Supplementary Material

Successor Feature Landmarks for Long-Horizon
Goal-Conditioned Reinforcement Learning

A Additional Results

® Agent Start Position

I | EE— |

070 075 080 085 090 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
Successor Feature Similarity Successor Feature Similarity
(a) FourRoom (b) Two-room MultiRoom
0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 o. 0.60 0.65 070 0.75 0.80 0.85 0.90 0.9
Successor Feature Similarity Successor Feature Similarity
(c) Three-room MultiRoom (d) Four-room MultiRoom

Figure 7: SFS values relative to the agent’s starting state (red dot) for the different MiniGrid
environments.

A.1 MiniGrid

We show visualizations of Successor Feature Similarity (SFS) in the MiniGrid environment to further
illustrate the metric’s capacity to capture distance. Specifically, we compute the SFS between the
agent’s starting state and the set of possible states and present these values as SFS heatmaps in
Figure 7 below. The SFS is distinctly higher for states that reside in the same room as the reference
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state (red dot). Additionally, the SFS values gradually decrease as you move further away from
the reference state. This effect is most clearly demonstrated in the SFS heatmap of Two-room
MultiRoom (top right).

A.2 ViZDoom

We report the standard error for the random spawn experiments on ViZDoom. The experiments are
run over 5 random seeds. Note that we use the reported results from the original SGM paper [ 16] for
the SGM-Map and therefore do not report standard errors.

Method SGM-Map Test-2 Test-6
Easy Medium Hard Easy Medium Hard Easy Medium Hard
Random Actions 58% 22% 12% T0£1.2% 39+£1.0% 16+1.0%|80£0.4% 31£1.0% 18+ 0.7%
Visual Controller|  75% 35% 19% 83+0.7% 51+0.5% 30+0.7% |89 £0.7% 39 +1.1% 20+ 1.0%
SPTM [29] 70% 34% 14% 78 £0.0% 48 £0.0% 18 +0.0% |88 £0.0% 40 £0.0% 18 £ 0.0%
SGM [16] 92% 64% 26% |86 +0.8% 54+0.7% 32+0.7% |83 +0.7% 43 +1.2% 27+ 1.5%
SFL [Ours] |92 £0.8% 82 +0.6% 67 +1.2% (82 £0.7% 66 +=0.8% 48 = 1.5% |92 £ 0.6% 66 £ 0.7% 60 £ 0.5%

Table 3: (Random spawn) The success rates and standard errors of compared methods on three ViZDoom maps.

B Ablation Experiments

We conduct various ablation experiments to isolate and better demonstrate the impact of individual
components of our framework.

B.1 Distance Metric

Metric ‘ Easy Medium Hard

SFES [Ours] 92+ 1.7% 82+ 0.6% 67 £ 2.6%
SPTM’s Reachability Network [29](83 +1.2% 57 +2.6% 24 £ 1.9%

Table 4: The success rates and standard errors of our method and the reachability network ablation
on ViZDoom SGM-Map in the random spawn setting.

We compare our SFS metric against the reachability network proposed in SPTM [29] and reused in
SGM [16]. In Table 4, we observe that SFS outperforms the reachability network on all difficulty
levels, indicating that SFS can more accurately represent transition distance between states than the
reachability network. The results are aggregated over 5 random seeds.

B.2 Exploration Strategy

We investigate the benefit of our exploration strategy, which samples frontier landmarks based on
inverse visitation count to travel to before conducting random exploration. We compare against an
ablation which samples frontier landmarks from the landmark set in a uniformly random manner,
which is analogous to how SGM [16] chooses goals in their cleanup step. We directly measure the
degree of exploration achieved by each strategy by tracking state coverage, which we define as the
thresholded state visitation count computed over a discretized grid of agent states and report as a
percentage over all potentially reachable states. We report the mean state coverage percentage and
associated standard error achieved by the two exploration strategies on the Test-1 ViZDoom map over
5 random seeds. Our exploration strategy achieves 79.4 + 0.65% state coverage while the uniform
random sampling ablation strategy achieves 72.3 + 1.90% state coverage, thus indicating that our
strategy empirically attains greater exploration of the state space.
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B.3 Landmark Formation

We compare our progressive building of the landmark set to a clustering scheme akin to the one
presented in Successor Options [28]. To illustrate the primary benefit of our approach, the ability
to track landmark metadata over time, we conduct an experiment with the clustering scheme as an
ablation on Three-room MultiRoom. Our progressive landmark scheme achieves a mean success
rate of 75.0 & 14.6% while clustering achieves a rate of 35.6 + 18.8%, with results aggregated over
5 random seeds. We observe that our method more than doubles the success rate attained by the
clustering method and attribute this outperformance to the beneficial landmark information that we
are able to record and utilize in constructing the landmark graph.

