
A Deterministic regret upper bound

In this section, we prove Corollary 2.3.1 in which we provide the explicit regret bounds for online
ridge regression and forward regression in the adversarial case. First, recall the following result.

Theorem. (Theorem 11.8 of Cesa-Bianchi & Lugosi [6]) For all T ≥ 1, (xt)1≤t≤T ∈ Rd,
(yt)1≤t≤T ∈ [−Y, Y] such that ‖xt‖2 ≤ X ,

for A ∈ {r, f} R̄AT ≤ cA(Y A)2d ln

(
1 +

TX2

λd

)
+ λ‖θT ‖22,

where cr = 4, cf = 1, Y r = max{Y,max1≤t≤T |x>t θrt−1|}, Y f = Y and θT = arg minθ LT (θ).

We can now derive the explicit regret bound we seek by bounding the norm of the parameter θT .

Corollary. (Corollary 2.3.1) For all T ≥ 1, (xt)1≤t≤T ∈ Rd, (yt)1≤t≤T ∈ [−Y, Y] such that
‖xt‖2 ≤ X ,

for A ∈ {r, f} R̄AT ≤ cA(Y A)2d ln

(
1 +

TX2

λd

)
+

λ (Y A)2T

λrT (GT (0))

where rT = rank(Gt(0)) and λrT is its smallest positive eigenvalue, cr = 4, cf = 1, Y r =
max{Y,max1≤t≤T |x>t θrt−1|}, Y f = Y .

Proof. Consider (w.l.o.g) ridge regression, denote XT the design matrix and yT the labels, then:

‖θT ‖2 =
∥∥GT (0)†bT

∥∥
2

=
√
y>TX

>
T GT (0)†GT (0)†XT yT ≤

√
y>TX

>
T GT (0)†XT yT
λrT (GT)

≤ Y r

√
T

λrT (GT)
,

where GT (0)† is the pseudo-inverse of GT (0), the last inequality is because X>T GT (0)†XT is an
orthogonal projection on Im(X>). Injecting in the previous theorem finishes the proof, these bounds
hold for arbitrary bounded sequences. The proof for the forward algorithm proceeds in the same way
by replacing GT by GT+1 and Y r by Y f.

B Regret definition

In this section, we prove that with high probability, R̄T and RT yield the same first order high
probability bounds for online regression algorithms.

Theorem. (Regret equivalence) For all δ > 0, with probability at least 1− δ, for T > 0 such that∑t
s=1 xsx

>
s is non-singular:

RT = R̄T + o(log(T)2)

Note that this is enough to prove that RT and R̄T are equal in first order because the upper bound on
R̄T is of order log(T)2.

Denote ∀T ≥ 1 : θT = arg minθ∈Rd LT (θ), then:

RT−R̄T = LT (θ∗)− LT (θT) = 2

T∑
t=1

εt(θT − θ∗)>xt −
T∑
t=1

(
(θT − θ∗)>xt

)2
. (8)

Denote ST =
∑T
t=1 εt(θT − θ∗)>xt, AT =

∑T
t=1

(
(θT − θ∗)>xt

)2
, we prove that ST = o(AT).

Lemma B.1. (Tail inequality) For all δ > 0, σ′ > 0, with probability at least 1− δ, for all T > 0:

|ST | ≤

√
2(AT + 1/σ′2) log

(√
σ′2AT + 1

δ

)

13

Proof. We use the method of mixtures, denote

Mλ
t = exp

(
λεt(θT − θ∗)>xt −

λ2

2

(
(θT − θ∗)>xt

)2)
.

Without loss of generality, we can assume that (εs)s≥1 is 1-sub-Gaussian (this can be achieved by
scaling features appropriately), then E[Mλ

t] ≤ 1.
Let Λ ∼ N(0, σ′2) be a Gaussian random variable and define Mt = E[MΛ

t |F∞]. We have E[Mt] =
E[E[MΛ

t |Λ]] ≤ 1. By making explicit Mt and using Markov’s inequality we get that for any stopping
time τ , for all δ > 0, with probability at least 1− δ:

|Sτ |2

1/σ′2 +Aτ
≤ 2σ2 log

(√
1 + σ′2Aτ

δ

)
.

We conclude using the same stopping time construction in Proof. C.

From Lemma. B.1 and equation. (8) we get that for all σ′, δ > 0 with probability at least 1− δ:

RT − R̄T ≤

√
2(AT + 1/σ′2) log

(√
σ′2AT + 1

δ

)
−AT

≤
√

(AT + 1/σ′2) (log(σ′2AT + 1) + 2 log(1/δ))−AT

≤
√
AT + 1/σ′2

(√
log(σ′2AT + 1) +

√
2 log(1/δ)

)
−AT

≤ 1

σ′2
+
√

2(AT + 1/σ′2) log(1/δ) (9)

The next step is to the use confidence intervals of Maillard [15] which hold once the design matrix is
singular.

