
LLM on DataFrame Question Answering Without Data Exposure

Appendix A. UCI-DataFrameQA Dataset Generation with GPT-41

Figure 1: Sample Prompt for DataFrame QA Dataset Generation with GPT-4.



Table 1: Characteristics of Questions from Three Different Roles Used in the Prompt.

Role Description of Question Characteristics

Data
Scientist

Questions tailored for individuals with an in-depth understanding of the
dataset, possessing expertise in statistical and mathematical analysis. These
questions should challenge their analytical skills, encouraging the use of ad-
vanced data manipulation and interpretation techniques. The focus is on ex-
tracting complex insights and patterns from the data.

General User Questions designed for users who may not have specialized data analysis skills
but are interested in the practical, consumer-oriented aspects of the data. These
questions should be formulated based on the nature and context of the data, re-
quiring inferential thinking about its potential end-users. Questions and queries
should be structured to be somewhat open-ended, avoiding direct references to
specific column names, thus introducing a level of interpretative ambiguity.

Data Owner Questions aimed at individuals or entities who own or have created the data,
with a focus on business-oriented insights. These questions should cater to their
interest in understanding the broader business implications, trends, and strate-
gic insights that can be derived from the data. The emphasis is on leveraging
the data for decision-making, performance tracking, and identifying opportu-
nities or areas for improvement within the business context.



LLM on DataFrame Question Answering Without Data Exposure

Table 2: Sample Generated Question/Pandas Query Pairs of UCI-DataFrameQA Dataset.

Role Question Pandas Query

Data
Scientist

How has the average
weight of cars changed
over the model years?

result = df.groupby(‘model year’)[‘weight’].mean()

Data
Scientist

What is the distribution of
tumor size for cases with
recurrence events?

result = df[df[‘Class’] == ‘recurrence-events’]

[‘tumor-size’].value counts()

General User Which cars have more
than 6 cylinders?

result = df[df[‘cylinders’] > 6]

General User What is the most common
tumor size observed in the
data?

result = df[‘tumor-size’].mode()[0]

Data Owner What are the names of the
cars with the top 3 high-
est fuel efficiencies in our
dataset?

result = df.nlargest(3,

‘mpg’)[‘car name’]

Data Owner What is the frequency of
tumor sizes in the age
group 50-59?

result = df[df[‘age’] == ‘50-59’][‘tumor-size’]

.value counts()



Appendix B. Error Classification with GPT-3.52

Table 3: Description of Eight Pre-defined Error Classes.

AbbreviationError Classes Description

String Error String Matching and Com-
parison Errors

Errors in this class arise from improper handling of
string comparisons, such as failing to use appropriate
matching methods, not accounting for case sensitiv-
ity, whitespace, or special characters, and using exact
matching where pattern recognition is required.

Access
Error

Data Access and Bounds Er-
rors

This class is for errors when data is accessed using
an incorrect index or key, or when the index exceeds
the bounds of the data structure, leading to ‘index

out of bounds’ or ‘key not found’ errors.
Condition
Error

Query Condition and Value
Errors

This class covers errors where query conditions do
not reflect the data accurately or the wrong values
are used, resulting in no matches or incorrect re-
sults. It includes using incorrect column names or
values and failing to match the query criteria with
the dataset.

Type Error Data Type and Operation Er-
rors

This class includes errors from attempting operations
between incompatible data types, using methods un-
suitable for the data type, and applying aggrega-
tion functions incorrectly, often leading to type mis-
matches or operation errors on non-compatible data
types.

Expectation
Error

Expectation and Interpreta-
tion Errors

This class encompasses errors from a discrepancy be-
tween expected outcomes and actual results, which
may stem from misinterpreting the output, data, or
having incorrect expectations of the data’s structure,
leading to incorrect assumptions and results.

Structure
Error

Data Structure Reference Er-
rors

This class refers to errors arising from incorrect as-
sumptions or references to the data’s structure, such
as referencing non-existent columns or misinterpret-
ing the content of the data, leading to queries that
do not align with the actual data format or content.

Function
Error

Function and Method Usage
Errors

Errors in this category result from misusing functions
or methods outside their intended purpose, such as
using a function designed for a specific operation in
a context where it does not apply, or calling methods
on objects they are not designed for.

Others Others The category to cover any errors that do not fit into
the specific categories above, such as general mis-
takes in code logic or implementation that leads to
unexpected results or errors.



LLM on DataFrame Question Answering Without Data Exposure

Figure 2: Sample Prompt for Error Classification with GPT-3.5. Provided are the
question, sample rows in the target dataframe, generated Pandas query, execu-
tion result, ground truth answer, and 8 pre-defined error classes with definitions.
GPT-3.5 is tasked with classifying the errors present in this example. In this case,
the incorrect Pandas query generated by CodeLlama-34B erroneously capitalizes
the player’s name when querying the dataframe.