We also note a secondary benefit in which landmarks are chosen. Our approach aims to minimize
the distance between chosen landmarks parameterized by §,44 While clustering selects landmarks
which are closer to the center of topologically distinguishable regions. The former method will add
landmarks that are far away from existing landmarks, making them more likely to lie on the edge of
the explored state space by nature This in turn can improve exploration via our frontier strategy. An
experiment on FourRoom empirically demonstrates this effect, where the average pairwise geodesic
distance between landmarks was 6.72 £ 0.43 for our method versus 5.72 =+ 0.40 for clustering.

C Implementation Details

C.1 Environments and Evaluation Settings

ViZDoom: The ViZDoom visual environment produces 160 x 120 RGB first-person view images
as observations. We stacked a history of the 4 most recent observations as our state. We adopted the
same action set as SPTM and SGM: DO NOTHING, MOVE FORWARD, MOVE BACKWARD, MOVE
LEFT, MOVE RIGHT, TURN LEFT, TURN RIGHT. As commonly done for ViZDoom in previous
works, we used an action repetition of 4. For training, each episode has a time limit of 10,000 steps
or 2,500 states after applying action repetition. We reuse the same texture sets as SPTM and SGM for
all mazes. Figure 8 shows the maps used in the random spawn experiments and Figure 9 shows the
maps used in the fixed spawn experiments.
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Figure 8: ViZDoom maps used in random spawn experiments.
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Figure 9: ViZDoom maps used in fixed spawn experiments.
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Figure 10: MiniGrid maps used in fixed spawn. The agent spawns at red arrow and attempts to reach
the goal depicted by the green box.

During evaluation, the goal state is given as a first-person image observation at the goal position,
stacked 4 times. For both the random spawn and fixed spawn settings, the success rate for each
difficulty level is computed by evaluating the agent on 50 different start-goal pairs generated by each
respective sampling procedure. The reported success rate is the success rate of reaching the goal
averaged over 5 random seeds.

MiniGrid: The MiniGrid environment provides a compact encoding of a top-down view of the
maze as the state. The encoding represents each object type such as the agent or doors as a distinct
3-length tuple. The state is 25 x 25 x 3 for MultiRoom and 9 x 9 x 3 for FourRoom. We use
the following action set: MOVE FORWARD, TURN LEFT, TURN RIGHT, OPEN/CLOSE DOOR.
For training, each episode has a time limit of 100 steps for FourRoom and n;ooms - 40 steps for
Nrooms-To0m MultiRoom, where 7n,00ms 1 the number of rooms.

During evaluation, the goal state is given as the state if the agent had reached the goal. The time
limits to reach the goal are equivalent to the episode time limits during training. We compute the
success rate of our method and MSS over 100 trajectories each, averaging over 5 random seeds for
FourRoom and 15 random seeds for MultiRoom.

C.2 Feature Learning

ViZDoom: For our experiments in ViZDoom, we adopt a similar feature learning setup as SGM by
reusing the pretrained ResNet-18 backbone from SPTM as a fixed feature encoder. The network
was originally trained with a self-supervised binary classification task: to determine whether a pair
of image observations is temporally close within a time step threshold. The network encodes the
image observations as 512-length feature vectors. Recalling that our state is a stack of the 4 most
recent observations, we use the encoder to individually embed each of the observations, and then
concatenate the 4 intermediate feature vectors into a 2048-length feature vector.

MiniGrid: For our experiments in MiniGrid, we learn features by training a convolutional feature
encoder with time-contrastive metric learning [7, 32]. Specifically, we train an encoder f via a triplet
loss on 3-tuples consisting of anchor 0%, positive oP, and negative observations o™:

1/ (0") = F(P)I5 +m < || £(0") = f(o™)II3 )

A margin parameter m = 2 is used to encourage separation between the (anchor, positive) and the
(anchor, negative) pairs. The 3-tuples are randomly sampled from the replay buffer such that if 0o®
corresponds to time step ¢, then o” is uniform randomly sampled from observations from the same
episode with time [t — K, t + K| = [t — 2, ¢ + 2]. Similarly, o™ is randomly sampled from the time
intervals, [t — Ly, t — U, U [t + U,,t + L,] = [t — 15,t — 10] U [t + 10, ¢ + 15].

