels for training. Despite significant performance gaps compared to existing
methods, SelfOcc (Huang et al., 2024) and OccNeRF (Zhang et al., 2023a) have made meaningful
attempts, aiming to solely utilize image sequences for self-supervised learning.

On the contrary, self-supervised approaches have not yet been observed in the realm of 4D occu-
pancy forecasting tasks. Although OccWorld (Zheng et al., 2023) offers a self-supervised setting,
it merely relies on an existing self-supervised 3D occupancy model to produce current occupancy
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Figure 2: The architecture of our proposed PreWorld. Firstly, volume features are extracted
from multi-view images with an occupancy network. Subsequently, a state-conditioned forecasting
module is employed to recursively forecast future volume features using historical features. In the
self-supervised pre-training stage, volume features are projected into various attribute fields and
supervised by 2D labels through volume rendering techniques. In the fully-supervised fine-tuning
stage, the attribute projection head no longer participates in the computations, occupancy predictions
are directly obtained via an occupancy head and supervised by 3D occupancy labels.

without engaging in novel endeavors, and it also suffers from subpar performance. Different from
OccWorld, we attempt to directly supervise future scenes using 2D labels, thereby optimizing our
performance in both 3D occupancy prediction and 4D occupancy forecasting tasks simultaneously.

3 METHOD

3.1 REVISITING 4D OCCPUANCY FORECASTING

For the vehicle at timestamp T , vision-centric 3D occupancy prediction task takes N views of im-
ages ST = {I1, I2, ..., IN} as input and predicts current 3D occupancy ŶT ∈ RX×Y×Z×C as
output, where (X,Y, Z) denote the resolution of the 3D volume and C represents the number of
semantic categories, including non-occupied (Huang et al., 2023; Zhang et al., 2023c; Liu et al.,
2023; Pan et al., 2024). A 3D occupancy model O typically comprises an occupancy network N and
an occupancy head H. The process of occupancy prediction can be formulated as:

FT = N(ST ), ŶT = H(FT ), (1)
where N extracts 3D volume features FT ∈ RX×Y×Z×D from 2D image inputs (D denotes the
dimension of volume features), and H serves as a decoder to convert FT into 3D occupancy.

Vision-centric 4D occupancy forecasting task, on the other hand, utilizes an image sequence of
past k frames {ST , ST−1, ..., ST−k} as input, aiming at forecasting 3D occupancy of future f
frames (Zheng et al., 2023; Wei et al., 2024). A 3D occupancy world model W attempt to achieve
this by adopting an auto-regressive manner:

ŶT+1 = W(ST , ST−1, ..., ST−k). (2)
To this end, W employs an available 3D occupancy model O to predict 3D occupancy of past k
frames {ŶT , ..., ŶT−k}, and leverages a scene tokenizer T, an autoregressive architecture A and a
decoder D to forecast future 3D occupancy. After obtaining historial occupancy, W encodes 3D
occupancy into discrete tokens {zT , ..., zT−k} through T. Subsequently, A is utilized to forecast
future token zT+1 based on these tokens, which is then input into D to generate future occupancy
ŶT+1. Formally, the process of occupancy forecasting can be formulated as follows:

ŶT , ..., ŶT−k = O(ST ), ...,O(ST−k),

zT , ..., zT−k = T(ŶT ), ...,T(ŶT−k),

zT+1 = A(zT , ..., zT−k), ŶT+1 = D(zT+1).

(3)
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Here, we need to mention that O is pre-trained and frozen during training. For example, Occ-
World (Zheng et al., 2023) utilizes TPVFormer (Huang et al., 2023) as O, while OccLLaMA (Wei
et al., 2024) chooses FB-OCC (Li et al., 2023c).

3.2 STATE-CONDITIONED FORECASTING MODULE

Different from these approaches, we tend to a more straightforward path, which enables us to op-
timize 3D occupancy model and forecasting module simultaneously. Specially, we employ a state-
conditioned forecasting module F instead of the combination of T, A and D, as illustrated in Fig 3.
We formulate our approach of occupancy forecasting as follows:

F̃T = N(ST , ST−1, ..., ST−k), F̃T+1 = F(F̃T ), ŶT+1 = H(F̃T+1), (4)

where we leverages N to extract volume features F̃T from temporal images, F to directly forecast
future volume features F̃T+1 and H to transform F̃T+1 into future occupancy ŶT+1.

Future
Volume Features

Ego
State Tokens

Volume 
Features

Downscaling & Pooling

Future
State Tokens

State-Conditioned
Forecasting Module

Figure 3: The proposed state-conditioned fore-
casting module is simply composed of two MLPs.
Ego states can be optionally integrated into the
network, as denoted by the dashed arrows.

Without loss of generality, our forecasting mod-
ule is simply composed of two MLPs. We
demonstrate that even without intricate design,
this simple architecture can still achieve com-
parable and even superior results to state-of-
the-art methods. This design showcases that
previous practice of solely optimizing the fore-
casting module during training has its limita-
tions. By simultaneously optimizing the oc-
cupancy network and forecasting module, 3D
occupancy world models can achieve stronger
performance. Additionally, our module can op-
tionally incorporate ego-state information such
as speed, acceleration and historical trajectories
into the network. In Section 4.3, we demon-
strate that this approach can further enhance the
forecasting capabilities of the model.