Figure 3: Sample Response for Error Classification with GPT-3.5. We demonstrate
the outcome of employing GPT-3.5 to assist in identifying the type of error. The
response accurately categorizes the error, identifying it as a String Matching and
Comparison Error, as well as a Query Condition and Value Error.
The analysis by GPT-3.5 underscores the importance of using lowercase search
criteria for proper nouns (e.g., ‘jalen rose’ instead of ‘Jalen Rose’), and
recommends the implementation of the .str.lower() function as a standard
practice. This approach ensures uniform conversion of strings to lowercase within
dataframes, thereby mitigating potential case sensitivity issues. This specific
case serves as a prominent example of the effectiveness of LLMs in conducting
detailed error classification and analysis, demonstrating their significant value
in addressing complex data processing challenges in natural language processing
research.



LLM on DataFrame Question Answering Without Data Exposure

Appendix C. Examples of Challenges in DataFrame QA and Potential3

Solutions4

Figure 4: Value Retrieval Error by GPT-4. This type of error occurs in pandas queries
when an incorrect value is retrieved. It often arises due to ambiguities in the user’s
question, leading to multiple possible interpretations. For instance, consider the
example where the query targets the term ‘grey and bell’ While the intended
search might be for a combined entity, ‘grey and bell’, it could also be misin-
terpreted as two separate searches for ‘grey’ and ‘bell’ respectively. Another
common occurrence in this error category involves GPT models inadvertently
omitting special characters or symbols, such as Roman number ‘I’ or hyphens,
during query execution. This usually happens because the model mistakenly
identifies these characters as typographical errors in the sentence, rather than
integral parts of the search value. This represents one of the most common error
categories in DataFrame QA tasks.
Solution: Enclosing query terms in quotation marks can significantly reduce
Value Retrieval Errors. For instance, using quotations to specify ‘grey and

bell’ as a single entity, aiding in precise and accurate value retrieval.



Figure 5: Column Reference Error by GPT-4. This error manifests when a query er-
roneously targets an incorrect column, commonly attributable to inadequately
defined or ambiguous column names. Predominant in DataFrame QA tasks,
this error underscores the imperative for a comprehensive understanding of table
headers to facilitate precise data retrieval. LLMs, lacking prior domain-specific
knowledge, are particularly susceptible to misidentifying columns, thereby yield-
ing inaccurate outcomes. In the above example, the LLM fails to discern the
significance of the ‘num’ column, which is indicative of the diagnosis of heart
disease. This oversight underscores the pivotal role of appropriate table header
naming in ensuring the accuracy of DataFrame QA tasks.
Solution: Clarifying ambiguous columns in prompts can greatly reduce Col-
umn Reference Errors. For instance, stating ‘‘Column ‘ca’ represents major

vessels colored by fluoroscopy’’ and ‘‘Column ‘num’ indicates heart

disease diagnoses’’ guides LLMs to the correct data, enhancing query ac-
curacy.



LLM on DataFrame Question Answering Without Data Exposure

Figure 6: Instruction Misalignment Error by CodeLlama-7B. This error type
emerges when a LLM fails to follow or comprehend given instructions. A case
in the above figure, despite explicit instructions in the prompt that the pandas
library can be directly utilized and that the output should not include comments,
the LLM deviates from this guideline. Case sensitive cases discussed in this paper
also belong to this class. This indicates a misalignment with the provided instruc-
tions, reflecting a potential bias or conflict stemming from the LLM’s training on
datasets where import statements and comments are standard. In our specific
DataFrame QA task, such inclusions are redundant and contrary to the task re-
quirements. This scenario exemplifies the importance of a LLM’s ability to adapt
to the specific nuances and requirements of a given task, distinguishing between
standard programming practices and task-specific directives.
Solution: Enhancing prompts with clear directives can effectively prevent In-
struction Misalignment Errors. For example, specifying ‘Do not import Pandas

library’ alongside ‘Pandas is pre-imported as pd’ emphasizes the need for
LLMs to strictly follow given instructions, improving task adherence and accu-
racy.