The encoder network has the following architecture: two 3 x 3 convolutional layers with 32 hidden
units, and strides 2 and 1 respectively, each followed by ReLU activations, and ending in a linear
layer that outputs 64-dimensional feature vectors. Additionally, we normalize the feature vector such
that ||¢(o¢)||2 = o = 10 following [32]. The network is trained using the Adam optimizer [14] with
a learning rate of 5e — 4 and a batch size of 128.
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C.3 SF Learning

Recall that we estimate SF ¢™ with a deep neural network parameterized by 6 : ¥™(s,a) =~
V7 (¢(s), a). Here, ¢ is a feature embedding of state. The parameter 6 is updated via minimizing the
temporal difference error [15, 2]:

Llsva 5,0 = & | (603) + 701606, 7() = 5 (6(5). ) | (10)

where 1) is a target network that is updated at fixed intervals for stability purposes [22]. We choose for
7 to be a fixed uniform random policy because we wish for the SF to capture only the structure and
dynamics of the environment and not be biased towards any agent behavior induced by a particular
policy. Consequently, we only use transitions from the random policy 7 for training 1) .

We approximate the SF using a fully-connected neural network, which takes in the features (Ap-
pendix C.2) as input. Each hidden layer of the network is followed by a batch normalization and
ReLU activation layer. For updating the parameters of the SF network, we use Adam to optimize
on the TD error loss function shown in Eq. (10) with bootstrapped n—step transition tuples. These
experience tuples are sampled from a replay buffer of size 100K, which stores trajectories gener-
ated by 8 samplers simultaneously running SFL. For stability, we use a target network ) that is

updated at slower intervals and perform gradient clipping as described in [22]. Table 5 describes the
hyperparameters used for SF learning in each environment.

ViZDoom MiniGrid

Hyperparameter
Hidden layer units 2048, 1024 512
Learning rate le — 4 5e —4
Batch size 128 128
n—step 5 1
Replay buffer size 100K 20K
Discount y 0.95 0.99
1 update interval 1000 250
Gradient clip 0 5 1

Table 5: Hyperparameters used in SFL for learning SF for each environment.

ViZDoom MiniGrid

Hyperparameter
Oadd 0.8 0.99
Slocal 0.9 1
6edge - 1
Nyront 1000 40
Nezpiore 500 40
€train 005 01
€eval 0.05 0.05

Table 6: Hyperparameters used in SFL’s landmark graph, planner, and navigation policy for each
environment. See Appendix D.2 for details of d.q44. in ViZDoom.

Because the cardinality of MiniGrid’s state space is much smaller, we restrict SFL to have at most
10 landmarks for FourRoom and 30 landmarks for MultiRoom, which is consistent with the number
of landmarks used in MSS as described in Table 8.

C.4 SFL Hyperparameters

We mainly tuned these hyperparameters: learning rate, §qqq4, and 6jocq;- In ViZDoom for
example, we performed grid search over the values of [1073,107%,1075] for learning rate,
[0.70,0.75,0.80,0.85,0.90] for d444, and [0.70,0.80, 0.9, 0.950] for §;cq; On the Train map.
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The best performing values were then used for all other ViZDoom experiments. We found that our
method performed well under a range of values for 0,44, and ;o¢q;- In Table 7, we report the success
rates achieved on Hard tasks from a seed-controlled experiment on the Train map for random spawn.

Oadd ‘ Success Rate

0.70 41%
0.80 46%
0.90 47%
6local

0.80 24%
0.90 46%
0.95 44%

SGM [16]|  26%

Table 7: The success rates on Hard tasks in Train ViZDoom map for random spawn for varying
values of d44¢q and §,¢q;- For reference, SGM is included as the best-performing baseline.

The other hyperparameters were either chosen from related work or not searched over.

C.5 Optimizations

We perform optimizations on certain parts of SFL for computational efficiency. To add landmarks, we
first store states which pass the SFS add threshold, SFS < §,44, to a candidate buffer. Then, N4,q
landmarks are added from the buffer every N, 44 steps. Additionally, we update the SF representation
of the landmarks every N, ,qqte Steps and form edges in the landmark graph every Nyopm—cdges
steps. Finally, we restrict the step-limit for reaching a frontier landmark to be n;,,,4 times the number
of landmarks on the initially generated path so that we do not overly allocate steps for reaching
nearby landmarks.