Theorem. (Theorem 3.3 of [15]) (Ordinary Least-squares) Assume thatN is a stopping time adapted
to the filtration of the past. Then in the sub-Gaussian streaming regression model, for any δ > 0, with
probability at least 1− δ, ∀T ≥ 1 if |GT (0)| > 0:

‖θ∗ − θT ‖2GT (0) ≤ 2(1 + κ)(1 + α)σ2 log
κd(e

2λmax(GT))

δ

where κd(x) is function of κ and α, κd(x) = 2
3π

2 log(x/e)2
[

log(x)
2

⌉ [
(12(d+ 1)

√
d)dxd + d

]
for

κ = α = 1.

For bounded features ‖x‖ ≤ X , we bound λmax(GT (0)) ≤ TX2. Denote T0 = inft≥1{|Gt| > 0},
and for t ≥ T0 : βt = 2(1 + κ)(1 + α)σ2 log κd(e2λmax(GT))

δ , then for all δ > 0 with probability at
least 1− δ:

AT =

T∑
t=1

(
(θT − θ∗)>xt

)2 ≤ AT0
+

T∑
t=T0

(
(θT − θ∗)>xt

)2
≤ AT0

+

T∑
t=T0

βt‖xt‖2Gt(0)−1 ≤ AT0
+ βT

T∑
t=T0

‖xt‖2Gt(0)−1 (10)

Then we bound the sum of features.

Lemma B.2. (Technical inequality) For all sequences {xt}t ∈ Rd such that ∀t, ‖xt‖2 ≤ X , for all
λ ∈ R+, T0, T ∈ N

T∑
t=T0

‖xt‖2G−1
t
≤ d log

(
1 + TX2/λmin(GT0)d

)
where Gt = Gt(λ).

14

Proof. Using the Weinstein–Aronszajn identity: ‖xt‖2G−1
t

= 1 − |Gt−1|
|Gt| , and that z − 1 ≥ log(z)

leads to:
T∑

t=T0

‖xt‖2G−1
t
≤

T∑
t=1

− log
|Gt−1|
|Gt|

= log

(
|GT |
|GT0
|

)
.

Since ‖xt‖2 ≤ X , using the AM-GM inequality:

T∑
t=T0

log

(
1 + ‖xt‖2G−1

t−1

)
≤ d log

(
1 + TX2/λmin(GT0

)d

)
.

From equation (9), using AT ≤
∑T
t=1 ‖θT − θ∗‖2Gt

‖xt‖2G−1
t

≤
∑T
t=1 ‖θT − θ∗‖2GT

‖xt‖2G−1
t

, then
injecting Lemma B.2 with λ = 0, we find that for all δ > 0, with probability at least 1− δ:

AT ≤ AT0
+ βT d log

(
1 + TX2/λmin(GT0

(0))d

)
Then injecting this last inequality in equation (8) gives, for all δ, σ′ > 0, with probability at least
1− δ:

RT − R̄T ≤
1

σ′2
+ σ′

√
2 log(1/δ)

(
βT d log

(
1 + TX2/λmin(GT0

)d

)
+ 1

)
.

We also know -by definition- that RT ≥ R̄T . This concludes the proof for the equivalence of the two
regret definitions.

C Ridge regression analysis

Here we prove a high probability time-uniform upper bound for online ridge regression. Let’s recall
the statement of the theorem that we prove.

Theorem. (Theorem 3.2) For any δ > 0, with probability at least 1− δ, for all T > 0:

R̄r
T ≤ (dσ)2 X2/λ

log(1 +X2/λ)
log

(
1 + TX2/λd

δ/2

)
log
(
1 + TX2/λd

)
+ o(log(T)2)

See Eq. 14 for an explicit bound. In particular, the o(log(T)2) term is O(log(T)3/2).

Let’s write the instantaneous regret:

r̄t = `t(θt−1)− `t(θ∗) =
(
θ>t−1xt − θ>∗ xt)2 + 2εt(θ

>
t−1xt − θ>∗ xt) (11)

The proof proceeds in three steps, that we detail hereafter and then we explain how to combine them
for the final result.

First step: Confidence bound to control the concentration of θt−1 around θ∗. For this we use the
confidence ellipsoid from Abbasi-Yadkori et al. [1].

Theorem. (Confidence ellipsoid for ridge regression) For any δ > 0, with probability at least 1− δ,
for all t > 0:

‖θrt − θ∗‖Gt
≤
√
βt(δ) = σ

√
d log

(
1 + tX2/λd

δ

)
+ λ1/2S.

It comes, with probability at least 1− δ:

(θt−1 − θ∗)>xt ≤ ||xt||G−1
t−1
||θt−1 − θ∗||Gt−1

≤
√
βt−1(δ)||xt||G−1

t−1
.