Furthermore, this architecture brings an additional benefit for us. Given that previous forecasting
modules encode scenes into discrete tokens, they cannot directly supervise future predictions with
2D labels via volume rendering, as done by self-supervised 3D occupancy models (Zhang et al.,
2023a; Huang et al., 2024). Since our module preserves the volume features of future scenes, it
provides an opportunity to train 3D occupancy world models in a self-supervised manner.

3.3 TEMPORAL 2D RENDERING SELF-SUPERVISION

Attribute Projection. Inspired by Pan et al. (2024), we transform the temporal volume feature
sequence of current and future f frames {F̃}t = {F̃T , F̃T+1, ..., F̃T+f} into temporal attribute
fields {Ã}t through an attribute projection head P:

{Ã}t = {(σ̃, s̃, c̃)}t = P({F̃}t), (5)

where σ̃ ∈ RX×Y×Z×1, s̃ ∈ RX×Y×Z×D and c̃ ∈ RX×Y×Z×3 denote the density, semantic and
RGB fields of the 3D volume, respectively. In implementation, P comprises several MLPs, which is
validated to be a simple yet effective method (Boeder et al., 2024).

Ray Generation. Given the intrinsic and extrinsic parameters of camera j at timestamp i, we can
extract a set of 3D rays {r}ji , where each ray r originates from camera j and corresponds to a pixel
of the image Iji . Additionally, we can utilize ego pose matrices to transform rays from adjacent n
frames to current frame, enabling better capture of surrounding information. These rays collectively
constitute the set {r}i utilized for supervising Ãi = (σ̃i, s̃i, c̃i).
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Volume Rendering. For each r ∈ {r}i, we sample M points {um}Mm=1 along the ray. Then the
rendering weight w(um) of each sampled point um can be computed by:

T (um) = exp(−
m−1∑
p=1

σ̃i(up)δp), w(um) = T (um)(1− exp(−σ̃i(um)δm)), (6)

where T (um) denotes the accumulated transmittance until um, and δm = um+1 − um denotes
the interval between adjacent sampled points. Finally, the 2D rendered depth, semantic and RGB
predictions (d̂2Di (r), ŝ2Di (r), ĉ2Di (r)) can be computed by cumulatively summing the products of
the values corresponding to each point along the ray and their respective rendering weights:

d̂2Di (r) =

M∑
m=1

w(um)um, ŝ2Di (r) =

M∑
m=1

w(um)s̃i(um), ĉ2Di (r) =

M∑
m=1

w(um)c̃i(um). (7)

Temporal 2D Rendering Supervision. After acquiring 2D rendered predictions (d̂2Di , ŝ2Di , ĉ2Di )
with 3D ray set {r}i, the temporal 2D rendering loss can be formulated as:

L2D =

T+f∑
i=T

λdepLdep(d
2D
i , d̂2Di ) + λsemLsem(s2Di , ŝ2Di ) + λRGBLRGB(c

2D
i , ĉ2Di ), (8)

where (d2Di , s2Di , c2Di ) represents 2D depth map, semantic label and RGB of corresponding pixels.

3.4 TWO-STAGE TRAINING PARADIGM

Training Scheme. As illustrated in Fig 2, our training scheme for PreWorld includes two stages:
In the self-supervised pre-training stage, as illustrated in Section 3.3, we employs the attribute pro-
jection head P to enable temporal supervision with 2D labels. This approach allows us to leverage
the abundant and easily obtainable 2D labels, while preemptively optimizing both the occupancy
network N and forecasting module F. In the subsequent fine-tuning stage, we utilize a occupancy
head H to produce occupancy results and use 3D occupancy labels for further optimization.

Training Loss. For pre-training stage, we employ temporal 2D rendering loss L2D as formulated
in Eq. 8. Specially, we utilize SILog loss and cross-entropy loss from Pan et al. (2024) as Ldep

and Lsem, respectively, and use L1 loss as LRGB . For fine-tuning stage, we employ focal loss Lf ,
lovasz-softmax loss Ll and scene-class affinity loss Lsem

scal and L
geo
scal, following the practice of Li

et al. (2023c). Therefore, the total loss function for fine-tuning stage can be represented as follows:

L3D = λfLf + λlLl + λsem
scalL

sem
scal + λgeo

scalL
geo
scal. (9)

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Dataset and Metrics. Our experiments are conducted on the Occ3D-nuScenes benchmark (Tian
et al., 2024), which provides dense semantic occupancy annotations for the widely used nuScenes
dataset (Caesar et al., 2020). Each annotation covers a range of [−40 ∼ 40m,−40 ∼ 40m,−1 ∼
5.4m] around the ego vehicle. The ground-truth semantic occupancy is represented as 200×200×16
3D voxel grids with 0.4m resolution. Each voxel is annotated with 18 classes (17 semantic classes
and 1 free). The official split for training and validation sets is employed. Following common
practices, we use mIoU and IoU as the evaluation metric for 3D occupancy prediction and 4D
occupancy forecasting tasks, and use L2 error and collision rate for motion planning task.