In ViZDoom, Ncand = 50, Nadd = 20K, Nupdate = 10K’ Nformfedges = 20K, Nand = 30.
In MiniGrid, Negng = 1, Naaa = 3K, Nupdate =1K, Nfor’m—edges = 1K, nigna = 8.

C.6 Mapping State Space Implementation

We slightly modify the Mapping State Space (MSS) method to work for our environments.

ViZDoom: Similar to SGM’s and our setup, we reuse the pretrained ResNet-18 network from SPTM
as a fixed feature encoder f. The UVFA embeds the start and goal states as feature vectors with this
encoder, concatenates them into a 4096-length feature vector, and it them through two hidden layers
of size 2048 and 1024, each followed by batch normalization and ReL.U activation. The outputs are
the Q-values of each possible action. The UVFA is trained with HER, which requires a goal-reaching
reward function. Because states in ViZDoom do not directly give the agent’s position, we define the
reward function based on the cosine similarity between feature vectors given with f:

0 f(S;) ' f(g) > 6Teach
—1 otherwise an

Ty = R(stvahg) = {

In the function above, we normalize the feature vectors such that || f(-)||2 = 1 and set ,-cqcn, = 0.8.

Landmarks are chosen according to farthest point sampling performed in the feature space imposed
by the encoder f. During training, the planner randomly chooses a landmark as a goal and attempts
to navigate to that goal for 500 steps. The agent then uses an epsilon greedy policy with respect to
the Q-values given by the UVFA for a randomly sampled state as the goal for 500 steps. It cycles
between these two phases until the episode is over.
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ViZDoom FourRoom MultiRoom

Hyperparameter
Learning rate 1074 1074 1073
Batch size 128 256 128
Replay buffer size 100K 100K 100K
Discount y 0.95 0.99 0.99
Target update interval 100 50 50
Clip threshold -25 -3 -5
Max landmarks 250 10 30
HER future step limit 400 10 20
Planner €pan - 0.75 0.75
Explore €cxpiore 0.25 0.10 0.10
Evaluation €cyq; 0.05 0.10 0.05

Table 8: MSS hyperparameters used for each environment.

MiniGrid: The UVFA in MiniGrid directly maps observations to action q-values. The UVFA
is composed of an encoder with the same architecture as in Appendix C.2 and a fully-connected
network with one hidden layer of size 512 followed by a ReLLU activation. Like in ViZDoom, the
UVFA encodes the start and goal states, concatenates the feature vectors together, and passes the
output through the fully-connected network. For HER, we reuse the MSS reward function, setting
Oreach = 1, 1.e. a reward is given only when the agent’s next state is the actual goal state. During
training, at every time step, the agent will use the planner with epsilon €;,,,. Otherwise, it will use
the epsilon greedy policy like in ViZDoom above.

Table 8 describes the hyperparameters we used for each environment, which were determined after
rounds of hyperparameter tuning. We give extra attention to the clip threshold and max landmarks
parameters, which MSS [1 1] mentions are the main hyperparameters of their method.

C.7 EC-augmented SPTM/SGM Implementation

We use Episodic Curiosity (EC) [30] as an exploration mechanism to enable SPTM and SGM to
work in the fixed spawn setting on ViZDoom. Specifically, we leverage the exploration abilities of
EC to generate trajectories that provide greater coverage of the state space. SPTM and SGM then
sample from these trajectories to populate their memory graphs and to train their reachability and
low-level controller networks. Fortunately, the code repository* for EC already has a ViZDoom
implementation, so minimal changes were required to make it compatible with our experimental
setting.

The full procedure is as follows. First, we train EC on the desired evaluation maze and record
the trajectories experienced. Second, we take a frozen checkpoint of the EC module and use it to
generate trajectories for populating the memory graphs. Third, we train the SPTM/SGM networks
on EC’s training trajectories recorded in the first step. Last, we run SPTM/SGM as normal with the
constructed memory graph and trained networks.

To make the comparison fair with our method and MSS, we load in the weights from the pretrained
ResNet-18 reachability network from SPTM as initial weights for EC’s reachability network. In the
first step, we train EC for 2M environment steps, which is the same number of steps we allow for
our method to train. Similar to the random spawn experimental setup, we also use the pretrained
SPTM/SGM reachability and low-level controller networks, and fine-tune them in the third step with
4M steps of training data from the EC-generated trajectories.