15

Then, since βt is non-decreasing:

Lt − L∗t ≤ βT−1

T∑
t=1

‖xt‖2ηt−1
+ 2

T∑
t=1

εt(θt−1 − θ∗)>xt. (12)

Second step: Next we bound the sum of feature norms. The main idea here is to use linear algebra
techniques to obtain a telescopic sum.
Lemma B.2 doesn’t apply here because we have ||xt||G−1

t−1
instead of ||xt||G−1

t
. We derive a similar

lemma for this sum of feature norms.
Lemma C.1. (Technical inequality) For all sequences {xt}t ∈ Rd such that ∀t, ‖xt‖2 ≤ X , for all
λ ∈ R+, T ∈ N

T∑
t=1

||xt||2G−1
t−1

≤ X2/λ

log(1 +X2/λ)
d log

(
1 + TX2/λd

)

Proof. We use the Weinstein–Aronszajn identity: ‖xt‖2G−1
t−1

= |Gt|
|Gt−1| − 1, which leads to:

T∑
t=1

log

(
1 + ‖xt‖2G−1

t−1

)
= log

(
GT
G0

)
.

Then since ‖xt‖2 ≤ X and using the AM-GM inequality:

T∑
t=1

log

(
1 + ‖xt‖2G−1

t−1

)
≤ d log

(
1 + TX2/λd

)
.

This next part is what differs from Lemma B.2, using ||xt||2G−1
t−1

≤ λmax(G−1
t−1)||xt||22 ≤ X2/λ and

the concavity of the function log we find:

T∑
t=1

‖xt‖2G−1
t−1

≤
T∑
t=1

X2/λ

log(1 +X2/λ)
log
(
1 + ‖xt‖2G−1

t−1

)
.

The last inequality can also be proved by noting that x→ x/ log(1 + x) is non-decreasing which can
be used to bound every feature norm.

Third step: To control the second term in the r.h.s of Eq. 11, we use Martingale inequalities similar to
the ones used for the confidence intervals to derive a uniform high probability bound.

Lemma C.2. (Tail inequality, see Corollary 8 of [2]) Define St =
∑t
s=1 εs(θs−1 − θ∗)>xs and

let (Ft)t≥0 be a filtration such that xt is Ft−1 measurable and εt is Ft measurable. Then St is a
martingale with respect to Ft and for any δ > 0, σ′ > 0, with probability at least 1− δ, for all t ≥ 0:

|St| ≤ σ

√√√√√2

(
1/σ′2 +

t∑
s=1

(
(θt−1 − θ∗)>xt

)2)
log

√

1 + σ′2
∑t
s=1

(
(θt−1 − θ∗)>xt)2

δ

Proof. The proof of this result follows the same line in the proof of Theorem 1 of Abbasi-Yadkori

et al. [1], first we define for λ ∈ Rd, t > 0 : Mλ
t = exp

(∑t
s=1

[
εsλ(θt−1 − θ∗)

>xt −

λ2
(
(θt−1 − θ∗)>xt

)2
/2
])

.

Without loss of generality, we can assume that (εs)s≥1 is 1-sub-Gaussian (this can be achieved
by scaling features). Let τ be a stopping time with respect to the filtration {Ft}∞t=0. Then Mλ

τ is
well-defined almost surely and

E[Mλ
τ] ≤ 1.

16

Let Λ ∼ N(0, σ′2) be a Gaussian random variable and define Mt = E[MΛ
t |F∞]. We have E[Mt] =

E[E[MΛ
t |Λ]] ≤ 1. By expliciting Mt and using Markov’s inequality we get that for δ > 0, with

probability 1− δ:

|Sτ |2 ≤

(
1/σ′

2

+

τ∑
t=1

(
(θt−1 − θ∗)>xt

)2)
2σ2 log

√

1 + σ′2
∑τ
t=1

(
(θt−1 − θ∗)>xt)2

δ

 .

(13)

Next we use a stopping time construction from Freedman [10]: Define the bad event:

Bt(δ) =

{
ω ∈ Ω : |St|2

1/σ′2+
∑t

s=1

(
(θs−1−θ∗)>xs

)2 > 2σ2 log

√
1+σ′2

∑t
s=1

(
(θs−1−θ∗)>xs)2

δ

}

We are interested in bounding the probability that
⋃
t>0Bt(δ) happens. Define τ(ω) = min{t ≥

0 : ω ∈ Bt(δ)} , with the convention that min ∅ =∞. Then, τ is a stopping time. Further,⋃
t≥0

Bt(δ) = {ω : τ(ω) <∞}

Thus, by Eq. 13:

Pr

⋃
t≥0

Bt(δ)

 = Pr[τ <∞] = Pr [Bτ (δ), τ <∞] ≤ Pr [Bτ (δ)] ≤ δ

This proves that the second term in Eq. 11 is a of order ∼ O(log(T) log log T). In fact, with high
probability

∑t
s=1

(
(θt−1 − θ∗)>xt

)2
= O(log(T)2) therefore, with high probability ST is of order

∼ O(log(T) log(log T)/δ). Consequently, with high probability, ST is second order.

