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The supplementary materials contain two parts:
1. Source code for reproducing the DCM results is in the folder named “code” in the ZIP file.
Instructions for running the code are given in the README file in the “code” folder.

2. This supplementary file includes related work, more details on DCM and Classification-
Ablative Validation, and more clear visualizations zoomed-in of all the results of DCM and
Classification-Ablative Validation in the main paper for a better view.

A ATTACK FOR DETECTORS WITH DIFFERENT STRUCTURE
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Figure I: Adversarial attack for object detectors with different architectures. Arrows in denotes
attacks for classification (A.;s) or localization (A;,.). NMS gives the indexes to be recorded (record
indexes) based on the predicted bounding boxes and their confidence. Filter is the process to produce

the detection bounding boxes based on these indexes, whose confidences are larger than a score
threshold.

We have selected four typical object detectors: SSD |Liu et al.| (2016), Faster-RCNN [Ren et al.
(2015), YOLOX |Ge et al.|(2021)) and Deformable-DETR [Zhu et al.|(2021)). These detectors can be
divided into three types which is One-Stage Detector, Two-Stage Detector and Transformer Detector.
The adversarial attack method for these three types of object detectors is shown in Fig.[[l] and the
robustness evaluation in our main paper is based on this standard.

B RELATED WORK

B.1 ADVERSARIAL ATTACK AND DEFENSE ON IMAGE CLASSIFICATION

Deep neural networks have achieved great progress in the classification task. However, these models
are demonstrated that they would be completely confused when some imperceptible perturbations
were applied to the input|Szegedy et al.|(2014)). Recently, adversarial attack methods are in bloom:
gradient-based white box adversarial attack methods (e.g., FGSM |Goodfellow et al.| (2015) and
PDG Madry et al.| (2018))), and black box adversarial attack methods (e.g., UPSET [Sarkar et al.
(2017) and LeBA |Yang et al.[(2020)). Instead, to resist those adversarial attacks, various defense
approaches have been proposed Tramer et al.| (2018)); |Carlini & Wagner| (2017); Liao et al.| (2018));
Zhang et al|(2020); Qin et al.|(2019) and adversarial training becomes prevalent and is widely used
to continuously learn adversarial images to neutralize the attack. Despite tremendous progress, few
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research works are devoted to the adversarial robustness in the object detection task, especially on
adversarial defense. One main difference from the adversarial robustness in image classification is
classification models present superior robustness through adversarial training on clean and adversarial
images. However, object detectors suffer from a detection robustness bottleneck in adversarial
training and are ineffective in balancing robustness on adversarial images and recognition ability on
clean images. Thus, in our work, we empirically investigate the adversarial robustness for object
detection.

B.2 ADVERSARIAL ATTACK AND DEFENSE ON OBJECT DETECTION

With the breakthrough of deep neural networks, object detection has obtained remarkable performance
in various scenarios. CNN-based detectors and transformer detectors attract increasing attention,
e.g., Faster RCNN Ren et al.|(2015), SSD |Liu et al.[(2016), YOLOX|Ge et al.| (2021}, RetinaNet Lin
et al| (2017), and DERT |Carion et al. (2020). Even so, they inevitably inherit the vulnerability
to attack, with the root in deep neural networks. There are many attack methods that have been
proposed specifically for object detectors [Xie et al.[|(2017); Wei et al.|(2019); |Liu et al.| (2019); |Chen
et al.| (2018)). In recent years, some works focus on the adversarial robustness of object detectors.
MTD [Zhang & Wang (2019)) as an early attempt regards the adversarial training of object detection
as multi-task learning. Classification and localization are both considered to improve the overall
robustness of the object detector. Considering that the classes imbalance of the input image will
lead to the imbalance of the attack on different categories. CWAT |[Chen et al.| (2021) is proposed to
uniformly attack each category in adversarial training to improve the robustness of the detector.

Existing works on the improving robustness of object detectors are suffering from detection robustness
bottleneck. Existing works on the robustness of object detectors are suffering from robustness
bottlenecks, but their causes and properties are still poorly explored. The main intention of this work
is to explore the detection robustness bottleneck and make an attempt to figure out its issues, paving
the way for further works.

C CALCULATION OF DETECTION CONFUSION MATRIX
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Figure II: More detailed calculation process of Detection Confusion Matrix.

