
Appendix: Symbolic Distillation for Learned TCP
Congestion Control

S P Sharan1, Wenqing Zheng1, Kuo-Feng Hsu2, Jiarong Xing2, Ang Chen2, Zhangyang Wang1

1University of Texas at Austin 2Rice University
{spsharan,w.zheng,atlaswang}@utexas.edu; {kh42,jxing,angchen}@rice.edu

1 Algorithm descriptions

Algorithm: Distilling Teacher Behavior into
Symbolic Tree

Require: Temporary dataset Dtrain containing
X (numerical states), Y (actions)

Return: r: the root of symbolic policy tree
Maintain: S: the set of unsolved action nodes
1: Initializations
2: r← newActionNode(depth = 0)
3: S ← {r} ; cnt← 0
4: While S ≠ {} & cnt < cntMAX :
5: cnt← cnt+ 1
6: n← pop(S) ▷ Sample action node
7: Ysub ← Y[n.total_condition] ▷ Slices
8: IF Entropy(Ysub) < Θentropy:
9: n.policy←Mean(Ysub)
10: ELSE: ▷ Single action cannot fit
11: IF n.depth < depthMAX :
12: With probability p1: ▷ Split condition
13: n← newConditionNode()
14: S ← S + {n.aLEFT , n.aRIGHT }
15: With probability 1− p1: ▷ De-noise
16: n.policy← default action
17: ELSE: ▷ Too deep, stop branching further
18: With probability p2:
19: Xsub ← X[n.total_condition]
20: n.policy← runSR(Xsub,Ysub)
21: With probability p3: ▷ De-noise
22: n.policy← default action
23: With probability 1− p2 − p3:
24: n′ ← Sample(pathToRoot(n))
25: removeSubtree(n′)
26: n′ ← newConditionNode()
27: S ← S+{n′.aLEFT , n

′.aRIGHT }
28: Return r

Table 1: Symbolic distillation algorithm.

We note that the decision procedure of a wide
range of policy networks could be efficiently
represented as high-fidelity tree shaped sym-
bolic policy. In this tree structure, one basic
component – the condition node, has three
key properties: the condition, aLEFT , and
aRIGHT , and could be written equivalent
to one basic boolean operation, condition ∗
aLEFT +¬condition∗aRIGHT , as explained
in Figure 1.

A careful and delicate “DRL behavior dataset”
is to be generated and processed, which we
specify below. Once having generated the
DRL behavior dataset, one could then apply
one of the current symbolic regression bench-
marks to parse out a symbolic rule that best fit
the DRL behavior data.

We now specify how we build the DRL behav-
ior dataset and process into a symbolic regres-
sion friendly format. In general, the symbolic
regression algorithms are able to evolve into
an expression that maps a vector x ∈ Rd into
a scalar y ∈ R1, where d is the dimensionality
of the input vector. To do so, they require a
dataset that stacks NData samples of x and y,
into X ∈ RNData×d and y ∈ RNData×1, re-
spectively. Given these input/output sample
pairs, i.e., (X,y), a symbolic expression that
faithfully fit the data can be reliably recovered.
The overview of our symbolic distillation algo-
rithm is provided in Table 1 and equivalently
in Figure 2.

The genetic mutation is guided by a measure
termed program fitness. It is an indicator of
the population of genetic programs’ perfor-
mances. The fitness metric driving our evolu-
tion is simply the MSE between the predicted action and the “expert” action (teacher model’s action).
We use the fitness metric to determine the fittest individuals of the population, essentially playing a

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Condition c

Yes

Expression y

No

Certain

sub-tree

Expression x

Expression

c ∗ x + (¬c) ∗ y

Equivalent

Figure 1: The equivalence of branching node in a subtree and the bool conditioning expression

survival of the fittest game. These individuals are mutated before proceeding to following evolution
rounds. We specifically follow 5 different evolution schemes, either one picked stochastically. They
are:

• Crossover: Requires a parent and a donor from two different evolution tournamets. This
scheme replaces (or) inserts a random subtree part of the donor into a random subtree part
of the parent. This mutant variant carries forth genetic material from both its sources.

• Subtree Mutation: Unlike crossover which brings “intelligent” subtrees into the parent,
subtree mutation instead randomly generates it before replacing its parent. This is more
aggressive as compared to the crossover counterpart and reintroduce extinct functions and
operators into the population to maintain diversity.