Figure 7: Aggregation Error by GPT-4. This error arises in dataframe queries when
a LLM incorrectly applies an aggregation function due to a lack of clear under-
standing of the specific meaning and content of a column, compounded by the
ambiguity of the question. The crux of the error lies in the LLM’s inability to
distinguish whether a query requires the use of a summation (sum) or a count
function. For instance, in response to a query like ‘What is the total amount

under certain conditions?’, it’s vital to discern whether the query seeks the
sum of all data meeting the criteria (using the sum() function) or merely the
number of instances that satisfy the conditions (using the count() function). If a
LLM does not fully grasp the nuances of the column’s specific meaning and the
data characteristics, or if it fails to accurately interpret the intent of the question,
it may select an inappropriate aggregation function, leading to results that do not
align with the actual requirements.
Solution: Providing clear column information and specific query formu-
lations can effectively prevent Aggregation Errors. For instance, stating
‘‘Column ‘allied-unrelated’ holds categorical data’’ or rephrasing a
query to ‘‘Count ‘allied-unrelated’ entries for human capital’’ guides
the LLM to apply the correct aggregation method, enhancing result accuracy.



LLM on DataFrame Question Answering Without Data Exposure

Figure 8: Function-Column Ambiguity Error by GPT-4. This error manifests in
dataframe queries when there is ambiguity between column names and function
names, leading to erroneous interpretations and executions by the LLM. A typical
instance of this error is seen when a column name includes terms like ‘Average’
or ‘Avg’ which can also be names of aggregation functions. This leads to an
unnecessary aggregation operation instead of the simple data retrieval that the
query required.
Solution: Renaming columns, such as changing to ‘average score’, may not
rectify Function-Column Ambiguity Errors. A preferable approach is to encapsu-
late column names in quotation marks within queries, clearly differentiating them
from function commands, thereby guiding accurate LLM interpretation.



Figure 9: Insufficient Column Data/Format Information Error by GPT-4. This
error arises when there is a mismatch between the LLM’s assumptions about a
dataset’s structure and the actual data format, leading to incorrect dataframe
operations. A notable instance of this occurs when handling date-related queries
without clear information on the date format in the dataset. LLM erroneously
assumes that the ‘Date’ column in the dataset contains full date information in-
cluding the year. However, in reality, the dataset’s ‘Date’ column only contains
month and day, without the year, leading to a failure in correctly applying the
to datetime function. In this case, the LLM’s error stems from a gap in under-
standing the specific format of the ‘Date’ column, highlighting the importance of
having accurate and sufficient information about the data’s structure and format.
Solution: Specifying column formats in prompts, such as stating ‘‘Column

‘Date’ follows the ‘january, 1’ format’’ effectively addresses Insufficient
Column Data/Format Information Errors, ensuring precise LLM data handling.



LLM on DataFrame Question Answering Without Data Exposure

Figure 10: Coding Syntax Error by CodeLlama-7B. This type of error highlights
disparities in the coding capabilities of LLMs, particularly in structuring and
executing DataFrame queries. It occurs when the syntax used in a query is
incorrect or suboptimal, impacting the query’s functionality and efficiency. In
the above example, the .mean() function is applied across all columns in the
grouped DataFrame before selecting the ‘Shell weight’ column. Such an ap-
proach is not just inefficient but also potentially problematic. If the DataFrame
contains non-numerical columns, computing the mean for all columns initially
can lead to errors, as the mean function is not applicable to non-numerical data.
This kind of error emphasizes the challenges LLMs face in coding proficiency,
particularly regarding the optimization of code for data manipulation tasks.
Solution: Addressing Coding Syntax Errors depends on the LLM’s coding ex-
pertise. Solutions include choosing a base LLM with enhanced coding abilities,
such CodeLlama-34B or GPT-4 or training the LLM on DataFrame QA datasets
for better query optimization and data handling skills.



Figure 11: Hallucination Error by CodeLlama-7B. This error type arises when a LLM
generates responses based on incorrect assumptions or fabricated details, often
due to a lack of domain-specific knowledge. In DataFrame queries, this manifests
as references to non-existent columns or data points that the LLM ‘hallucinates’
or incorrectly infers. In the illstruated example, the accurate approach should
involve using the ‘Rings’ column, which typically represents the age of abalone.
However, a Hallucination Error occurs when the LLM creates a query based on
an imaginary ‘Age’ column that doesn’t exist in the dataset. This error is a
result of the LLM’s lack of understanding that in the context of abalone, age
is commonly denoted by the number of rings, not a separate ‘Age’ column. It
demonstrates a significant gap in domain-specific knowledge, where the LLM
fails to accurately interpret the data context and instead relies on incorrect or
made-up information.
Solution: Enhancing prompts with detailed data and column informa-
tion, like specifying ‘Abalone age is assessed by counting rings on the

shell’ helps bridge domain knowledge gaps in LLMs, effectively reducing Hal-
lucination Errors and improving query accuracy.



LLM on DataFrame Question Answering Without Data Exposure


	UCI-DataFrameQA Dataset Generation with GPT-4
	Error Classification with GPT-3.5
	Examples of Challenges in DataFrame QA and Potential Solutions