D EVALUATION RESULTS UNDER DIFFERENT ATTACKS

In our main paper, Fig. 2] provides the performance evaluation of the non-robust and robust models
with different detection structures on clean images and adversarial images. In this supplementary, we
provide more discussions on the evaluation results in Fig. [2]

Among four non-robust detection models (i.e., standard detection models), YOLOX has the highest
performance of 83.56% mAP. On adversarial images, all the four detection models show an extremely
poor performance: their performance on the A.;; adversarial images even degenerates to only lower
than 3% mAP! The models perform slightly better on A;,. adversarial images than on A.;s adversarial
images, and even Deformable-DETR achieves an mAP of 13.7%.
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Four robust detection models via adversarial training generally have the performance drops by larger
than 15%, compared to the non-robust models on clean images. In particular, SSD even loses nearly
30% mAP. Besides, the performance of the robust models on the adversarial images is also limited.
None of the four detection models obtain larger than 30% mAP on A adversarial images. Although
the performance of models on the A;,. adversarial images is slightly higher than that on the A,
adversarial images, it also has the performance decline by larger than 40% mAP compared to the
non-robust model on clean samples. For example, the standard YOLOX can attain 83.56% mAP on
clean images, but the adversarial trained robust YOLOX only has an mAP of 29.10% mAP on A,
adversarial images and 31.90% mAP on A;,. adversarial images.
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E MORE DETAILS ON IMPLEMENTING DETECTION CONFUSION MATRIX
(DCM)

In Sec. [3.1] of the main paper, the details of our proposed DCM have been elaborated. In this
supplementary file, we will provide more details on the implementations of reproducing DCM, as
shown in Algorithm[I} Specifically, to calculate DCM, it first needs to create two arrays of the size
(C'4+1) x (C 4 1) with elements of list. To select the bounding boxes for DCM, all the bounding
boxes processed by NMS and filter are considered. Those filtered predicted bounding boxes will be
matched with the ground-truth (GT) bounding boxes. For a bounding box, we calculate its IOU with
all the GT bounding boxes in an image X [i. If the largest IOU is larger than the threshold T}, we
record this IOU value and the index of the matched GT box: b*°* and b*%*. That is, the GT box at
b% is then matched to this predicted bounding box. For this bounding box, the predicted category
and the confidence ¢ and c°°"/ are determined based on the score of this predicted bounding box.
The category B[ X [i]][b%*].cls of the matched GT box is regarded as the true category and c°'* as its
predicted category. Then DCM can be calculated based on the predicted category and true category
of each predicted bounding box.

Algorithm 1: Detection Confusion Matrix

Data: Test images X, GT bounding boxes B, detector backbone fj, classification header H s,
localization header H;,., IOU matching threshold T5,,,.

M.+ list()[C+1,C+1];// confidence list matrix.

My + list()[C +1,C+1]; // bounding box list matrix.

// traversing the test set.

for i=1 to Nx do

¢ < Hes(fo(X[1]));

b Hioe(fo(X[i]));

// get the kept indexes of the boxes.

idx + NMS(c,b);

idx + filter(idz, c,b);

for u € idx do

// predicted class and its confidence.

s, et mazx(clu));

// the index and IOU of the GT box with the largest IOU of
predicted box bu].

bidr piov < max (10U (b[u), B[X[i]]));

if b’°* > T, then

M [B[X[i]][b*%].cls][c"*].append(c=onT ),

My [B[X[i]][b4].cls][c"*].append (bi°);

end

end

end

/ calculating DCM.
ori=/toC + 1do

for u=1toC + 1do

Meon [ ] sum(M.[il[u]):
M) [u] + hist(My[i][u]);

=

end
end
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F MORE DETAILS ON IMPLEMENTING CLASSIFICATION-ABLATIVE
VALIDATION (CLSAVAL)

The implementation details of our proposed Classification-Ablative Validation are shown in Algo-
rithm[2] An object detector predicts a lot of bounding boxes on an image, and all bounding boxes have
their indexes. We perform ClsAVal assuming that bounding boxes at the same indexes predicted by
the same structure of the model on the same image with only different perturbations are responsible
for predicting the same objects. When performing ClsAVal, we first record the index idx of the model
M to be analyzed on the image  and the index idx™ of the reference model M on the image . In
R4, mode, we filter the output of M (x) by idz' instead of using idz directly for filtering. In the
R, mode, we replace the score in the output with the score predicted by M R(a’:) on top of R4y
The score in YOLOX consists of two parts, and thus our method also derives two different modes
Royj and Ry, ¢ to further analyze the problem.