Implementation Details. We use the identical network architecture for all the three tasks, yet
for the non-temporal 3D occupancy prediction task, we omit temporal supervision and losses ac-
cordingly. We adopt BEVStereo (Li et al., 2023b) as the occupancy network N, only replacing its
detection head with the occupancy head H from FB-OCC Li et al. (2023c) to produce occupancy
prediction. For training, we set the batch size to 16, use Adam as the optimizer, and train with a

6



Published as a conference paper at ICLR 2025

Table 1: 3D occupancy prediction performance on the Occ3D-nuScenes dataset. GT represents
the type of labels used during training. The best and second-best performances are represented by
bold and underline respectively.
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SelfOcc (Huang et al., 2024) 2D 0.00 0.15 0.66 5.46 12.54 0.00 0.80 2.10 0.00 0.00 8.25 55.49 0.00 26.30 26.54 14.22 5.60 9.30
OccNeRF (Zhang et al., 2023a) 2D 0.00 0.83 0.82 5.13 12.49 3.50 0.23 3.10 1.84 0.52 3.90 52.62 0.00 20.81 24.75 18.45 13.19 9.53
RenderOcc (Pan et al., 2024) 2D 5.69 27.56 14.36 19.91 20.56 11.96 12.42 12.14 14.34 20.81 18.94 68.85 33.35 42.01 43.94 17.36 22.61 23.93
OccFlowNet (Boeder et al., 2024) 2D 1.60 27.50 26.00 34.00 32.00 20.40 25.90 18.60 20.20 26.00 28.70 62.00 27.20 37.80 39.50 29.00 26.80 28.42

MonoScene (Cao & De Charette, 2022) 3D 1.75 7.23 4.26 4.93 9.38 5.67 3.98 3.01 5.90 4.45 7.17 14.91 6.32 7.92 7.43 1.01 7.65 6.06
TPVFormer (Huang et al., 2023) 3D 7.22 38.90 13.67 40.78 45.90 17.23 19.99 18.85 14.30 26.69 34.17 55.65 35.47 37.55 30.70 19.40 16.78 27.83
BEVDet (Huang et al., 2021) 3D 4.39 30.31 0.23 32.26 34.47 12.97 10.34 10.36 6.26 8.93 23.65 52.27 24.61 26.06 22.31 15.04 15.10 19.38
OccFormer (Zhang et al., 2023c) 3D 5.94 30.29 12.32 34.40 39.17 14.44 16.45 17.22 9.27 13.90 26.36 50.99 30.96 34.66 22.73 6.76 6.97 21.93
BEVFormer (Li et al., 2022b) 3D 5.85 37.83 17.87 40.44 42.43 7.36 23.88 21.81 20.98 22.38 30.70 55.35 28.36 36.00 28.06 20.04 17.69 26.88
RenderOcc (Pan et al., 2024) 2D+3D 4.84 31.72 10.72 27.67 26.45 13.87 18.20 17.67 17.84 21.19 23.25 63.20 36.42 46.21 44.26 19.58 20.72 26.11
CTF-Occ (Tian et al., 2024) 3D 8.09 39.33 20.56 38.29 42.24 16.93 24.52 22.72 21.05 22.98 31.11 53.33 33.84 37.98 33.23 20.79 18.00 28.53
SparseOcc (Liu et al., 2023) 3D - - - - - - - - - - - - - - - - - 30.90
OccFlowNet (Boeder et al., 2024) 2D+3D 8.00 37.60 26.00 42.10 42.50 21.60 29.20 22.30 25.70 29.70 34.40 64.90 37.20 44.30 43.20 34.30 32.50 33.86

PreWorld (Ours) 3D 10.83 44.13 26.35 42.16 46.15 22.92 28.86 26.89 26.44 28.29 34.43 65.67 35.91 41.09 37.41 30.16 29.54 33.95
+ Pre-training 2D+3D 11.81 45.01 26.29 43.32 47.71 24.23 31.29 27.41 27.68 30.62 35.64 63.71 37.27 41.20 37.54 29.36 29.70 34.69

learning rate of 1× 10−4. All the hyperparameters λ in the loss functions have been set to 1.0. For
3D occupancy prediction task, PreWorld undergoes 6 epochs in self-supervised pre-training stage
and 12 epochs in fully-supervised fine-tuning stage. For 4D occupancy forecasting and motion
planning task, PreWorld undergoes 8 epochs in self-supervised pre-training stage and 18 epochs in
fully-supervised fine-tuning stage. All experiments are conducted on 8 NVIDIA A100 GPUs.

4.2 RESULTS AND ANALYSIS

Table 2: 4D occupancy forecasting performance on the Occ3D-nuScenes dataset. The latest
vision-centric approaches of OccWorld (Zheng et al., 2023) and OccLLaMA (Wei et al., 2024) are
taken as baselines for fair comparison. Aux. Sup. represents auxiliary supervision apart from the
ego trajectory. Avg. reprersents the average performance of that in 1s, 2s, and 3s. The best and
second-best performances are represented by bold and underline respectively.

Method Aux. Sup. mIoU (%) ↑ IoU (%) ↑
1s 2s 3s Avg. 1s 2s 3s Avg.

OccWorld-S None 0.28 0.26 0.24 0.26 5.05 5.01 4.95 5.00
OccWorld-T Semantic LiDAR 4.68 3.36 2.63 3.56 9.32 8.23 7.47 8.34
OccWorld-D 3D Occ 11.55 8.10 6.22 8.62 18.90 16.26 14.43 16.53
OccLLaMA-F 3D Occ 10.34 8.66 6.98 8.66 25.81 23.19 19.97 22.99

PreWorld (Ours) 3D Occ 11.69 8.72 6.77 9.06 23.01 20.79 18.84 20.88
+ Pre-training 2D Labels & 3D Occ 12.27 9.24 7.15 9.55 23.62 21.62 19.63 21.62

3D Occupancy Prediction. We first compare the 3D occupancy prediction performance of our
PreWorld model with the latest methods on the Occ3D-nuScenes dataset. As shown in Ta-
ble 1, PreWorld achieves an mIoU of 34.69, surpassing the previous state-of-the-art method, Oc-
cFlowNet (Boeder et al., 2024), which has an mIoU of 33.86, as well as other methods using 2D,
3D, or combined supervision. This highlights the effectiveness of PreWorld in perceiving the current
scene. Additionally, the proposed 2D pre-training stage boosts performance by 0.74 mIoU, with im-
provements observed across nearly all categories, both static and dynamic. These results underscore
the importance of the proposed 2D pre-training stage for enhanced scene understanding.