We run validation experiments with EC on the original SGM map to search over the following
hyperparameters: curiosity bonus scale cv, EC memory size, and EC novelty threshold. We leverage
an oracle exploration bonus based on ground-truth agent coordinates as the validation metric. The
same oracle validation metric is used to determine which frozen checkpoint to use in the second step,
generating exploration trajectories to populate the memory graph. For the other hyperparameters,
we reuse the values chosen for ViZDoom in the original EC paper [30]. Table 9 describes the
hyperparameters that we selected for EC.

*https://github.com/google-research/episodic-curiosity
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Hyperparameter Value

Learning rate 2.5 x107*
PPO entropy coefficient 0.01
Curiosity bonus scale « 0.030
EC memory size 400
EC reward shift 5 0.5
EC novelty threshold bpoveity 0.1

EC aggregation function ' percentile-90

Table 9: EC hyperparameters used to generate exploration trajectories for SPTM and SGM.

C.8 Computational Resources

Each SFL run uses a single GPU and we use 4 GPUs in total to run the SFL experiments: 2 NVIDIA
GeForce GTX 1080 and and 2 NVIDIA Tesla K40c. The code was run on a 24-core Intel Xeon CPU
@ 2.40 GHz.

C.9 Asset Licenses
Here is a list of licenses for the assets we use:

1. ripyt code repo: MIT license

2. ViZDoom environment: MIT license

3. MiniGrid environment: Apache 2.0 license
4. MSS code repo: MIT license

5. SPTM code repo: MIT license

6. SGM code repo: Apache 2.0 license

7. EC code repo: Apache 2.0 license

D Tackling Perceptual Aliasing in ViZDoom

Perceptual aliasing is a common problem in visual environments like ViZDoom, where two image
observations look visually similar, but correspond to distant regions of the environment. This problem
can cause our agent to erroneously localize itself to distant landmarks, which in turn harms the
accuracy of the landmark graph and planner. Figure 11 gives examples of the perceptual aliasing
problem where the pairs of visually similar observations also have very high SFS values relative to
each other. We take several steps to make SFL more robust to perceptual aliasing, as described in the
following sections.
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Figure 11: Examples of perceptual aliasing in ViZDoom. Same colored dots correspond to pairs of
perceptually aliased observations which have pairwise SES values > §;5¢q; = 0.9.
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D.1 Aggregating SFS over Time

We adopt a similar procedure used in SGM and SPTM [ 16, 29] to make localization more robust by
aggregating SFS over a short temporal window. Specifically, we maintain a history of SFS values
over the past W steps, and output the median as the final SFS value S. This is defined as follows:

S = median([SFS™ (s;_w, ), ..., SES™ (s, -)]) (12)

where SFS™ (s;, -) is the | L|-length vector containing SFS” (s¢,1),Vl € L. The median function is
taken over the time dimension such that .S is length | L|. Then, for example, if we were attempting to
add s; as a landmark, we would compute [, = argmax;c; S} and check if S}, < d,q4q to decide if we
should add s; as a landmark. For our experiments, we set W = 8.

D.2 Edge Threshold

We give special consideration to the edge threshold J.44. in ViZDoom due to the larger scale of
the environment and recognized that a fixed edge threshold may not work depending on the stage
of training. For example, a low value of .44 would allow connections to form in the early stages
of training, but would also introduce unwanted noise to the graph as the number of nodes grows.
Therefore, we wish for dcqg. to dynamically change depending on the status of the graph. We define
it as follows:

Sedge = median(N} _,, ) (13)

l;—1; v

In other words, an edge is formed if the number of landmark transitions on that edge is greater than
the median number of landmark transitions from all edges. We found that the median is a suitable
threshold for enabling sufficient graph connectivity in the beginning while also reducing the the
number of erroneous edges as the graph grows in scale.

D.3 [Edge Filtering

We apply edge filtering to the landmark graph to reduce the number of potential erroneous edges.
In random spawn experiments, we adopt SGM’s k-nearest edge filtering where for each vertex, we
only keep edges that have the top £ = 5 number of transitions from that vertex. In fixed spawn
experiments, we instead introduce temporal filtering where we only keep edges between landmarks
that were added during similar time periods. Specifically, assuming landmarks are labeled by the
order in which they are added, uwv € G — |u — v| < Tyemporal - |L|, where L is the number of
landmarks. Our intuition for temporal filtering is based on how the agent in the fixed spawn setting
will add new landmarks further and further away from the starting point as it explores more of the
environment over time. Because the agent must pass by the most recently added landmarks at the
edge of the already explored areas in order to add new landmarks, landmarks added within similar
time periods are overall likely to be closer together. In our experiments, we set Tremporal = 0.1.