Algorithm 2: Classification-Ablative Validation
Data: Input image x and reference image &, GT bounding boxes B, detector M, reference
detector M E, IOU matching threshold T,,,.
¢,b M(x);// prediction of M on x.
// get the kept indexes of the boxes.
idx < NMS(c,b);
idx + filter(idz, ¢, b);
CR,bR‘efﬂlR(i);// prediction of MZ% on i.
// get the kept indexes of the boxes.
idx®™ < NMS(ct, b%);
idx® « filter(idx®, cf bf?);
OF « list();
if mode = R;4, then
for i € idz do
‘ éﬂ?append«CULbHD);// Only indexes are from the reference
end

end

if mode = R,;; then

for i € idz" do

éﬂ?append(ﬁfqﬂ,bﬁb);// Both indexes and predicted confidence are
from the reference

end

end
// for YOLOX only.
if mode = R,,; then
for i € idz™ do
O .append((cgy;[i] * ccongli], bli]));
end
end
if mode = Rcony then
for i € idz" do
O .append((cop;[i] x cfonf [i],b]4]));
end

end
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G MORE EVALUATION RESULTS FOR EACH CATEGORY

Tab. [[MITT] provides the experimental results of the four detection models (i.e., SSD, Faster RCNN,
YOLOX, and Deformable-DETR) for each category on clean images and adversarial images under
two attacks (A, and A.;s). Among them, we conduct experiments of Deformable-DETR on MS-
COCO [Lin et al.| (2014), while the other three models are on PASCAL VOC |Everingham et al.
(2015).

Table I: The performance of SSD and Faster RCNN in each category on clean images and adversarial
images under two attacks (A;,. and A.;s) on the PASCAL VOC dataset. “STD” indicates the standard
detection model which is non-robust. “Robust” denotes the robust detection model obtained via
adversarial training.

SSD|Liu et al.|(2016) Faster RCNN Ren et al.|(2015)
Method Clean Aus Aloe Clean Aus B Ajoe
STD Robust STD Robust STD Robust STD Robust STD Robust STD Robust

aeroplane  81.4 57.3 0.4 49.1 2.3 46.4 67.9 56.6 0.0 24.8 0.3 32.1
bicycle 85.7 66.7 0.9 34.8 6.0 442 71.5 64.6 0.0 14.7 3.0 30.2
bird 753 36.7 6.1 23.6 0.9 21.6 67.1 41.6 0.0 4.7 0.1 11.0
boat 69.4 28.7 0.1 14.8 0.6 17.3 54.9 35.5 0.2 9.7 1.5 11.7
bottle 50.2 19.7 0.8 10.6 9.2 10.3 534 34.7 7.3 9.1 9.1 7.1
bus 83.7 61.5 1.1 51.3 114 484 75.4 64.5 0.0 159 0.6 29.3
car 85.4 71.2 0.9 47.6 11.7 54.9 83.5 722 0.0 28.4 1.8 42.6
cat 87.5 48.1 0.1 36.0 9.3 23.4 85.2 58.9 0.0 4.2 1.5 10.0
chair 61.6 314 1.0 16.8 9.1 17.6 494 38.5 0.0 1.0 0.1 7.0
cow 83.0 37.9 0.1 11.9 3.8 15.5 77.2 54.8 0.0 0.3 0.6 13.6
diningtable 79.4  47.7 1.5 38.8 4.0 35.1 60.1 55.5 0.8 12.7 9.4 26.3
dog 84.4 493 0.3 29.1 9.1 31.8 80.5 533 0.0 3.6 0.2 13.3
horse 86.1 66.8 04 37.9 1.4 44.9 82.7 69.0 0.1 8.2 0.5 28.0
motorbike  84.2 62.4 0.9 28.9 1.5 442 74.9 62.6 0.0 14.9 1.0 333
person 78.0 57.7 5.0 41.1 9.6 42.5 71.7 65.8 0.0 154 1.0 234
pottedplant  49.3 20.8 0.1 4.0 3.1 9.7 414 30.8 0.0 0.4 0.4 9.4
sheep 75.5 325 0.1 10.9 1.9 18.3 69.8 53.2 0.0 0.6 2.6 12.7
sofa 78.9 58.8 0.3 51.6 2.3 43.6 644 4382 0.0 11.5 0.1 16.8
train 85.6 62.7 1.3 39.0 1.5 39.7 73.8 53.8 0.0 12.2 0.3 19.8
tvmonitor  75.3 50.4 9.1 423 6.1 37.8 73.7 58.9 0.3 19.0 0.7 24.0

Table II: The performance of YOLOX in each category on clean images and adversarial images under
two attacks (A;,. and A.;5) on PASCAL VOC dataset. “STD” indicates the standard detection model
which is non-robust. “Robust” denotes the robust detection model obtained via adversarial training.