In Figure 4, we further compare the qualitative results of PreWorld with the latest fully-supervised
method SparseOcc (Liu et al., 2023) and self-supervised method RenderOcc (Pan et al., 2024). Ren-
derOcc can project scene voxels onto multi-view images to obtain comprehensive supervision from
various ray directions, thus capturing abundant geometric and semantic information from 2D labels.
However, as shown in the last column, it struggles in predicting unseen regions and understanding
the overall scene structure. On the other hand, SparseOcc excels in predicting scene structures.
Yet owing to insufficient supervision for small objects and long-tailed objects from 3D occupancy
labels, it often encounters information loss when predicting objects like poles and motorcycles, as
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Ground Truth PreWorld (Ours) SparseOcc RenderOcc

barrier buscons. veh motorcycle traffic conetrailer other flat

bicyclecar pedestriantruckdri. sur sidewalkterrain manmadevegetation

Figure 4: Qualitative results of 3D occupancy prediction on the Occ3D-nuScenes validation
set. The holistic structure and fine-grained details of the scene are highlighted by orange boxes
and red boxes respectively. Compared with existing fully-supervised methods and self-supervised
methods, PreWorld can obtain better scene structure and capture finer local details.

Table 3: Motion planning performance on the Occ3D-nuScenes dataset. The latest vision-centric
approaches of OccWorld (Zheng et al., 2023) and OccLLaMA (Wei et al., 2024) are taken as base-
lines for fair comparison. † represents training and inference with ego state information introduced.
The best and second-best performances are represented by bold and underline respectively.

Method Aux. Sup. L2 (m) ↓ Collision Rate (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

ST-P3 (Hu et al., 2022) Map & Box & Depth 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71
UniAD (Hu et al., 2023b) Map & Box & Motion & Track & 3D Occ 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31
VAD (Jiang et al., 2023) Map & Box & Motion 0.54 1.15 1.98 1.22 0.04 0.39 1.17 0.53
OccNet (Tong et al., 2023) Map & Box & 3D Occ 1.29 2.13 2.99 2.14 0.21 0.59 1.37 0.72

OccWorld-S† None 0.67 1.69 3.13 1.83 0.19 1.28 4.59 2.02
OccWorld-T† Semantic LiDAR 0.54 1.36 2.66 1.52 0.12 0.40 1.59 0.70
OccWorld-D† 3D Occ 0.52 1.27 2.41 1.40 0.12 0.40 2.08 0.87
OccLLaMA-F† 3D Occ 0.38 1.07 2.15 1.20 0.06 0.39 1.65 0.70

PreWorld (Ours) 3D Occ 0.49 1.22 2.32 1.34 0.19 0.57 2.65 1.14
+ Pre-training 2D Label & 3D Occ 0.41 1.16 2.32 1.30 0.50 0.88 2.42 1.27

PreWorld (Ours)† 3D Occ 0.22 0.31 0.41 0.31 0.36 0.52 0.73 0.54
+ Pre-training† 2D Label & 3D Occ 0.22 0.30 0.40 0.31 0.21 0.66 0.71 0.53

shown in the second and the last row. In contrast, our model is initially pre-trained with 2D labels,
thereby gaining a sufficient understanding of the scene geometry and semantics. In the fine-tuning
stage, the model is further optimized using 3D occupancy labels, enabling PreWorld to better predict
scene structures. Consequently, PreWorld performs comparably to SparseOcc in holistic structure
predictions but exhibits a clear advantage in predicting fine-grained local details, underscoring the
superiority of our training paradigm.

4D Occupancy Forecasting. Table 2 presents the 4D occupancy forecasting performance of Pre-
World compared to existing baseline models, OccWorld(Zheng et al., 2023) and OccLLaMA(Wei
et al., 2024). When using only 3D occupancy supervision, our method achieves the highest mIoU
over the future 3-second interval, outperforming the baselines. This demonstrates the effectiveness
of our cooperative training approach for both occupancy feature extraction and forecasting modules
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in an end-to-end manner. Similar to the results for 3D occupancy prediction, incorporating the 2D
pre-training stage further improves both mIoU and IoU across all future timestamps. This highlights
how pre-training provides valuable geometric and semantic auxiliary information from dense 2D
image representations. Given that 2D labels are more readily available than costly 3D occupancy
annotations, the performance boost from the two-stage training paradigm of PreWorld is noteworthy.

Motion Planning. The motion planning results are further compared in Table 3. Without incorpo-
rating ego-state information, our model performs comparably to occupancy world models and even
some well-designed planning models. When ego-state information is utilized following the same
configuration as OccWorld and OccLLaMA (indicated in gray), our method achieves SOTA perfor-
mance with significant improvements, further enhanced by the pre-training stage. Since PreWorld
follows a direct training paradigm, taking the original images as input and producing planning re-
sults, the impact of ego-state is notably different from that in world model baselines. We attribute
this difference to the ”shortcut” effect observed in prior work (Zhai et al., 2023; Li et al., 2024). We
leave the detailed analysis of the relationship between input ego-state, forecasted occupancy, and
planning outcomes for future investigation.