Additionally, we adopt the cleanup step proposed in SGM by pruning failure edges. If the agent is
unable to traverse an edge with the navigation policy, we remove that edge. To account for the case
where the edge is correct, but the goal-conditioned policy has not yet learned how to traverse that
edge, we "forget" about failures over time such that only edges that are repeatedly untraversable are
excluded from the graph. The agent forgets about failures that occurred over 80K steps ago.

These procedures can improve the quality of the landmark graph. Figure 12 shows the landmark
graph formed in one of our ViZDoom fixed spawn experiments when no additional edge filtering
steps are used. The graph has many incorrect edges which connect distant landmarks. On the
other hand, Figure 13 shows the landmark graph with temporal filtering and failure edge cleanup.
These procedures eliminate many of the incorrect edges, resulting in a graph which respects the wall
structure of the maze to a much higher degree.

E SFL Analysis

We conduct further analysis on the components of SFL to study how each contributes to the agent’s
exploration, goal-reaching, and long-horizon planning abilities.
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Figure 13: Graph formed with empirical landmark transitions, temporal filtering, and failure edge
cleanup: |L| = 517, |E| = 2984.

E.1 Exploration

For our fixed spawn experiments, as the agent progresses in training, it should spend more time
in faraway areas of the state space. In Figure 14a, we show that our agent exhibits this behavior.
Each landmark is colored by the relative rank of its visitations, where a lighter color corresponds to
spending more time at a landmark. Early in training (top), the agent has discovered some faraway
landmarks, but does not spent much time in these distant areas as indicated by the darker color of
these landmarks. Later in training (bottom), the agent has both added more landmarks and spent more
time near distant landmarks. This is also shown by how the lighter colors are more evenly distributed
across the map. We expect agents without effective exploration strategies to remain near the center of
the map.

E.2 Goal-Conditioned Policy

We study how the goal-conditioned policy improves over training. Figure 14b shows how the goal-
conditioned policy’s success rate over certain landmark edges increases over time, with success
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Figure 14: Visualizations of exploration (left) and goal-conditioned policy (right) on the fixed spawn
Test-1 ViZDoom maze. Left: Each landmark colored according to the relative rank of its visitations
at different time steps. Right: Landmark edges colored by goal-conditioned policy success rate at
different time steps. Only edges with > 80% success rate are shown.

defined as reaching the next landmark within 15 steps. On top, we see that the policy is only accurate
for edges near the start position during an early stage of training. Additionally, there is an incorrect,
extra long edge that is most likely attributed to localization errors that will be corrected later on as
the agent further trains its SF representation. On the bottom, we observe that the goal-conditioned
policy improves in more remote areas after the agent has explored more of the maze and completed
more training.

E.3 Planning with Landmark Graph

Here, we look at the long-horizon landmark paths that the SFL agent plans over the graph. Examples
of planned paths are shown in Figure 15. We observe that the plans accurately conform to the maze’s
wall structure. Additionally, consecutive landmarks in the plan are not too far apart, which helps
the success rate of the goal-conditioned policy because SFS is more accurate when the start-goal
states are within a local neighborhood of each other. We acknowledge that the planned paths can be
longer and more ragged than the optimal shortest path to the goal. The partial observability of the
environment is one primary reason for this, where there are multiple first-person viewpoints per (X, y)
location. For example, two landmarks may be relatively closer in terms of number of transitions even
if they appear further away on the top-down map because they both share a 30° view orientation.

F Mapping State Space Analysis
In this section, we offer additional analysis on Mapping State Space (MSS) and elaborate on potential

reasons why the method struggles to achieve success in our environments. Our study is conducted in
the context of fixed spawn experiments in ViZDoom.