YOLOX|Ge et al.{(2021)

Clean Aas Aloe

Method STD  Robust STD  Robust STD  Robust
aeroplane 89.4 67.0 9.1 224 33 24.5
bicycle 89.6 74.5 9.1 31.9 9.7 46.3
bird 82.3 53.3 9.1 2.8 1.5 16.7
boat 77.1 51.8 0.1 5.9 1.6 12.8
bottle 79.6 60.2 4.6 10.3 9.2 27.1
bus 88.4 70.0 0.9 32.7 11.0 51.0
car 89.9 82.4 9.9 44.1 12.4 60.3
cat 85.9 64.9 0.2 17.1 1.2 34.9
chair 72.3 48.5 0.1 7.7 1.2 25.8
cow 87.8 68.7 0.3 4.2 9.3 30.7
diningtable 79.1 65.5 0.4 21.4 33 34.9
dog 85.4 59.0 0.3 8.0 4.8 26.9
horse 88.4 76.6 1.0 26.8 4.8 43.9
motorbike 89.5 69.5 0.7 31.8 9.8 45.1
person 88.0 79.0 1.0 33.0 5.0 48.3
pottedplant 66.1 40.0 0.1 4.0 4.6 14.2
sheep 82.6 62.7 0.1 6.0 2.4 28.3
sofa 82.9 57.1 0.1 6.4 0.7 33.9
train 85.8 68.9 0.7 22.1 9.6 30.7
tvmonitor 84.5 63.7 9.2 23.0 5.4 44.5
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Table III: The performance of Deformable-DETR in each category on clean images and adversarial
images under two attacks (A;,. and A.;s) on the MS-COCO dataset. “STD” indicates the standard
detection model which is non-robust. “Robust” denotes the robust detection model obtained via
adversarial training.

Deformable-DETR [Zhu et al.|(2021)

Method Clean Aus Ajoe Clean Aus Aloe
STD  Robust STD Robust STD Robust STD Robust STD Robust STD Robust