Proof aggregation: By combining earlier results we find for any δ, σ′ > 0, with probability at least
1− δ, for all T ≥ 0:

R̄r
T ≤

(
σ

√
d log

(
1 + TX2/λd

δ/2

)
+ λ1/2S

)2

X2/λ

log(1 +X2/λ)
d log

(
1 + TX2/λd

)

+ σ

√√√√√2

(
1/σ′2 +

t∑
s=1

(
(θt−1 − θ∗)>xt

)2)
log

√

1 + σ′2
∑t
s=1

(
(θt−1 − θ∗)>xt)2

δ/2

.
(14)

D Analysis of the forward algorithm

In this section we derive the high probability time-uniform regret bound for the forward algorithm.
Let’s recall the theorem.
Theorem. (Theorem 3.3)For any δ > 0, with probability at least 1− δ, for all T > 0:

R̄f
T ≤ (dσ)2 log

(
1 + TX2/λd

δ/2

)
log
(
1 + TX2/λd

)
+ o(log(T)2)

See Eq. 15 for the explicit expression of this bound. The proof proceeds similarly to Appendix C: we
need to bound the instantaneous regret.

r̄t = `t(θt−1)− `t(θ∗) =
(
θ>t−1xt − θ>∗ xt)2 + 2εt(θ

>
t−1xt − θ>∗ xt)

We proceed in three steps like before.

First step: We start by deriving a confidence ellipsoid for this new parameter estimate. This is a novel
result.

17

Theorem. (Confidence ellipsoid for the Forward algorithm) For any δ > 0, with probability at least
1− δ, for allt > 0:

‖θt − θ∗‖Gt
≤
√
βt(δ) = σ

√
d log

(
1 + tX2/λd

δ

)
+ (λ1/2 +X)S.

Proof. Denote Xt = (x>1 , . . . , x
>
t), εt = (ε1, . . . , εt)

>. Using

θt = G−1
t+1X

>
t (Xθ∗ + εt) = G−1

t+1X
>
t εt +G−1

t+1(X>t Xt + λI + x>t+1xt+1)θ∗ −G−1
t+1(λI + x>t+1xt+1)θ∗

= G−1
t+1X

>
t εt + θ∗ −G−1

t+1(λI + x>t+1xt+1)θ∗,

we get

|x>θt − x>θ∗| = |x>G−1
t+1Xtεt − x>G−1

t+1(λθ∗ + xt+1x
>
t+1θ∗)|

≤ ‖x‖G−1
t+1

(
‖X>t εt‖G−1

t+1
+
(√
λ+X

)
‖θ∗‖2

)
,

where in the last inequality we used Cauchy-Schwartz inequality and that by the Sherman-Morrison

formula x>t+1G
−1
t+1xt+1 =

x>t+1G
−1
t xt+1

1+x>t+1G
−1
t xt+1

≤ 1. We know that: ||X>t εt||G−1
t+1
≤ ||X>t εt||G−1

t
which

allows us to use Theorem 1 from Abbasi-Yadkori et al. [1] that we recall just after this proof. We
conclude by plugging x = Gt+1(θt − θ∗).

Theorem. (Self-Normalized Bound for Vector-Valued Martingales). Let {Ft}∞t=0 be a filtration. Let
{ηt}∞t=1 be a real-valued stochastic process such that ηt is Ft -measurable and ηt is conditionally R
-sub-Gaussian for some R ≥ 0 i.e.

∀λ ∈ R E
[
eληt | Ft−1

]
≤ exp

(
λ2R2

2

)
Let {Xt}∞t=1 be an Rd -valued stochastic process such that Xt is Ft−1 -measurable. Assume that V
is a d× d positive definite matrix. For any t ≥ 0, define

V̄t = V +

t∑
s=1

XsX
>
s St =

t∑
s=1

ηsXs.

Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0,

‖St‖2V −1
t
≤ 2R2 log

(
det
(
V̄t
)1/2

det(V)−1/2

δ

)
.

Note that the deviation of the martingale ‖St‖2V̄ −1
t

is measured by the norm weighted by the matrix

V̄ −1
t which is itself derived from the martingale, hence the name "self-normalized bound".

For the first term, with probability at least 1− δ for all t ≥ 0:

(θt−1 − θ∗)>xt ≤ ||xt||G−1
t
||θt−1 − θ∗||Gt

≤
√
βt−1(δ)||xt||G−1

t
≤
√
βT−1(δ)||xt||G−1

t
.

Second step: We can use Lemma B.2 to bound the sum of feature norms. It comes
T∑
t=1

(θ>t−1xt − θ>∗ xt)2 ≤ βT (δ)d log

(
1 + TX2/λd

)
Third step: Again, we derive a high probability bound To control the second term in the r.h.s of (11).