4.3 ABLATION STUDY

Table 4: Ablation study of different supervision
attributes utilized in pre-training stage.

RGB Depth Semantic mIoU (%) ↑
33.95

✓ 34.11 (+0.16)
✓ ✓ 34.43 (+0.48)
✓ ✓ ✓ 34.69 (+0.74)

Table 5: Ablation study of different data scale
utilized in pre-training and fine-tuning stage.

Fine-tuning Pre-training mIoU (%) ↑

150 Scenes × 18.66
700 Scenes 25.02 (+6.36)

450 Scenes × 31.99
700 Scenes 33.37 (+1.38)

700 Scenes
× 33.95

450 Scenes 34.28 (+0.33)
700 Scenes 34.69 (+0.74)

Effectiveness of Pre-training. The effectiveness of different supervision attributes of the 2D pre-
training stage is analyzed in this section. As noted earlier, the benefits of pre-training are consistent
across both 3D occupancy prediction and 4D occupancy forecasting. Therefore, to conserve compu-
tational resources, we perform ablation experiments on the 3D occupancy prediction task. Table 4
shows that as RGB, depth, and semantic attributes are progressively added during the pre-training
stage, the final mIoU results steadily improve. This demonstrates the effectiveness of the three 2D
supervision attributes, with even the simplest RGB attribute providing a boost in performance.

Scalability of Pre-training. To validate the scalability of our approach, we conduct ablation
studies on the data scale used in both pre-training and fine-tuning stages, as shown in Table 5. Firstly,
the introduction of the pre-training stage consistently improves performance across all fine-tuning
data scales, where larger pre-training scale leads to better results. Secondly, when the fine-tuning
dataset is small (150 scenes), which means costly 3D occupancy labels are limited, the pre-training
stage significantly boosts the mIoU from 18.66 to 25.02. Thirdly, with pre-training, the model fine-
tuned on a smaller dataset (450 scenes) achieves comparable performance to a model without pre-
training but fine-tuned on a larger dataset (700 scenes), with mIoU of 33.37 and 33.95, respectively.
These results highlight the effectiveness and scalability of our two-stage training paradigm.

Model Components. We perform ablation studies on the effectiveness of various components in
our approach for 4D occupancy forecasting, as shown in Table 6. For comparison, we first present
a Copy&Paste baseline, which simply copys the current occupancy prediction results of our best
3D occupancy prediction model and calculates the mIoU between these results and the ground truth
of the future frames. This serves as a lower bound for PreWorld, showcasing the performance of
a model without any future forecasting capabilities. The results in row 1 and row 2 demonstrate
that our proposed forecasting module has effectively equipped the model with future forecasting
capabilities. By introducing this straightforward design, the model can produce non-trivial results
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Table 6: Ablation study of different components in our approach. The Copy&Paste employs
our best model for 3D occupancy prediction task. Ego denotes using ego-state information during
training. SSP denotes self-supervised pre-training for model. TS denotes trajectory supervision.

Method Ego SSP TS mIoU (%) ↑ IoU (%) ↑
1s 2s 3s Avg. 1s 2s 3s Avg.

Copy&Paste 9.76 7.37 6.23 7.79 20.44 17.73 16.20 18.12

PreWorld

11.12 7.73 5.89 8.25 (+0.46) 22.91 20.31 17.84 20.35 (+2.23)
✓ 11.17 8.54 6.83 8.85 (+1.06) 23.27 20.83 18.51 20.87 (+2.75)
✓ ✓ 11.69 8.72 6.77 9.06 (+1.27) 23.01 20.79 18.84 20.88 (+2.76)
✓ ✓ 11.58 9.14 7.34 9.35 (+1.56) 23.27 21.41 19.49 21.39 (+3.27)
✓ ✓ ✓ 12.27 9.24 7.15 9.55 (+1.76) 23.62 21.62 19.63 21.62 (+3.50)

Table 7: Ablation study of joint training. All results in the table are obtained utilizing ego-state
information. Traj, 2D and 3D denote ego trajectory, 2D labels and 3D occupancy labels, respectively.

Supervision L2 (m) ↓ Collision Rate (%) ↓
Traj 2D 3D 1s 2s 3s Avg. 1s 2s 3s Avg.

✓ 0.20 0.34 0.80 0.45 0.50 0.62 0.90 0.67
✓ ✓ 0.22 0.31 0.41 0.31 0.36 0.52 0.73 0.54
✓ ✓ ✓ 0.22 0.30 0.40 0.31 0.21 0.66 0.71 0.53

and achieve significant performance enhancements, particularly evident in the IoU metric. Addition-
ally, incorporating ego-state information and employing self-supervised pre-training further enhance
both mIoU and IoU, as shown in row 3 and row 5. These findings underscore the importance and
contribution of each component in our approach.

Joint Training. We further demonstrate the effectiveness of joint training. As shown in the row
4 and row 6 of Table 6, when simultaneously optimizing both 4D occupancy forecasting and mo-
tion planning tasks, the forecasting capabilities of PreWorld are further enhanced. The introduc-
tion of trajectory supervision has improved model performance regardless of the utilization of self-
supervised pre-training, with an increase from 8.85 and 9.35 to 9.06 and 9.55 in mIoU, respectively.
Furthermore, joint training has also enhanced the planning capabilities of our model. As shown in
Table 7, compared to the model supervised solely by ego trajectory, model supervised using both ego
trajectory and 3D occupancy labels exhibits a significant improvement in both L2 error and collision
rates, while the introduction of 2D labels further elevates the model performance. These results
collectively demonstrate that jointly training 4D occupancy forecasting and motion planning tasks,
as opposed to training them separately, provides additional performance benefits for the model.