person 78.5 59.7 9.3 29.5 26.9 38.3 wine glass  55.1 29.1 0.5 7.8 13.1 132
bicycle 564 312 0.7 59 9.2 14.3 cup 56.7 304 0.2 4.4 10.8 14.8
car 632 433 1.4 16.0 12.3 239 fork 51.8 16.7 0.0 3.1 6.6 6.7
motorcycle 72.5 46.5 0.7 11.2 153 27.8 knife 27.6 9.6 0.0 0.6 2.0 3.1
airplane 83.7 63.4 42 26.2 314 402 spoon 27.1 6.8 0.0 0.2 0.9 23
bus 81.1 63.2 2.0 22.3 332 462 bowl 54.9 24.9 0.2 4.4 132 12.2
train 83.0 598 75 23.4 358 429 banana 42.6 25.5 0.2 4.0 9.2 139
truck 554 205 0.4 3.1 104 9.1 apple 28.8 16.5 0.0 1.6 1.5 7.1
boat 49.9 23.7 0.1 2.8 2.7 5.5 sandwich ~ 50.4 214 0.1 1.8 75 12.1
traffic light 50.2 29.1 0.6 6.2 2.4 10.1 orange 40.0 28.0 0.1 83 10.8 20.6
fire hydrant 84.2 68.1 3.1 29.8 24.7 52.6 broccoli 419 29.9 0.2 5.1 6.1 14.1
stop sign 744 614 4.4 35.0 41.6 552 carrot 342 20.1 0.1 2.0 32 7.7
parking meter  60.2  41.0 0.0 5.8 15.9 17.5 hot dog 51.5 21.7 0.0 37 10.6 12.0
bench 37.8 15.7 0.3 23 5.8 7.4 pizza 70.7 47.8 1.5 18.7 28.8 384
bird 56.0 309 0.0 3.6 6.4 16.4 donut 63.0 28.7 0.1 25 112 12.6
cat 90.7 52.7 0.7 8.4 22.6 27.6 cake 59.6 28.0 0.2 33 11.0 15.0
dog 83.0 476 0.4 4.6 184 329 chair 453 17.8 0.0 1.4 4.6 6.5
horse 834 481 2.1 12.3 20.6 30.7 couch 56.3 36.9 0.6 7.6 17.3 225
sheep 797 421 0.5 7.1 15.8 254 potted plant  46.6 20.6 0.1 3.8 45 83
cow 80.9 475 0.6 11.2 19.6 26.2 bed 60.5 33.0 1.4 75 249 225
elephant 88.3 52.0 1.8 4.1 28.9 31.6 dining table  37.3 22.1 1.5 133 17.0 19.8
bear 89.1 52.1 0.4 5.5 34.9 36.6 toilet 78.2 51.3 0.4 17.8 23.5 34.2
zebra 91.8 779 18.3 42.1 435 60.5 tv 76.4 50.2 0.6 10.7 24.0 329
giraffe 89.7 729 17.6 37.0 45.7 54.7 laptop 76.0 456 0.8 124 23.7 26.5
backpack 28.0 10.2 0.0 1.5 0.8 32 mouse 769 529 0.4 5.4 18.7 214
umbrella 61.9 35.6 0.3 6.8 10.1 20.0 remote 46.1 14.8 0.1 1.0 38 33
handbag 26.5 7.2 0.1 1.3 1.5 2.0 keyboard 71.6 529 1.6 15.7 19.0 33.8
tie 524 285 1.1 7.4 5.6 12.4 cell phone  49.7 243 0.1 1.7 5.7 10.9
suitcase 63.2 20.8 0.0 1.5 74 8.4 microwave  71.9 422 33 8.6 14.8 20.1
frisbee 88.1 70.1 0.4 17.7 21.6 38.7 oven 55.5 21.8 1.9 4.1 15.4 11.6
skis 46.3 19.9 0.3 7.8 1.3 7.4 toaster 38.0 15.8 0.0 0.0 4.1 2.4
snowboard 48.6 20.2 0.2 0.7 23 5.1 sink 58.6 314 0.4 34 8.0 134
sports ball 59.6 30.7 0.7 13.5 7.1 19.1 refrigerator  70.0  42.6 1.3 12.0 223 26.6
kite 63.8 428 0.6 12.8 8.8 29.4 book 23.8 8.7 0.0 0.7 12 2.7
baseball bat  60.2 14.9 0.4 2.6 29 3.7 clock 73.5 58.1 1.2 28.8 135 38.8
baseball glove  60.2 36.1 0.2 8.4 4.1 17.5 vase 56.7 29.9 0.5 33 9.1 12.9
skateboard 752 460 1.9 11.0 9.7 21.4 scissors 354 12.4 0.2 3.0 10.4 52
surfboard 60.5 322 0.3 6.2 7.1 12.4 teddy bear  71.1 34.6 0.1 4.8 18.0 19.8
tennis racket ~ 76.2 54.2 23 232 154 318 hair drier 153 18.8 0.0 0.0 2.6 0.0
bottle 54.1 28.1 0.4 2.6 7.7 10.3 toothbrush  39.6 10.6 0.1 4.7 1.4 4.4
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Figure III: Classification-Ablative Validation for standard and robust SSD models.

H VISUALIZATION OF DCM AND CLSAVAL

The results of DCM and ClsAVal have been shown in Fig. 6~13 in the main paper. In this
supplementary file, we provide corresponding visualizations (in Fig. [TI~XIV) again for a better
view (including the ClsAVal of RPN in standard and robust Faster R-CNN), due to so many object
categories, with the same results as those in the main paper. In the main paper, SSD, Faster-RCNN and
YOLOX are evaluated on the PASCAL VOC dataset, while Deformable-DETR is on the MS-COCO
dataset. Thus, for Deformable-DETR, we select objects in MS-COCO whose category is the same as
the PASCAL VOC dataset to calculate DCMs in the main paper, as shown in Fig.13, Fig. [XIII|and
Fig.[XIV] In addition, we also provide the visualizations of DCMs on all the 80 object categories
in MS-COCO for Deformable-DETR, as shown in Fig. XVFig. [XXVIII Fig. XVh-Fig. XX VIII|
present the results of DCM and ClsAVal for standard Deformable-DETR and robust Deformable-
DETR on clean images and adversarial images under two attacks (A;,. and A;s), respectively. The
detailed analysis based on these experimental results is presented in the Sec.[3]and Sec. ] of main

paper.



Under review as a conference paper at ICLR 2023

'i‘l

Vanilla

RObUSt(AcIs)

RObUSt(AIoc)

Figure IV: Classification-Ablative Validation for standard and robust Faster R-CNN models.
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Figure V: Classification-Ablative Validation for RPN in standard and robust Faster R-CNN.
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Figure VI: Classification-Ablative Validation for standard and robust YOLOX models.
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A APPENDIX
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