Lemma D.1. (Tail inequality) Define St =
∑t
s=1 εs(θs−1 − θ∗)>xs and let (Ft)t≥0 be a filtration

such that xt is Ft−1 measurable and εt is Ft measurable. Then St is a martingale with respect to Ft
and for any δ > 0, σ′ > 0, with probability at least 1− δ, for all t ≥ 0:

|St| ≤ σ

√√√√√2

(
1/σ′2 +

t∑
s=1

(
(θt−1 − θ∗)>xt

)2)
log

√

1 + σ′2
∑t
s=1

(
(θt−1 − θ∗)>xt)2

δ

18

Proof. The proof of this result proceeds in the exact same way as for Lemma C.2.

Proof aggregation: We combine previous results to finish the proof of the forward algorithm regret
bound. For any δ, σ′ > 0, with probability at least 1− δ, for all T ≥ 0:

R̄f
T ≤

(
σ

√
d log

(
1 + TX2/λd

δ/2

)
+ (
√
λ+X)S

)2

X2/λ

log(1 +X2/λ)
d log

(
1 + TX2/λd

)

+ σ

√√√√√2

(
1/σ′2 +

t∑
s=1

(
(θt−1 − θ∗)>xt

)2)
log

√

1 + σ′2
∑t
s=1

(
(θt−1 − θ∗)>xt)2

δ

.
(15)

E The unregularized-forward algorithm

For the sake of completeness, we propose a high probability bound on the regret of a non-regularized
forward algorithm -studied in the adversarial bounded case in Gaillard et al. [11]- which achieves
the optimal asymptotic first order deterministic minimax bound of dY 2 log(T). This algorithm is a
simple yet elegant modification of forward regression, it avoids the exploding λ‖θT ‖22 term by setting
λ = 0. Consequently θt = G†t+1bt, where G†t is the pseudo-inverse of Gt.
Theorem E.1. (Regret of the unregularized forward) The unregularized forward regression achieves,
for any δ > 0, with probability at least 1− δ for all T > 0:

R̄u−fT ≤ 2(1 + κ)(1 + α)σ2 log

(
κd(1 + TX2/γd)

δ/4

)
log

(
|G†T |
|G†T1
|

)

+ 2σ2 log

(
4T1

δ

)(
d+

∑
1≤t≤T1,t∈T

log

(
X2

λrt(
∑t
s=1 xtx

>
t)

))
,

where κ, α ∈ R∗+ are peeling parameters (can be chosen), γ = min1≤t≤T ‖xt‖2, and κd(x) ∝ xd

up to logarithmic factors and depends on κ and α (cf. Theorem 5.4 in Maillard [15]). T1 =
min {t ≥ 1, |Gt| > 0} is, if it exists, the first time the design matrix is non-singular, otherwise
T1 = T , and T is the set of indices t such that rank(Gt) >rank(Gt−1). The last term accounts
for when the design matrix is singular, and is naturally unbounded (this was also the case in the
adversarial case).

Asymptotically, with probability at least 1− δ the first regret term is bounded as:

R̄u−fT ≤ 2(1 + κ)(1 + α) log

(
C(κ, α)(TX2/λd)d

δ

)
log
(
(T − T1)X2/λd

)
,

where C(κ, α) is a function of the peeling parameters.
We don’t seek a more involved analysis to explicit this bound or improve on it, but we see that
vaguely it leads to a bound similar to Theorems 3.2 and 3.3 provided that the term accounting for
the singularity of the design matrix is controlled. The latter empowers the intuition that in the high
probability analysis, the forward algorithm is first order minimax optimal even though concretely we
cant be sure because we don’t have access to uniform lower bounds.

Proof. The proof consists of two mains steps: the first is to use the following bound while the design
matrix is singular:

Theorem E.2. (Theorem 11 Gaillard et al. [11]) For all T > 1, for all sequences x1, . . . , xT ∈ Rd
and all y1, . . . , yT ∈ [−Y, Y], the unregularized forward algorithm achieves the regret bound

RT (u) ≤ Y 2
T∑
t=1

xT
t η
†
txt 6 dY 2 log T + dY 2 + Y 2

∑
t∈[1,T]∩T

log

(
X2

λrt(
∑t
s=1 xsx

>
s)

)

19

where ∀M ∈ Md(R), λ1(M) ≥ . . . ≥ λd are M ’s eigenvalues and rt = rank(
∑t
s=1 xsx

>
s)) and

where the set T contains rT rounds, given by the smallest s > 1 such that xs is not mull, and all the
s > 2 for which rank (Gs−1) 6= rank (Gs).