5 CONCLUSION

In this paper, we propose PreWorld, a semi-supervised vision-centric 3D occupancy world model
for autonomous driving. We propose a novel two-stage training paradigm that allows our method to
leverage abundant and easily accessible 2D labels for self-supervised pre-training. In the subsequent
fine-tuning stage, the model is further optimized using 3D occupancy labels. Furthermore, we in-
troduce a simple yet effective state-conditioned forecasting module, which addresses the challenge
faced by existing methods in simultaneously optimizing the occupancy network and forecasting
module. This module reduces information loss during training, while enabling the model to directly
forecast future scenes and ego trajectory based on visual inputs. Through extensive experiments, we
demonstrate the robustness of PreWorld across 3D occupancy prediction, 4D occupancy forecasting
and motion planning tasks. Particularly, we validate the effectiveness and scalability of our training
paradigm, outlining a viable path for scalable model training in autonomous driving scenarios.
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A MORE EVALUATIONS

A.1 3D OCCUPANCY PREDICTION WITH RAYIOU

To address the inconsistent depth penalty issue within the mIoU metric, SparseOcc (Liu et al., 2023)
introduces a novel metric, RayIoU, designed to enhance the evaluation of 3D occupancy model
performance. In order to demonstrate the robustness of our approach as a 3D occupancy model
across various metrics, we opt to evaluate PreWorld on the 3D occupancy prediction task using
RayIoU as metric, and compare the results with existing methods in this section.

Table 8: 3D occupancy prediction performance on the Occ3D-nuScenes dataset. We use RayIoU
as the evaluation metric (Liu et al., 2023). The best and second-best performances are represented
by bold and underline respectively.

Method RayIoU RayIoU1m, 2m, 4m

BEVFormer(4f) 32.4 26.1 32.9 38.0
RenderOcc 19.5 13.4 19.6 25.5
SimpleOcc 22.5 17.0 22.7 27.9
BEVDet-Occ (2f) 29.6 23.6 30.0 35.1
BEVDet-Occ-Long (8f) 32.6 26.6 33.1 38.2
OccFlowNet 32.6 25.6 33.3 38.8
FB-OCC (16f) 33.5 26.7 34.1 39.7
SparseOcc (8f) 34.0 28.0 34.7 39.4
SparseOcc (16f) 36.1 30.2 36.8 41.2

PreWorld (Ours) 36.4 30.0 37.2 41.9
+ Pre-training 38.7 32.5 39.6 44.0

As shown in Table 8, PreWorld achieves a RayIoU of 38.7, outperforming the previous SOTA
method SparseOcc (Liu et al., 2023) by 2.6 RayIoU. Comparing to purely 3D occupancy super-
vision, the proposed self-supervised pre-training stage provides a significant boost in RayIoU from
36.4 to 38.7, which reaffirms the effectiveness of our two-stage training paradigm for PreWorld.
Altogether, Table 1 and 8 showcases the strong performance of PreWorld across various metrics.

More importantly, the introduction of RayIoU explains the reason why our PreWorld does not out-
perform the baseline in certain categories. As shown in Table 1, these situations are predominantly
focused on large static categories. For instance, in categories like manmade and sidewalk, the perfor-
mance of PreWorld is surpassed by RenderOcc (Pan et al., 2024). SparseOcc points out that common
practice in mIoU computation involves the utilization of visible masks, which only accounts for vox-
els within the visible region, without penalizing predictions outside this area. Consequently, many
models can achieve higher mIoU scores by predicting thicker surfaces for large static categories. As
demonstrated in the last column of Figure 4, RenderOcc, despite lacking an understanding of the
overall scene structure, manages to attain higher scores in these categories through this strategy.

On the contrary, due to RayIoU considering the distance between voxels and the ego vehicle during
computation, the model cannot gain an advantage by predicting thicker surfaces under this evalua-
tion metric. Therefore, we believe that RayIoU is a more reasonable metric for comparing model
performance in predicting large static categories. As shown in Table 8, when using RayIoU as the
evaluation metric, the scores of both RenderOcc and OccFlowNet (Boeder et al., 2024) have de-
creased. While OccFlowNet outperforms SparseOcc in the mIoU metric with 33.86 over 30.90,
its performance notably lags behind SparseOcc in terms of RayIoU. These results indicate that the
performance of our PreWorld is not inferior in some categories; rather, our model tends to generate
more reasonable predictions, which can be reflected in the RayIoU metric.