• Hoist Mutation: Being a bloat-fighting mutation scheme, hoist mutation first selects a
subtree. Then a subtree of that subtree is randomly chosen and hoists itself in the place of
the original subtree chosen.

• Point Mutation: Similar to subtree mutation, point mutation also reintroduces extinct
functions and operators into the population to maintain diversity. Random nodes of a tree are
selected and replaced with other terminals and operators with the same arity as the chosen
one.

• Reproduction: An unmodified clone of the winner is directly taken forth for the proceeding
rounds.

2 Experimental Settings

In our training regime, the configured link bandwidth is between 100− 500 pps, latency 50− 500
ms, queue size 2− 2981 packets, and a loss rate between 0− 5%. In the MiniNet emulation, the link
bandwidth is between 0− 100 mbps, latency 0− 1000 ms, queue size 1− 10000 packets, and a loss
rate upto 8%. The MiniNet configuration is from its default setting, and we adopt this mismatch to
purposely explore the model’s robustness.

3 Extended Discussions

The Interpretability. The simple form of distilled symbolic rules provides more insights for
networking researchers of what are the key heuristic for TCP CC. Moreover, our success of using
symbolic distillation for CC also paves the possibility of applying it to other systems and networking
applications such as traffic classification and CPU scheduling tasks.

2

psudo-code for the solve stage of RoundTourMix

def solve_policy_as_symbolic_tree(x, y):

 # input is a list of pairs of teacher behaviors:

 # x: numerical state

 # y: action

 # output: a symbolic tree with condition nodes and action nodes

 root = new_action_node(depth=0) # initialize the root node as an action node

 unsolved_action_nodes = { root }

 loop_cnt = 0

 while (unsolved_action_nodes is not empty) and (loop_cnt < max_cnt):

 loop_cnt += 1

 node = sample(unsolved_action_nodes).pop() # randomly sample an unsolved action node

 # First check if the actions under the current total_condition is near deterministic.

 y_subset = y[node.total_condition] # select slices that satisfy total_condition

 if entropy(y_subset) < entropy_threshold:

 # If a single action fits under the current total_condition, then resolve and close this branch

 node.policy = mean(y_subset)

 else:

 if node.depth < max_depth:

 # If max depth is not met, branch on this node by a randomly guessed

 # condition, and mark new child nodes as unsolved

 replace_action_node_with_new_condition_node(node)

 unsolved_action_nodes.add([node.a_LEFT,node.a_RIGHT])

 else:

 # If the current node is already too deep, then stop branching further.

 uniform_0_1 = rand() # sample from a uniform distribtion [0,1]

 if uniform_0_1 > p_SR:

 # With probability p_SR, directly solve this node using Symbolic_Regression.

 x_subset = x[node.total_condition]

 node.policy = Symbolic_Regression(x_subset, y_subset)

 elif uniform_0_1 > p_SR + p_default_action:

 # With probability p_default_action, set to default action to de-noise teacher behavior.

 node.policy = default_action

 else:

 # Otherwise, remove a subtree containing this node, then renew the searches.

 node_father = sample(node.father_nodes_list)

 remove_subtree(node_father)

 node_father = new_condition_node()

 unsolved_action_nodes.add([node_father.a_LEFT,node_father.a_RIGHT])

 return root

Figure 2: The pseudo-code for the algorithm in Table 1.

Need for Branching. The branched training of multiple symbolic models, each in different training
regimes, is designed to ease the optimization process. It does not directly enforce similarity between
solutions for the grouped states – therefore not causing brittleness. This is assured as the symbolic
model within any branch does not directly perform the same action for all scenarios within its regime,
but contains multiple operations within itself to map states to actions based on the network state
observed. Also, during the inference/deployment stage, we use the branch-decider network which
chooses branches based on the observed state, not the bandwidths or latencies (in fact, these measures
are unavailable to the controller agent and cannot be observed).

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

3

• Did you include the license to the code and datasets? [Yes]
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5 in main text.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5 in main text.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We did not
include theoretical results.

(b) Did you include complete proofs of all theoretical results? [N/A]
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No] Our codes and
data will be fully released upon acceptance.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A] The assets we used are open-source.

The license information is available online.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] The data we are using is open source.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] Our data does not include personally identifiable
information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

4

	Algorithm descriptions
	Experimental Settings
	Extended Discussions