The second step is a bound when the design matrix is invertible, using Theorem B. Denote T1 =
inf
t≥1
{|Gt| > 0}, using Theorem E.2:

R̄T1
≤ Y 2

d log(T1) + d+
∑

1≤t≤T1,t∈T

log
(X2

λrt(Gt)

)
From standard results on sub-Gaussian noise, we also know that E[max1≤t≤T εt] ≤ σ

√
2 log(T)

(see e.g. Kamath [12]), then using the transformation of Laplace along with Markov’s inequality,
∀δ > 0 P

(
∀T ≥ 1, Y 2 ≤ 2σ2 log(T/δ)

)
≥ 1− δ, hence with probability at least 1− δ:

R̄T1
≤ 2dσ2 log

T1

δ
log(T1) + 2dσ2 log

T1

δ
+ 2σ2 log T1

δ

∑
1≤t≤T1,t∈T

log

(
X2

λrt(
∑t
s=1 xsx

>
s)

)
.

(16)

And for T > T1, we bound RT −RT1
using the same methodology in Appendix C and Appendix D

and using the confidence bounds above (cf. Theorem B). ∀δ > 0, with probability at least 1− δ:

∀t > T1 :
(
θ>t−1xt − θ>∗ xt)2 ≤

√
βt−1(δ)||xt||G†t

We use the tail inequality. (C.2) to get, ∀δ > 0, with probability at least 1− δ, ∀T > 0:

R̄T − R̄T1 ≤ 2(1 + κ)(1 + α)σ2 log

(
κd(1 + TX2/λd)

δ/2

)
log

(
|G†T |
|G†T1
|

)
(17)

From (16) and (17) we obtain for all δ > 0, with probability at least 1− δ:

R̄T . 2(1 + κ)(1 + α)σ2 log

(
κd(1 + TX2/λd)

δ/4

)
log

(
|G†T |
|G†T1
|

)

+ 2σ2 log(T1)

δ/4

(
d+

∑
1≤t≤T1,t∈T

log

(
X2

λrt(
∑t
s=1 xtx

>
t)

))
.

F Applications

In this section, we provide technical details regarding the settings of stationary and non-stationary
linear bandits.

F.1 Linear bandits (Proof of Theorem 4.1)

We start by analyzing linear bandits in the stationary setting. Let us first see how OFULf behaves in
the “unbounded rewards” scenario.

F.1.1 OFUL with forward regression

Consider the same setting as that of Abbasi-Yadkori et al. [1], that we detailed in Section 4, we write
the confidence interval Ct(x) for the forward algorithm at the action x as:{
θ ∈ Rd : ||θft − θ||Gt+xx> ≤

√
βt(x, δ) = (

√
λ+ ||x||2)S + σ

√√√√2 log

(
(1 + tX2/λd)d/2

δ

)}

20

which gives, for all T ≥ 0 the regret (cf. Theorem 4.1):

RT ≤ 4
√
Td log(λ+ TX2/d)

(
λ1/2(S +X) + σ

√
2 log(1/δ) + d log(1 + TX2/(λd))

)
this is equivalent to ridge in its first order, with better scaling and dependence on λ.

Proof. Lets decompose the instantaneous regret as follows:

rt = 〈θ∗, x∗〉 − 〈θ∗, xt〉 ≤
〈
θ̃t, xt

〉
− 〈θ∗, xt〉 =

〈
θ̃t − θ∗, xt

〉
=
〈
θ̂t−1 − θ∗, xt

〉
+
〈
θ̃t − θ̂t−1, xt

〉
=
∥∥∥θ̂t−1 − θ∗

∥∥∥
(Gt−1+xtx>t)

‖Xt‖(Gt−1+xtx>t)−1 +
∥∥∥θ̃t − θ̂t−1

∥∥∥
(Gt−1+xtx>t)

‖xt‖(Gt−1+xtx>t)−1

≤ 2
√
βt−1(xt, δ) ‖xt‖(Gt−1+xtx>t)−1 , (18)

where θ̃t is the optimistic parameter estimate, i.e. the θ ∈ Ct(xt) that maximizes the upper confidence
bound on the reward of action xt. The first inequality is since

(
Xt, θ̃t

)
is optimistic, and the last

step holds by Cauchy-Schwarz. Using inequality (18) and the fact that
√
βt(x, δ) ≤

√
βt(δ) =

(
√
λ+X)S + σ

√√√√2 log

(
(1+tX2/λd)d/2

δ

)
we get that, with probability at least 1− δ, for all n ≥ 0

Rn ≤

√√√√n

n∑
t=1

r2
t ≤

√√√√8βn(δ)n

n∑
t=1

‖xt‖(Gt−1+xtx>t)−1

≤ 4
√
nd log(λ+ nL/d)

(
(λ1/2 +X)S + σ

√
2 log(1/δ) + d log(1 + nL/(λd))

)
where the last step follow from Lemma B.2.