Likewise, we can explain why pre-training leads to a decline in model performance in certain cat-
egories. It can be observed that these instances also primarily focus on large static categories. For
example, after pre-training, there is a significant mIoU performance decline in the driveable surface
category. Based on the previous analysis, we showcase the RayIoU performance for the models on
large static categories with and without pre-training.
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Table 9: Detailed 3D occupancy prediction performance of the large static categories on the
Occ3D-nuScenes dataset. We use RayIoU as the evaluation metric (Liu et al., 2023). GT represents
the type of labels used during training. The best performances are represented by bold.
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RayIoU1m
PreWorld 3D 30.0 39.4 56.4 24.2 25.5 23.8 32.9 23.2
+ Pre-training 2D+3D 32.5 40.1 57.8 29.8 27.2 27.3 35.1 25.9

RayIoU2m
PreWorld 3D 37.2 44.6 64.4 29.2 30.7 31.3 43.4 36.0
+ Pre-training 2D+3D 39.6 45.4 65.9 34.3 32.7 34.6 44.7 37.8

RayIoU4m
PreWorld 3D 41.9 46.6 72.4 33.2 35.6 38.1 49.7 47.3
+ Pre-training 2D+3D 44.0 47.4 74.3 38.3 37.7 41.1 50.5 47.2

As shown in Table 9, the pre-trained model surpasses the model without pre-training on almost all
large static categories across all thresholds. The results under the RayIoU metric indicate that pre-
training steers the model towards predicting more plausible scene structures, rather than leading to
performance decline. In conclusion, we believe that the results under RayIoU metric validate the
effectiveness of pre-training and better showcase the robust prediction capabilities of our PreWorld.

A.2 HOW PRE-TRAINING WORKS?

Due to time constraints, when conducting experiments on smaller datasets in Table 4, models fine-
tuned on 150 scenes and 450 scenes are trained for 24 and 18 epochs, respectively, while the model
on the full dataset is trained for 12 epochs. Considering the ratio of data reduction to extended
training time, we believe that we do not allocate sufficient additional training time for experiments
on the smaller datasets. Therefore in this section, to delve into how pre-training benefits the model,
we extend the training duration across various settings to obtain more comprehensive experimental
results, as presented in Table 10.

Table 10: The extended ablation study of different data scale utilized in pre-training and fine-
tuning stage. The best performances are represented by bold.

Fine-tuning Pre-training Epoch
12 18 24 36 48 60

150 Scenes × 11.18 13.85 18.66 29.30 30.26 30.00
700 Scenes 13.01 21.83 25.02 31.65 31.56 30.98

450 Scenes × 25.54 31.99 32.89 33.32 - -
700 Scenes 29.52 33.37 34.19 34.08 - -

700 Scenes
× 33.95 33.99 - - - -

450 Scenes 34.28 34.15 - - - -
700 Scenes 34.69 34.89 - - - -

As shown in the results, we believe that pre-training has benefited the model in two key aspects: on
one hand, pre-training accelerates the convergence of the model; on the other hand, pre-training con-
tinues to enhance the model performance after convergence, thereby improving the data efficiency.
Taking models fine-tuned on 150 scenes as an example, it can be observed that during the first 24
epochs, employing pre-training accelerates the convergence. Subsequently, both models have con-
verged, with the pre-trained model still maintaining an advantage in prediction performance.

Furthermore, it can be observed that pre-training leads to a 0.87 mIoU improvement for the model
fine-tuned on 450 scenes, while it results in a 0.90 mIoU improvement for the model fine-tuned on
700 scenes. We believe this situation is still related to the reasons analyzed in Section A.1, that is, for
large static categories, existing evaluation metric does not adequately reflect the actual performance
of the model. Therefore, we have detailed the corresponding mIoU for large static categories and
small objects in Table 11.
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Table 11: Detailed 3D occupancy prediction performance of different data scale utilized in pre-
training and fine-tuning stage.

Fine-tuning Pre-training mIoU
Overall Large Static Small

150 Scenes × 30.26 35.82 24.08
700 Scenes 31.65 (+1.39) 37.18 (+1.36) 25.50 (+1.42)

450 Scenes × 33.32 38.40 26.29
700 Scenes 34.19 (+0.87) 39.04 (+0.64) 27.44 (+1.15)

700 Scenes × 33.99 39.83 26.98
700 Scenes 34.89 (+0.90) 40.72 (+0.89) 27.96 (+0.98)

It can be observed that the mIoU for large categories does not always effectively reflect the perfor-
mance improvement of the model. For the model fine-tuned with 450 scenes, pre-training leads to a
0.64 increase in mIoU for large categories, while the model fine-tuned with 700 scenes sees an in-
crease of 0.89. In contrast, the increase in mIoU for small objects can better reflect the effectiveness
of pre-training, aligning with the expectations: 2D pre-training yields more significant performance
improvements for smaller 3D fine-tuning datasets. In order to better showcase the effectiveness of
pre-training, we use RayIoU as the evaluation metric, and the results obtained are as follows:

Table 12: Detailed 3D occupancy prediction performance of different data scale utilized in
pre-training and fine-tuning stage. We use RayIoU as the evaluation metric (Liu et al., 2023).

Fine-tuning Pre-training RayIoU Large Static RayIoU
Overall 1m 2m 4m

150 Scenes × 29.5 32.5 26.2 32.9 38.5
700 Scenes 33.4 (+3.9) 36.6 (+4.1) 30.2 37.0 42.5

450 Scenes × 35.1 37.9 31.5 38.3 44.0
700 Scenes 37.8 (+2.7) 40.2 (+2.3) 33.1 40.6 46.8

700 Scenes × 36.8 39.5 32.4 39.9 46.2
700 Scenes 39.0 (+2.2) 41.4 (+1.9) 34.7 41.9 47.6

As shown in Table 12, when using RayIoU as the evaluation metric, the improvements in overall
RayIoU and RayIoU for large categories follow a similar trend, indicating that as the scale of the 3D
fine-tuning dataset increases, the benefits of 2D pre-training do indeed gradually diminish.