F1 UVFA

The UVFA is central to the MSS method, acting as both an estimated distance function and a local
goal-conditioned navigation policy. First, we qualitatively evaluate how well the UVFA estimates the
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Figure 15: Examples of planned paths for various start (pink dot) and goal (yellow square) locations.
The paths are formed by conducting planning on the landmark graph. These examples are taken from
one of the fixed spawn experiments on the Test-1 map.

distance between states by creating heatmaps similar to those in Figure 6. We use a trained UVFA to
estimate the pairwise distances between a reference state and a random set of sampled states, and
plot those distances in Figure 16. The top row shows the distance values for all states; the bottom
row shows the distance values for states which clear the edge clip threshold = —5 and consequently
would have edges to the reference state. We choose a edge clip threshold smaller than the one used in
our experiments to reduce the number of false positives and for ease of visualization. We observe
that the estimated distances are noisy overall, where many states far away from the reference state are
given small distances which pass the edge clip threshold. These errors cause the landmark graph to
have incorrect edges that connect distant landmarks As a result, the UVFA-based navigation policy
cannot accurately travel between these distant pairs of landmarks.

We hypothesize that the UVFA is inaccurate because the learned feature space does not perfectly
capture the agent’s (X, y) coordinates for localization. This causes errors in the HER reward function
where it may give a reward in cases when the agent has not yet reached the relabeled goal state.
This is exacerbated by the perceptual aliasing problem. With this noisy reward function, the UVFA
learning process becomes very challenging.

For further analysis, we re-train the UVFA with a HER reward function that is given the agent’s
ground-truth (X, y) coordinates. Now, the agent is only given a reward when it exactly reaches the
relabeled goal state. We recreate the same UVFA-estimated distance heatmaps using this training
setup, shown in Figure 17.

We see in the left column that states which pass the edge clip threshold are now more concentrated
near the reference state. However, the estimated distances are still very noisy, especially in the right
column where the reference state is in a distant location. We believe that learning an accurate distance
function remains difficult because the features inputted into the UVFA only give a rough estimate of
the agent’s (X, y) position rather than capture it fully.

F.2 Landmarks

MSS uses a set of landmarks to represent the visited state space. From a random subset of states in
the replay buffer, the landmarks are selected using the farthest point sampling (FPS) algorithm, which
is intended to select landmarks existing at the boundary of the explored space. Figure 18 shows the
landmarks selected near the end of training in a MSS fixed spawn experiment. We note that when we
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Figure 16: Distances estimated with MSS’ UVFA relative to a reference state (blue dot) in the fixed
spawn ViZDoom maze. The left column uses the agent’s start state as the reference state while the
right column uses a distant goal state as the reference state. The top row depicts all states while the
bottom row shows states with distance >= —5, the edge clip threshold. States that do not pass the
threshold, i.e. distance < —5 are darkened.
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—-60 -50 -40 -30 -20 -10 0
UVFA-Estimated Distance

Figure 17: Distances estimated with MSS’ UVFA relative to a reference state (blue dot) in the fixed
spawn ViZDoom maze. We assume a similar setup as Figure 16, but the UVFA is trained using HER

with ground-truth (X, y) coordinate data.

26



Figure 18: Landmarks selected using FPS in a MSS fixed spawn experiment.

increase the max number of landmarks in our experiments, the observed performance either decreases
or remains the same.

The set of landmarks only partially covers the maze, thereby limiting the agent’s ability to reach and
further explore distant areas. Because FPS operates in a learned feature space, the estimated distances
between potential landmarks can be noisy, leading to inaccurate decisions on which landmarks should
be chosen. Furthermore, MSS does not explicitly encourage the agent to navigate to less visited
landmarks. States in unexplored areas become underrepresented in the replay buffer and therefore,
are unlikely to be included in the initial random subset of states from which landmarks are chosen.

G Episodic Curiosity Analysis

In this section, we conduct additional experiments regarding the Episodic Curiosity (EC) augmented
SPTM and SGM baselines to better understand the benefits and shortcomings of these combined
methods. This study is completed within the context of fixed spawn experiments in ViZDoom.

We run ablations of the EC + SPTM and EC + SGM baselines on the 7est-1 map within the fixed
spawn evaluation setting. Two components of SPTM/SGM are changed in the ablations: the high-
level graph, and the reachability and locomotion networks. Specifically, we vary how we collect the
trajectories used to populate the graph and to train the two networks. The trajectories are generated
by the following agent variations:

1. Fixed start (FS): randomly acting agent that begins each episode in the same starting location.

2. Random start (RS): randomly acting agent that begins each episode in a starting location that is
sampled uniform randomly across the map.