F.1.2 OFUL with ridge regression

In this section, we derive a novel regret bound for online ridge regression, one that doesn’t require
the bounded rewards assumption (cf. Assumption 1).
Theorem. (Bandits with unbounded rewards) Without Assumption 1, for all δ > 0, OFULr achieves
with probability at least 1− δ, for all T ≥ 1,

Rr
T ≤ 4

√
XXX2Td log(1 + TX2/λd)

λλλ log(1 +XXX2/λλλ)

(
λ1/2S + σ

√
2 log(1/δ) + d log(1 + TX2/(λd))

)
,

Proof. The proof follows exactly like in Section F.1.1 except the last step (control of the norm of
actions) that now proceeds using Lemma C.1. The first step is to use the confidence ellipsoid for the
ridge regression parameter (see the second theorem in Section C or Theorem 2 of Abbasi-Yadkori
et al. [1]). With probability at least 1− δ, for all t ≥ 0, θ∗ lies in the set

Ct =

{
θ ∈ Rd : ‖θrt − θ‖Gt

≤
√
βt(δ) = σ

√
d log

(
1 + tX2/λd

δ

)
+ λ1/2S

}
.

Then

rt = 〈θ∗, x∗〉 − 〈θ∗, xt〉 ≤
〈
θ̃t, xt

〉
− 〈θ∗, xt〉 =

〈
θ̃t − θ∗, xt

〉
=
〈
θ̂t−1 − θ∗, xt

〉
+
〈
θ̃t − θ̂t−1, xt

〉
=
∥∥∥θ̂t−1 − θ∗

∥∥∥
Gt−1

‖Xt‖G−1
t−1

+
∥∥∥θ̃t − θ̂t−1

∥∥∥
Gt−1

‖xt‖G−1
t−1

≤ 2
√
βt−1(δ) ‖xt‖G−1

t−1
(19)

21

where θ̃t is the optimistic parameter estimate, i.e. the θ ∈ Ct that maximizes the upper confidence
bound on the reward of action xt. The first inequality is since

(
Xt, θ̃t

)
is optimistic, and the last step

holds by Cauchy-Schwarz. Using inequality (19) we get that, with probability at least 1− δ, for all
n ≥ 0

Rn ≤

√√√√n

n∑
t=1

r2
t ≤

√√√√8βn(δ)n

n∑
t=1

‖xt‖G−1
t−1

≤ 4

√
ndX2 log(1 + nX2/λd)

λ log(1 +X2/λ)

(
λ1/2S + σ

√
2 log(1/δ) + d log(1 + nX2/(λd))

)
where the last step follow from Lemma C.1.

F.2 Non-stationary linear bandits

In this section, we study linear stochastic bandits in the non-stationary setting. We provide an
experimental study of this setup in Section G. We now turn to the setting of non-stationary stochastic
linear bandits, where the target parameter is varying with time: θ∗ = θ∗(t) ∈ Rd, assuming that∑T−1
s=1 ‖θ∗(s)− θ∗(s+ 1)‖2 ≤ BT .

One of the optimal algorithms in this setting is D-LinUCB of [19], it defines θt as

θt = arg min
θ∈Rd

t∑
s=1

γt−s(ys − 〈xs, θ〉)2 + λ/2‖θ‖22.

D-LinUCB proceeds as follows:

Algorithm 4: D-LinUCB
Input: δ, σ, λ,X, S, γ > 0, dimension d ∈ N∗.
Initialization: b = 0Rd , V = λId, Ṽ = λId, θ = 0Rd

for t ≥ 1 do

Receive X , compute βt−1 =
√
λS + σ

√
2 log

(
1
δ

)
+ d log

(
1 + X2(1−γ2(t−1))

λd(1−γ2)

)
for a ∈ X do

Compute UCB(a) = a>θ + βt−1

√
a>V −1Ṽ V −1a

At = arg maxa(UCB(a))
Play action At and receive reward Xt

Updating phase: V = γV + xtx
>
t + (1− γ)λId, Ṽ = γ2Ṽ + xtx

>
t + (1− γ2)λId

b = γb+ YtXt, θ = V −1b

We recall the regret bound of standard D-LinUCB .

Theorem F.1. (Theorem 3 of Russac et al. [19]) Assuming that
∑T−1
s=1 ‖θ∗(s)− θ∗(s+ 1)‖2 ≤ BT

and ∀x ∈ X , t ≥ 1 : 〈x, θt〉 ≤ 1, the regret of the D-LinUCB algorithm is bounded for all γ, δ ∈ (0, 1)
and integer D ≥ 1, with probability at least 1− δ, by:

Rr
T ≤ 2XDBT +

4X3S

λ

γD

1− γ
T + 2

√
2βT
√
dT ×

√
T log(1/γ) + log

(
1 +

X2

dλ(1− γ)

)
,

where βT is the width of the confidence interval for θ∗(T).