A.3 SELF-SUPERVISED 4D OCCUPANCY FORECASTING AND MOTION PLANNING

Instead of generating occupancy predictions through the occupancy head H, we support an alter-
native approach by utilizing the attribute projection head P. Specially, by setting a threshold value
τ for the 3D volume density field σ̃ of the scene, we can determinate whether a voxel is occupied.
Subsequently, the semantic occupancy of the voxel vk can be formulated as:

Ŷ (vk) = argmax(s̃(vk)), if σ̃(vk) ≥ τ, (10)

where s̃ denotes the semantic field of the scene, and we regard vk as non-occupied if σ̃(vk) < τ .

In this manner, we can also obtain occupancy predictions during the pre-training stage. In other
words, PreWorld is capable of engaging in self-supervised tasks as well. Therefore, to validate its
performance as a self-supervised 3D occupancy world model, we compare it against state-of-the-
art self-supervised methods on both 4D occupancy forecasting and motion planning tasks on the
Occ3D-nuScenes dataset (Tian et al., 2024), denoting as PreWorld-S.

4D Occupancy Forecasting. Table 13 presents the 4D occupancy forecasting performance of
PreWorld-S compared to previous self-supervised approach of OccWorld (Zheng et al., 2023). In
comparison to OccWorld-S, our approach yields significant outcomes. The IoU over the future 3-
second interval nearly doubles, while the average future mIoU demonstrates an remarkable increase
of over 1300%, soaring from 0.26 to 3.78. These results highlight the superiority of our method

16



Published as a conference paper at ICLR 2025

in self-supervised learning and open up more possibilities for future research on the architecture of
self-supervised 3D occupancy world models.

Table 13: Self-supervised 4D occupancy forecasting performance on the Occ3D-nuScenes
dataset. We take the self-supervised vision-centric approach of OccWorld (Zheng et al., 2023)
as baseline for fair comparison. Aux. Sup. represents auxiliary supervision apart from the ego tra-
jectory. Avg. reprersents the average performance of that in 1s, 2s, and 3s. The best and second-best
performances are represented by bold and underline respectively.

Method Aux. Sup. mIoU (%) ↑ IoU (%) ↑
1s 2s 3s Avg. 1s 2s 3s Avg.

OccWorld-S None 0.28 0.26 0.24 0.26 5.05 5.01 4.95 5.00
PreWorld-S (Ours) 2D Labels 4.36 3.72 3.27 3.78 9.49 9.17 8.90 9.19

Table 14: Self-supervised motion planning performance on the Occ3D-nuScenes dataset. We
take the self-supervised vision-centric approach of OccWorld (Zheng et al., 2023) as baseline for
fair comparison. † represents training and inference with ego state information introduced. The
bestperformances are represented by bold.

Method Aux. Sup. L2(m) (%) ↓ Collision Rate (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

OccWorld-S† None 0.67 1.69 3.13 1.83 0.19 1.28 4.59 2.02

PreWorld-S (Ours) 2D Labels 0.66 1.49 2.60 1.58 0.57 1.26 2.23 1.35
PreWorld-S (Ours)† 2D Labels 0.20 0.61 1.57 0.79 0.57 0.64 1.42 0.88

Motion Planning. As illustrated in Table 14, PreWorld-S significantly surpasses OccWorld-S on
both metrics even without the incorporation of ego-state information. When ego-state information is
introduced (indicated in gray), the performance of our self-supervised approach has received a no-
table enhancement, yielding results comparable to or outperforming those fully-supervised methods
such as OccWorld-D. These findings once again demonstrate the effectiveness of our approach.

B MORE VISUALIZATIONS

We provide additional visualized comparison in this section.

Fig 5 shows more qualitative results of 3D occupancy prediction task compared with the latest
fully-supervised method SparseOcc (Liu et al., 2023) and self-supervised method RenderOcc (Pan
et al., 2024), further substantiating the robustness of our PreWorld model and the effectiveness of our
novel two-stage training paradigm. The red boxes highlight fine-grained details of the 3D occupancy
predictions and the ground truth, while the orange boxes mark holistic structure of an area within the
scene. Compared to prior approaches, PreWorld demonstrates superior performance in preserving
the structural information of the scene and capturing fine-grained details. In contrast, RenderOcc
struggles with comprehending the scene structure accurately and exhibits inaccurate predictions for
unsupervised occluded regions. SparseOcc, on the other hand, fails to effectively predict small
objects like poles and long-tailed objects like construction vehicles, resulting in detail loss. These
findings are consistent with the observations in the main text.

In Fig 6, we further provide a detailed showcase of the prediction results for both visible and oc-
cluded regions. Consistent with the quantitative analysis in Section A.1, it can be observed that
RenderOcc (Pan et al., 2024) tends to predict thicker surfaces for large static categories. However,
while this approach may lead to higher mIoU scores, its predictions for occluded regions are chaotic,
indicating a lack of true understanding of the scene structure. On the contrary, our PreWorld makes
more cautious predictions for occluded regions, demonstrating a more comprehensive understanding
of the holistic scene structure.
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Figure 5: More qualitative results of 3D occupancy prediction on the Occ3D-nuScenes valida-
tion set. The holistic structure and fine-grained details of the scene are highlighted by orange
boxes and red boxes respectively.
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Figure 6: More qualitative results of 3D occupancy prediction on the Occ3D-nuScenes vali-
dation set. The shaded area represents occluded regions where the voxels are not included in the
evaluation. In contrast to RenderOcc, our PreWorld makes more cautious predictions for occluded
regions, tending to preserve the overall structure of the scene.
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