3. EC: agent running the EC exploration module and begins each episode in the same starting
location.

For populating the graph, the agents build and sample from a replay buffer containing trajectories
of 100 episodes of 200 steps each, following the setup of SGM [16]. The EC agent uses a frozen
checkpoint of its reachability and policy networks when collecting these trajectories. The setup for
training the reachability and locomotion networks of SPTM/SGM remains the same except the agent
used to generate the training data is varied between FS, RS, and EC. For the EC variant, the training
data is composed of trajectories that were recorded during the training of the exploration module.

We then evaluate the underlying baselines initially described in Section 5.2, visual controller’, SPTM,
and SGM, with ablations of the methods used to populate the graph and train the networks. We
report their success rates averaged over 5 random seeds in Table 10. The EC (populate graph) + FS
(train networks) + SPTM/SGM baselines (underlined) are the ones reported in the main paper in

3The visual controller baseline does not use a high-level graph for planning.
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Method Used Test-1
Populate Graph Train Networks Evaluation | Easy Medium Hard Hardest

- FS Controller | 43% 12% 0% 0%
- RS Controller | 29% 2% 1% 0%

- EC Controller | 39% 6% 0% 1%
FS FS SPTM 32% 4% 0% 0%
RS RS SPTM 32% 6% 0% 0%
EC FS SPTM 48% 16% 2% 0%
EC EC SPTM 46% 12% 4% 4%
FS FS SGM 41% 8% 0% 0%
RS RS SGM 24% 1% 0% 0%
EC FS SGM 43% 3% 0% 0%
EC EC SGM 29% 0% 0% 0%
MSS 23% 9% 1% 1%

SFL [ours] 85% 59% 62%  50%

Table 10: (Fixed spawn) The success rates of ablations of SPTM and SGM baselines on the 7est-1
ViZDoom map. For each difficulty level, we bold the success rate of the best-performing ablation
baseline for emphasis. We also include the success rates of MSS and our method SFL for reference.

® Observations

(a) FS (b) EC ()RS
Figure 19: State coverage of the replay buffers built by the FS, EC, and RS agents.

Table 2. From these experiments, we make the following observations. First, using EC-generated
trajectories for populating the graph can improve SPTM’s performance on longer-horizon goals. This
is expected as the exploration bonus from EC supports greater coverage of more distant areas of
the state-space, which thereby enables graph planning to distant goals. Second, we find that the
FS-generated trajectories, while limited in their coverage of distant areas, can outperform RS and EC
on the Easy and Medium difficulties. We hypothesize that this is due to how fixed spawn start-goal
pairs in evaluation share the same starting location as in training. With the FS trajectories, the training
of the networks is skewed towards goals closer to the starting location. Conversely, RS trajectories
suffer by having episodes start from a different location than the start location of the evaluation
setting.

We also visualize the state coverage of the replay buffers used for populating the graph for the FS, EC,
and RS agents in Figure 19.° The EC agent is able to store observations from more distant locations
in comparison to the FS agent. As expected, the RS agent provides comprehensive coverage of the
entire map.

The four distinct white squares are caused by the presence of peripheral in-game objects.
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H Additional Details: Traverse Algorithm

Here is the Traverse algorithm used for localizing the agent to the nearest landmark (I, ) based on
SFS and traversing to the next target landmark (/arge¢) On the landmark path with the goal-conditioned
policy(m;). The procedure is repeated until either the target landmark is reached or the “done” signal
is given indicating that the episode is over. This algorithm is referenced in Algorithm 1.

Algorithm 3 Traverse

input T, ltargel
output Tiyerse, leurr
1: Teront < 0
2: while [cy! = larger OF €nv not done do
3 (S, a, T) ~ 7Tl('; ltarget) ~
4: leur ¢ argmax;c; SFSy (s,1) {localize agent}
5 Tiraverse — Ttraverse U (87 a, T)
6: end while
7: return Tiayerse leurr

I Societal Impact

Our Successor Feature Landmarks (SFL) framework is designed to simultaneously support explo-
ration, goal-reaching, and long-horizon planning. We expect for our method to be applicable to
real-world scenarios where an autonomous agent is operating in a large environment and must com-
plete a variety of complex tasks. Common examples include warehouse robots and delivery drones.
SFL can improve the efficiency and reliability of these autonomous agents, which offer potential
benefit to human society. However, these autonomous systems may also be built for more malicious
purposes such as for constructing weaponry or conducting unlawful surveillance. In general, these
potential harms should be carefully considered as we begin to develop autonomous agents and pass
legislation that will govern these systems.
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