Now we introduce D-LinUCB f, which uses the forward algorithm and defines an action dependent θt
as:

arg min
θ∈Rd

t∑
s=1

γt−s(ys − 〈xs, θ〉)2 + λ/2‖θ‖22 + 〈x, θ〉2. (20)

22

Theorem F.2. Assuming that
∑T−1
s=1 ‖θ∗(s)− θ∗(s+ 1)‖2 ≤ BT , the regret of the D-LinUCB f is

bounded for all γ, δ ∈ (0, 1) and integer D ≥ 1, with probability at least 1− δ, by

Rf
T ≤ 2XDBT +

4X3S

λ

γD

1− γ
T + 2βT

√
dT

√
T log(1/γ) + log

(
1 +

(2− γ)X2

dλ(1− γ)

)
.

Proof. This result is again a modification of the original proof consisting in bounding the sum of
the actions’ norms differently. Let us recall the notations Vt =

∑t
s=1 wsxsx

>
s + λtId + xx> and

Ṽt =
∑t
s=1 w

2
sxsx

>
s + µtId + xx>. To summarize the difference of this analysis -that no longer

requires a bounded rewards assumption- at the step where we bound the sum of actions’ norms, we
replace Proposition 4 of Russac et al. [19]:

T∑
t=1

min
(

1, ‖xt‖2V −1
t−1Ṽt−1V

−1
t−1

)
≤ 2

T∑
t=1

log
(

1 + γ−t ‖xt‖2V −1
t−1

)
≤ 2 log

(
det (VT)

λd

)
,

that requires the predictions to lie in the same range as the rewards with this inequality for D-LinUCB f

T∑
t=1

‖xt‖2V −1
t ṼtV

−1
t
≤

T∑
t=1

log
(

1 + γ−t ‖xt‖2V −1
t

)
≤ log

(
det (VT)

λd

)
.

We don’t provide the full proof of this result as it is cumbersome and not of special interest for our
purposes since it is similar to the analysis for D-LinUCB except for the inequality above.

Remark 6. This result is fascinating as it first allows to remove an unnecessary assumption, and
further yields a better bound than D-LinUCB r which suffers the factor XXX

√
2

λλλ log(1+XXX/λλλ) in its last regret
term without assumption 1.

G Experiments

Experimental details and instructions: The experiments were run on a personal laptop with
Intel Core i7-8665U, CPU 1.90GHz × 8. Code for the experiments for online regression and linear
bandits is provided in the files “OnlineRegression.ipynb” and “LinearBanditsCode.ipynb”. For
the experiments of non-stationary linear bandits that we present next, we used an existing code
from the Github page of Russac et al. [19] and we added an implementation of D-LinUCB f to
compare with previous algorithms, this can be seen in the “WeightedLinearBandits” folder in which
“D-LinUCB Forward_class.py” is our new algorithm; experiments for this setting can be run from the
two ipynb files in the Experiments sub-folder.

Experiments for non-stationary linear bandits: We now reproduce the experiments of [19] for
non-stationary linear bandits, and add D-LinUCB f to the pool of algorithms. We first simulate an
abruptly changing environment of dimension 2 with 3 changes: for t < 103 : θ∗ = (1, 0); for 103 ≤
t ≤ 2.103 : θ∗ = (−1, 0); for 2.103 < t < 3.103 : θ∗ = (0, 1); for t > 3.103 : θ∗ = (0,−1). We
observe in Fig. 4a that both variants of D-LinUCB compare on par. Here LinUCB-OR denotes an
oracle knowing the change points.

Second, we simulate a slowly changing environment where the parameter θ∗ starts at (1, 0) and
moves counter-clockwise on the unit-circle up to the position (0, 1) in 3.103 steps then remains there,
BT = 1.57. We see the results in Fig. 4b, where we notice that in this setting as well, D-LinUCB f

has very similar performance to standard D-LinUCB .
Remark 7. In both experiments, we also reported the performances of SW-LinUCB, that is alternative
version to D-LinUCB. SW-LinUCB is better suited for abrupt changes while D-LinUCB is better suited
for slow changes.

Note that we added these final experiments to demonstrate the competitiveness of algorithms that use
forward regression against their ridge counterparts in the same settings that were used by previous
works. While we could have specified specific parameters to illustrate the robustness to regularization
of algorithms that incorporate the forward algorithm; we estimate that the experiments presented
in the main text already fulfilled this objective. Again, the purpose here is to show that using the
forward algorithm improves the theoretical guarantees without deteriorating the performance.

23

0 2000 4000 6000
Round t

0

1000

2000

3000

4000

R
eg

re
t
R

(T
)

D-LinUCB

D-LinUCB-Forward

SW-LinUCB

dLinUCB

LinUCB

LinUCB-OR

(a) abruptly changing environment

0 2000 4000 6000
Round t

0

500

1000

1500

R
eg

re
t
R

(T
)

D-LinUCB

D-LinUCB-Forward

SW-LinUCB

dLinUCB

LinUCB

(b) slowly varying environment

Figure 4: Performance of several algorithms in an non-stationary environments, averaged over 100
runs, shaded areas represent one standard deviation.

24

